JACOBIAN IDEALS AND A THEOREM OF BRIANCON-SKODA

Joseph Lipman and Avinash Sathaye

1. PRINCIPAL RESULTS

We prove the following generalization of a theorem of Briancon-Skoda (for
background cf. [5], [13]):

THEOREM 1. Let R be a commutative noetherian normal integral domain,
and let I, be an ideal in R such that the associated graded ring @ (I5/15%")

n=0
is regular (i.e., all its localizations at prime ideals are regular local rings; for
example I, could be any ideal such that both R/I, and the ring of fractions R,,,,
are regular). Let I be an ideal of the form I =I,4+ (¥,,¥2s.-nY 441 )R {d= 0) and
let A = 1 be any positive integer. Then I°™ C I* where “ " denotes “integral
closure” of an ideal.

Remarks. (1) Some other versions of Theorem 1 are given at the end of this
section.

(2) For d =0, Theorem 1 says that all powers of I are integrally closed. For
more on this situaiion see Section 4.

Theorem 1 is a coroilary of:

THEOREM 1’. Let R* be ¢ commutative noetherian normal integral domain
and let 05t € R* be such that R*/tR* is regular, Let y,,..,¥4.,€ R", let
S=R*[y,/t...Ya41/t) and let § be the integral closure of S (in its field of frac-
tions). Then t*S C §.

Indeed, take ¢ to be an indeterminate over R, and set

R*=R[tI,t ) =@I}t" {;=R if ns0).

nel

Then R* is normal (because each I” is a valuation ideal) and R*/tR* = @ I;/I3+
n=d

is regular. Now with I as in Theorem 1, the ring S of Theorem 1’ is the graded
ring § = @ I"t™" (I" = Rif n < 0), and so its integral closure is § = @ I

ne? nel

(In fact this is one way to define I".). So from Theorem 1’ we conclude that
for all n, I"t %% C I""9¢t™"*%, and setting n = d + A we get Theorem 1.
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(Conversely, Theorem 1’ follows easily from the case R=R*, I,={R" of
Theorem 1.)

Theorem 1’ will be deduced from a stronger resuit. Note first that to prove
Theorem 1’, it suffices to check the assertion after localizing R* at each maximal
ideal containing ¢; in other words we may assume that R is a regular local
ring. This being so, we consgider, more generally, a regular noetherian domain
R with fraction field X, a finite separable field extension L of K, and a finitely-gen-
erated R-subalgebra S of L. We define the Jacobian ideal:

{ 0-th Fitting ideal of the S-module
%~ | of Kihler R-differentials Q5

Given any surjective R-homomorphism f:R{X,,...X,] = 8§ (X indeterminates)
with kernel, say, P, we have that Jg, is generated by all the Jacobians

(a(g,,...,g,.)

iy &€ P.
a(xl,...,x,.)) € &

(It is enough here to use the n-tuples {g,,...,£,) coming from some fixed set of
generators for P.)

We remark that the integral closure S of 8 in L is a finite S-module (so that
it makes sense to talk about Jg,5). Indeed, it is clear that for some a# 0 in
R, S[1/a] is integral over R[1/a); and so §[1/a] is a finite R [1/a]-module
(L being separable over K), hence a finite S[1/a])-module. Moreover, for any
prime ideal p in S, we have that §, = S®, S, is a finite S ,-module: to see this,
we may assume that L is the fractmn field of S, and that R is local; now S,
containg a finite R-module R, whose fraction field is L, and the completion R
is reduced, since B, = R, ®, BC LOR=L®,(K®, R)c L ®; K where Ris
the fraction field of the regular local ring R, and, L being separable over K,
L ®, K is reduced; so the finiteness of S, over 8, is given by [17, Theorem 1.5].
Finally, we can imitate the proof of (35.3) in [14, pp. 128-129] to see that §
is finite over S. (In case R is local—a case which is sufficient for proving Thecrem
1’—this rather complicated final step is not needed.)

Now we can state the basic resultf, whose proof—involving some Grothendieck
duality—will be given in Section 2, and again—without explicit use of duality—in
Section 3.

THEOREM 2. LetR C S C L, J =g J = Jg,5 be as above; and assume that
L is the fraction field of S. Set 8:J={x € L:2JC S}, §:J = {xE L:xJC §}.
Then (8:J) C (S:J). In other words, J(S:J) C €5, where € 5, is the conductor
of Sin 8.

COROLLARY. LetL =KandletS=R(y,/t,,..y./t,] (yut; € R). Then
(tltz...t”) € @s/s,

Proof (of Corollary). Let f:R{X,,..,X_.] — S be the R-homomorphism such
that f(X,) = y,/t;, (i=1,2,....,n). Then g, = ¢, X, — ¥, is in the kernel of f, and
by Theorem 2




0(g 1y r&n)
(£,25...8,) L Cyse

(X500 X )

In particular, for S in Theorem 1’ we have t**' € €4,;. To prove Theorem

1, however, we need to show that t® € €4, For this, in addition to Theorem
2, the following Lemma clearly suffices:

LEMMA. With notation as in Theorem 2, let 0 #¢ € R be such tha{_ R/ t{i
is regular, Assume that S contains an element y/t withy € R — tR. Then J C S,
[Consequently (by Theorem 2) Jt *SC J(8:J) C S, ie,J C t€4,.)

