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Introduction by J. Lipman and B. Teissier

The vision toward which the papers in this volume point is this: to seek a natural
way of stratifying any algebraic or complex analytic variety X so that X is
equisingular along the strata, i.e., the singularities which X has at the various points
of each stratum are equivalent in some convincing sense.

An excellent introduction to the theories of equisingularity and saturation
created in [81,82,85,89,90,93,97}, is provided by Zariski himself in the exposi-
tory papers [80,86,88,91,95). In addition to reviewing salient features, we will
indicate here some of the developments that have grown out of those theories.
For more along these lines, see the report of Teissier.*’

One of Zariski’s basic ideas is that the equisingularity of a Aypersurface X C
C” along a nonsingular subspace ¥ C X around a point 0 € Y should be defined
(inductively, on the codimension of Y in X) by the equisingularity of the branch
locus (i.e., reduced discriminant variety) B, C C*¥"' along Y, = w(Y) around
w(0), m:X — C*-! being a suitably general finite projection. The underlying
feeling of a strong link between singularities and their “generic branch loci” can
be traced back to Zariski’s papers on fundamental groups [16-20,28,29]. (It is
interesting to compare Zariski’s ideas in these papers with recent proofs of the
local and global versions of the Zariski-Lefschetz theorem given by Cheniot,®
Hamm-Lé,® and Varchenko.3®) The theory of saturation received some of its
initial motivation from Whitney's work on topological triviality of analytic va-
rieties along smooth subvarieties (cf. [85,§6]). Altogether, topology plays an
important backstage role in Zariski’s theory; and the conjunction of discriminant
and topology provides the basis for many connections between his work on
algebro-geometric equisingularity and recent work of others on monodromy,
singularities of differentiable mappings, and analysis on singular varieties (cf.
Teissier,® Varchenko,*® and the end of section 3 below).

A really satisfactory theory of equisingularity exists only for the case when
Y has codimension one in X. Here equisingularity of X along Y at 0 means that
for some =, B, is nonsingular. (It should be understood that we are thinking
always of reduced algebroid varieties, or of germs of reduced complex analytic
spaces). This case, studied in detail in [82], serves as a2 model for all further
work in the area. There are many different criteria for equisingularity in
codimension one, of algebro-geometric, differential-geometric, or topological
nature. Each of these provides a theme for further development in higher
codimension. But there some of the beautiful interconnections between the
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criteria vanish, and of others only a shadow is visible; the search for more
substance remains a major challenge.

More specifically (cf. [82]), when B is nonsingular, Zariski showed that the
singular locus § = Sing(X) is mapped isomorphically to B, by 7 and that
7 Y(B,) = S (this is the “non-splitting principle”, cf. Teissier, p. 6163!) and in
particular S is nonsingular and of codimension one. Taking Y = S, we see that
there exist retractions X — Y and that each of them displays X as a family of
reduced plane curve germs parametrized by Y. The nonsingularity of B, means
that the irreducible components of any two curves in this family can be matched
up in such a way that corresponding components have the same characteristic
Puiseux exponents, and corresponding pairs of components have the same
intersection multiplicity. (This germinal fact is implicit in Jung’s work on local
uniformization.!') This in turn means that the curves are equivalent from the
viewpoint of resolution of singularities or, topologically, as embedded germs in
C2. Conversely, any family of plane curve germs that has all its fibers reduced
and equivalent in one of the above senses has singular locus (say ¥) isomorphic
to the parameter space (which is assumed nonsingular), and all projections X
= Y x C “transversal” to X (i.e., in a direction not tangent to X at the origin)
have nonsingular branch locus. Finally, given a hypersurface X whose singular
locus Y is nonsingular and of codimension one, X is equisingular along Y if and
only if the famous conditions (a) and (b) of Whitney*s hold for the pair X -7,
Y). It can be shown in numerous ways that for any nonsingular ¥ of codimension
one in X, the points of ¥ where X is equisingular form a dense Zariski-open
subset of Y.

Complete as the theory is in codimension one, it does not exhaust all
plausible notions of “non-variation of singularity type.” For instance there are
examples of Pham (cf. also Berthelot!) showing that the topology of a plane
curve does not determine the topology of the versal unfolding of an equation
of this curve and that very simple geometric features of the discriminant of this
unfolding can change as the curve is deformed in an equisingular way.?!

The codimension-one theory does not work as it stands for varieties over
fields of characteristic >0, cf. Abhyankar.'2® Perhaps in positive characteristic
the concept of equivalence of plane curve singularities given in [81] (and
further developed by Lejeune-Jalabert,** Moh,*’ and Fischer*®) is not the
definitive one.

We will now describe briefly some attempts to adapt the various equivalent
ways of Jooking at codimension-one equisingularity to the case where the smooth
subvariety ¥ has arbitrary codimension in the hypersurface X and also to the
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case where X is not a hypersurface. (Schickhoff even looks at some of these
matters in the context of Banach spaces.??)

1. Branch loci

The significance of the existence of equisingular projections 7 (those for which
B, is equisingular along Y,) is not entirely clear. The theorem in [94] (cf. also
Speder, p. 574%%) is encouraging. Stronger positive evidence is provided first of
all by the theorem of Varchenko, which states that if a family of hypersurface
germs admits an equisingular projection (Y being the family of origins), then
the family itself is topologically isomorphic to X, X Y for a suitable embedded
germ X,.3637-3 Secondly, Speder has shown that if X is “generically equisingular”
along ¥, then the pair (X-Sing X, Y) satisfies the Whitney conditions (i.e., X is
“differentially equisingular” along Y [88], definition 2).2¢ (“Generic” equisin-
gularity is defined inductively by the condition that for “almost all” «, B, is
generically equisingular along Y,). '

For families X of isolated singularities of surfaces in C3, with smooth sin-
gular locus Y (of codimension two), Briancon® and Speder?? show that the
existence of one transversal equisingular projection already implies differential
equisingularity. This also follows from a result of Lipman (unpublished) to the
effect that the existence of such a projection implies the existence of a strong
simultaneous resolution of the singularities of the family X, and Teissier’s re-
sult;33 “strong simultaneous resolution implies that the Whitney conditions hold”
(the first result is proved only for families of surfaces, while the second holds
quite generally). On the other hand, there are the following two examples of
Briancon and Speder:

(1) Let X C C' be given by

2% + ty% + 9 + x'5 = 0,

and let Y be the singular locus x = y = z = 0. For the projection w(x,y,z,t) =
(z,9,%), B is equisingular along Y. But X is not differentially equisingular along
Y. Hence no transversal projection is equisingular; this answers negatively prob-
lem 1 on the second last page of [88].

(2) X:22+ix2+x8+35%=0

Yix=9=2=0.
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Here X is differentially equisingular along Y; but again it can be shown that no
transversal projection is equisingular.

The idea of using discriminants also appears from a completely different
direction in the study of singularities, namely when it is realized that the number
of vanishing cycles u**" (X,0)—or Milnor number!’—of a hypersurface germ
(X,0) C (C**,0) with isolated singularity is the order of vanishing of the dis-
criminant of some map (C**',0) — (C,0) having (X,0) as fiber and that the dis-
criminant of a general projection f:(X,0) — (C,0) vanishes to order u'**" (X,0)
+ 1V (f7(0),0) (cf. Teissier, section 5.5%). Actually u* (f~1(0),0) does not de-
pend on f, so we write u'¥’ (X,0) instead. Now it is easy to prove that u**" (X,0)
depends only on the topological type of the hypersurface (X,0), but this is not
so for 'V (X,0). In fact, in the above example (1) of Briancon and Speder,
considered as a family X, of surfaces (with parameter ¢), the topological type of
X; does not depend on ¢t (for ¢ small), whereas u'? (X,,0) is different fort # 0
than fort = 0. In particular this shows that the topological type of a hypersurface
germ does not determine the topological type of its general hyperplane section.
To come back to u**", Lé and Ramanujam proved that if it is constant in a
family of hypersurfaces (X,,0) with isolated singularities and N # 2, then the
fibers (X,,0) all have the same topological type.!? Timourian showed that this
implies that the family is locally topologically trivial.3* However, as we have just
seen, topological triviality does not imply that the family of discriminants of
general projections (X,,0) — (C,0) is trivial.

Apropos, there is a remarkable equivalence between differential equisingu-
larity of a family of hypersurfaces with isolated singularities and constancy of the
sequence of Milnor numbers of the members of the family together with their
general linear sections of various dimensions. This area of investigation was
opened up by Teissier®® and further developed by Briancon and Speder. In
fact, one of the ideas introduced in Teissier is the relationship between Zariski’s
discriminant conditions and the feeling that a “good” notion of equisingularity
should have the following property:! if a hypersurface X C C" is equisingular
along Y, then for a sufficiently general nonsingular hypersurface H C C¥ with
H DY, the intersection X N H is equisingular along Y.

2. Saturation
There is nevertheless a fascinating theory when B, is equisingular along Y, in
the most trivial sense, viz. B, is analytically a product along Y. This is the theory

of equisaturation. In order to capture algebraically the topological type in situa-
tions more general than that of plane curves, Zariski invented the notion of the
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saturation D of alocal ring o. For brevity, we deal here with “absolute saturation,”
in which case D is defined by Zariski only when 0 is either the local ring of a
point on a hypersurface ([85, theorem 8.2],* [93, theorem 3.4)), or o is one-
dimensional ([93, appendix A}; cf. also Lipman'® and Boger, Satz 5°%). This o
is a local ring between 0 and its normalization, and b is radicial over o [85,§4]
(also Lipman’®), so that in the analytic case the germs X and X corresponding
to 0 and d are locally homeomorphic, [85,85) (also Seidenberg?®). If o, and o,
are the local rings of two hypersurface germs X, and X,, and if the saturations
8, and 0, are isomorphic, then X, and X, are topologically equivalent as embed-
ded germs [85,§6]; and the converse is true if X, and X, are plane curves [90,§7].
Given X D Y as before, and a retraction p:X — Y, (X,p) is equisaturated along Y
if the fibers p~'(y) (5 € Y) have isomorphic saturations at their origins (this is a
loose translation of [85, definition 7.3]). A basic fact is that X is equisaturated
along Y if and only if for some sufficiently general m, B, is analytically a product
along Y, [85,87]. In particular, when Y has codimension one in X then equisa-
turation of X along Y is equivalent with equisingularity of X alongV.

Equisaturation of X (with local ring o) along Y also means that the germ X
corresponding to the local ring 0 is analytically a product along Y. Since X and
X are homeomorphic, this implies that X is topologically a product along Y.
Zariski proves more, namely that the pair X C CV is topologically trivial along
Y {85,87].

Here a rather curious thing happened. Pham and Teissier tried to interpret
Zariski’s work, starting from the idea that topological triviality should be proved
by integrating Lipschitz vector fields on X since they have the property of being
integrable, of course, but also of extending locally to the ambient C¥, by a pretty
result of Banach. They were encouraged by the fact that Zariski’s computations
in [85] looked like the use of Lipschitz conditions. Therefore Pham and Teissier
introduced a purely algebraic description, using the concept of integral de-
pendence on ideals, of the sheaf of locally Lipschitz meromorphic functions Oy on
a reduced space X,0y) and defined the absolute Lipschitz saturation of Oy, as
0,.:.2* They indicated that in the case of hypersurfaces, Zariski saturation and
Lipschitz saturation coincide (a counter-example in the non-hypersurface case
was given by Zariski {93, introduction]). The relation between analytic triviality
of B, along Y, and topological triviality of X along Y had then the following
simple analytical explanation: any vector field on Y., extends to a vector field on
CM-1 tangent to B,, and this can be lifted to a vector field on X with coefficients

* Theorem 8.3 of {85] does not hold as stated, but it does hold for hypersurfaces (cf.
first paragraph in introduction to [85], and Béger, p. 247°).
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which are meromorphic but satisfy (locally) a Lipschitz inequality and therefore
are bounded; this lifted vector field extends to the ambient space, and if we
take a basis of constant vector fields on Y to start with, the integration of
corresponding vector fields in C¥ provides a topological (even Lipschitz) tri-
vialization of X C C" along ¥.

Lipschitz and Zariski saturation also coincide in the one-dimensional case
(Lipman, p. 808, remark ii*¢). In [89] and [90] Zariski investigates thoroughly
the structure and automorphisms of one-dimensional saturated local rings. The
simplest version of the “structure theorem” [85, theorem 1.12] may be inter-
preted as saying that complete equicharacteristic one-dimensional saturated (i.e.,
equal to their saturation) local domains over, say, C, are of the form C[[t", 1%,
-+, t”]] for suitable integers a,, . . ., a, (cf. Math Reviews, vol. 38, no. 5775). A
class of one-dimensional rings which includes the saturated ones is studied by
Lipman.'* Notable among the algebraic features of one-dimensional saturated
rings is the existence of “many automorphisms” ([93, appendix Al; also Béger,
Satz 5%). This reflects the fact that saturation kills the moduli [92] of plane curve
germs, in the previously mentioned sense that such germs have equivalent
singularities at their origins if and only if they have isomorphic saturations. It
is particularly enlightening, compared to the “Lipschitz” definition of saturation,
to look at this result geometrically. Consider a nonplanar curve germ I'. “Almost
all” plane projections of I will have the same saturation as T. (This is the
geometric meaning of the existence of saturators [85, proposition 1.6], a fact which
also underlies the equality of one-dimensional Lipschitz and Zariski saturation.)
Hence these plane projections have equivalent singularities at their origins. But
conversely, all plane branches belonging to the same equivalence class can be
obtained—up to isomorphism—as sufficiently general projections of a single T,
namely the germ whose local ring is the saturation of the local ring of any one
of the equivalent plane curves. :

The algebraic theory of Lipschitz-saturation was taken up and improved
on by Lipman'*'® and Béger.>* Stutz provided new insight into the meaning
of Lipschitz equisaturation when X is no longer a hypersurface, but Y is still of
codimension one.?? The joint theory of Zariski and Lipschitz saturation has
been used by Nobile to prove an interesting theorem that implies in particular
that any germ of reduced complex analytic surface is Lipschitz equivalent to an
algebraic surface germ;*® and by Teissier to give an algebraic proof of the fact
that the constancy of Milnor’s number in a family of plane curve germs implies
that the family is equisingular (a result proved topologically by Lé-Ramanujam,
see above).*? To conclude on this topic, let us note that for a reduced complex
analytic space X, the existence of a partition of X into nonsingular constructible
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strata X, such that X is locally Lipschitz-trivial (and not just topologically trivial)
along each stratum, seems to be completely open when X has dimension = 3.
However, Verdier has proved the existence of a stratification with “rugose”
triviality, and rugosity is a Lipschitz-like condition, but relative to the stratifi-
cation.*!

3. Simultaneous resolution of singularities

Zariski proposes to geometers the following program for resolving singularities.
Find for each complex analytic variety X C C* a natural stratification with the
following property: if H C C¥ is a smooth hypersurface which avoids the
“exceptional points” (i.e., the zero-dimensional strata), and cuts all the positive-
dimensional strata transversally, then some suitable process of resolving the
singularities of X N H should propagate along the strata to resolve all the
singularities of X outside the exceptional points. Thus, by induction on dimen-
sion, one would resolve almost all singularities of X. The remaining step would
be to transform exceptional points into nonexceptional ones. For surfaces in
C3, this idea is realized in [78] (cf. also {84, introduction]); the underlying fact
is that the singularities of an equisingular family of plane curves can be simul-
taneously resolved by monoidal transformations {82, theorem 7.4]. A big prob-
lem in higher dimensions is that no canonical process for resolving singularities is
known. Nevertheless, one would hope at least to be able to find natural stratifica-
tions which are “monoidally stable” in the sense that a certain class of permissi-
ble blow-ups f:X' = X would be stratified relative to the canonical stratifications
on X' and X (i.e., f maps any stratum of X' smoothly onto some stratum of X).

There are several possible definitions of simultaneous resolution (cf. Teis-
sier’3), the strongest of which, as mentioned above, implies differential equis-
ingularity. (Note: the family given in the above example (1) of Briangon-Speder
admits a “weak” simultaneous resolution, though it is not differentially equis-
ingular.) Several authors have approached equisingularity from the point of
view of simultaneous resolution, and in some cases have succeeded in showing
the nonsingularity of the local moduli space, a result which is not obvious even
for plane curves (cf. Wahl,**** Nobile,'®?° and Teissier [92, appendix]).

The problem of finding criteria for simultaneous resolution in more general
situations has its interest enhanced by the discovery by Arnol'd(§11)?, Kushni-
renko,'® and Varchenko,®* of very interesting “equiresolvable” families of
functions having isolated critical points where the resolution can be explicitly
constructed by a toroidal map Z — C**! from the datum of the Newton poly-
hedron of the function, the families in question being made of “almost all” (in
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a precise sense) functions having a given Newton polyhedron. They also com-
puted from the Newton polyhedron many invariants of the singularities, which
are in fact invariants of the resolution, e.g., the zeta function of the monodromy,
the “initial exponent” of the Fuchsian equation corresponding to the Gauss-
Manin connection associated to the singularity, etc.

4. Differential equisingularity (X not necessarily a hypersurface)

For non-plane-curve germs, there is no satisfactory theory of equivalence of
singularities. For example, any two irreducible curve germs in C¥ (N > 2) are
topologically equivalent. Nevertheless Stutz was able to generalize large portions
of Zariski’s equisingularity theory to the case where X is no longer a hypersur-
face, but ¥ = Sing(X) is still nonsingular and of codimension one;%® and he
brought out connections between equisingularity and the tangent cones C;, C;
of Whitney (§3).4¢ We mentioned above the equivalence of equisingularity and
differential equisingularity for families of plane curves. The following gener-
alization is a distillation of results in Stutz?® and Abhyankar.?

Theorem: Let X be a reduced d-dimensional complex analytic variety, let ¥ =
Sing(X) be smooth and of dimensiond — 1, and let 0 € Y. The following are
equivalent;

(1) The Whitney conditions (a), (b) hold for the pair (X — Y, Y) at every point
in a neighborhood of 0 in Y.

(2) Every irreducible component X’ of X at 0 contains ¥ (at least near 0),
and the Zariski tangent cone T’ (= Whitney's C3) of X’ at 0 is a d-plane;
furthermore, if a sequence of pointsx; €X' — ¥ approaches 0 and the tangent
planes 7, X’ have a limit, then that limit is T". (In other words C; = C, at 0; this
is essentially a generalization of the Jacobian criterion [82,85].)

(3) (Simultaneous resolution) 1f v:X — X is the normalization of X, then (after
replacing X by a suitable neighborhood of 0) we have:

(@) X is equimultiple along ¥;

(b) X is nonsingular; and

(c) v induces an etale covering (V"' (¥))yequcea = Y.

Moreover, when these equivalent conditions hold, then for every projection 7:X
— C? transversal to X, the branch locus B is nonsingular, and 7~'(B,,) = ¥ (near
0). Conversely, if there exists a projection 7 with B, nonsingular of dimension
d — 1, and if every component of X contains and is equimultiple along 7~'(8,,)
near 0 (which is automatically so if X is a hypersurface), then the above condi-
tions hold.
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Teissier studies a refinement of differential equisingularity, called “c-cose-
cance,”*! that grew out of ideas of Hironaka.® This equisingularity condition is
stable for generic hypersurface sections (cf. end of section 1 above).

We mention also, in closing, a still open question of Zariski [88]): if two
hypersurface germs have the same (embedded) topological type, do they have
the same multiplicity? A step toward an affirmative answer is taken by Ephraim.?
In this vein there is an intriguing result of Hironaka’s that in a2 Whitney strat-
ification of an arbitrary X, the closure of any stratum has the same multiplicity
(possibly zero) at all points of any other fixed stratum.?

5. Paper [97] (a general theory of equisingularity): Branch loci revisited

In this fundamental paper, Zariski introduces the concept of the dimensionality
type d.t.(V,Q) of an algebroid hypersurface V at a point Q of V, with respect to
a fixed coefficient field k of the local ring 0 of V at its closed point P. The
definition is by induction on the dimension, as follows: Set 0 = k[[x,,...,x_,“]] =
R[[X 1. Xr i JU(N), where f(X),...Xr43) = O, f € k[[X,,....Xr+,]] is the equation of
an algebroid hypersurface. Zariski introduces a new algebraic concept of a
“generic projection” by adding infinitely many new independent variables u;,,
= (u) where A € Z3*', 1 =i =7, and considering formal power series

xf = Suxt (1=i=<r)
AeZy' Az )

which in a precise sense define a generic projection into the affine space A
over the field k* generated over k by the u;_,. Zariski then defines the discrim-
inant Aj of V with respect to this generic projection m,; A* is an algebroid
hypersurface defined over k*, and he defines the “image” Q* of Q by 7,: He
then defines inductively

d.t.(V,Q) = 1 + d.t,* (A}, Q%)

and d.t.(V,Q) = 0 if Q is a simple point of V. Intuitively d.t,(V,P) is the
codimension in V of the equisingularity stratum of P in V. The main theorem
in [97] is that indeed the subsets V(o) of V consisting of the points of V where
the dimensionality type of V is equal to a given integer o form a stratification
of V (by nonsingular subvarieties). Given now an algebraic hypersurface V over
a field &, and defining the dimensionality type via the completions of the local
rings, Zariski can then define an equisingular stratification for any algebraic
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hypersurface (an important fact, the semicontinuity of the dimensionality type
for the Zariski topology along any algebraic subvariety W/k of V, is proved by
Hironaka*?). One of the beauties of Zariski’s stratification is that, being defined
by the constancy of a numerical invariant, it is uniquely defined (once k is fixed).
Indeed the question of the independence of d.t..(V,P) on the field of represen-
tatives k is still open in general, although Zariski himself has important (unpub-
lished) partial results. Another outstanding question is whether the dimen-
sionality type can be computed by using only generic linear projections. In the
complex-analytic framework this has been proved in the case where dim V =
3 and V has a singular locus of dimension 1 by Briancon and Henry.5°
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