Proof. We first note the following multiplicative property of Jacobian ideals:
if R, C R, C R, are noetherian regular domains such that R, and R, are rings
of fractions of finitely generated R -algebras, and the fraction field of R, is finite
over that of R, then

(1.1) JRngo = JRZ/RIJRH'RO'

(As before, J is the 0O-th Fitting ideal of the relative differential module.) Indeed,
we may assume that R, and R, are local; and then for suitable polynomials

fris oo fr € RolXy, X, 1 = R, [X]
8151 8m € Ro[Xy5 X, Y5, Y1 = Ro [X,Y]

we have that
—R, is a localization of B [X]/(f,,.-..f )

—R, is a localization of R, (Y] /(Z,,...&.), where & is the natural image
of g;in R, [Y]

—R, is a localization of R, [X,Y ]/ (f1,sFrs&1rs8m)-

Then one sees that J» .,/ z, /&, I &,/ , 2T€ Principal ideals, generated respectively
by (the appropriate images of)

a(fll-“sfn) a(g]_s---’gm) a(fn'--,fnrgl:--'rgm) .
3 XX, (YY) X X YY)

and (1.1} results.

Next, to prove the Lemma, we may replace Sby R, = §,, where p is an associated
prime of ¢5, and we may replace R by R, = R, . R, is then a discrete valuation
ring, whose residual transcendence degree over R, is dim(R,) — 1 (since R, is
regular, hence universally catenary); the same is therefore true of R, = R, N K.
In view of [1, p. 77, Prop. 44] (where the word “algebraic” can be omitted),
and (1.1) above, we may replace R, by R,; and we have a finite sequence of
regular local rings R, = R; <R} <R, < ... <R’ =R, where each R, (i= 0) is
the local ring of a closed point on the scheme obtained by blowing up the maximal
ideal of R}. Note that ¢ > 0, because ¢ is a non-unit in R, and by assumption
R, contains an element y/t withy € R — tR.




Set oJ; =g, sz (0si<e). By (11) we have then Jip ,p =, J, ;... .
To better describe J;, let (x,, ..., x,,) be a minimal generating set for the maxlmal
ideal M, of R (d, = dim(R,) = 2), the labelling being such that Ri,, is a localiza-
tion of

R; [xzfxx:---sxdi/xll =R X, s g J H, Xy — Xg5002, Xy, — xd"-)

(cf., [6, p. 199. Remark] or [16, Lemma 2.3]). We see then that J; is generated
by the single element

A, Xy~ %oy %, Xy, — %))
X, Xy)

e

e~1
ie,d; =27 Ri, = (MR:,,)% " Thus Jy ,p, = [| (M7 'R,).
im0
To compare Jg . with {R,, let I, be the proper transform of the ideal (R,
in B, defined inductively by I, = iR}, and

{(IR'+1)<MR )T i L#R;
R, it L=R]
e—1
Clearly tR, = I, [] (M:R,) where ¢, = 1if I, R, and ¢, = 0if I,= R’. In any
i=0
case, €; = d,; — 1, so to finish the proof that J Ru/Ry & tR,, it suffices to show that
I,=R,.

Let v; be the “order” valuation defined by R, i.e., the unigue valuation such
thatforx € R,,v,(x) = sup{n:x € M)}.Then v,_,is the valuation whose valuation
ringis R, = R, so we need only show that v,_, (I,_,) = 1. Let us show, by induction
on j, that v;(I)) =1 for all j <e. For j =0, this is true by assumption (B,/tR,
is assumed regular). Suppose we have shown that v, {I;) = 1. If v, (I;} =0, then
I, is the unit ideal for j =i, and v,(I;) = 0. If v,(I,) = 1, then we can choose
Xy, .- X4, 83 above, with labelling such that ezther I,=x R,, in which case
I, = R,’+1 and we are done; or I, = x,R!. In the latter case, I,,, = (x,/x,) R,
and we need to show that R’H/ (xz/ acl)R,+1 is regular. But this follows from
the fact that R [x,/x,,...,%,4/%,] /(x,,x;/x,)is isomorphic to a polynomial ring
ind, -2 vanables over the residue field of R’ (so that R/, ,/(x,/x,,x )R], is
regular of dimension d,,, — 2). This completes the proof.

We close this Section with two reformulations of Theorem 1.

First of all, in proving Theorem 1, we can replace R by its localizations at
maximal ideals containing I; i.e.,, we may assume that R is local (and I, # R).
Let m be the unique maximal 1deal of R, my=m/I,, and in the graded ring
G= @ (I53/12*") let M be the maximal ideal

M=m,®I/I?0R/12®..=m,®GC,.




If (u,,...,u,) is a minimal generating set of m, (in R/1,), (v,,...,0,) is a minimal
generating set of I, (in R), and D, is the natural image of v, in I,/I3 (I si=s),
then the images of &, ..., &,, Uy, ..., 0, in M/M? = m,/m;® I,/ ml, form a basis
of this G/M-vector space; and since by assumption G, is regular, we see that
the sequence of homogeneous (in G) elements (u,,....x,,8,,...,U0,) is G prregular,
hence also G-regular. It follows at once that (k,,...,2,) is a regular sequence in
R/1,, so that R/I, is regular; and furthermore G, is generated by the regular
sequence (7,,...,0,)in G, and so G=G/G, D G,./G@® .. is a polynomial ring
over G/G,=R/I,, ie., (v,,..,0,) is a regular sequence in R; so that R too
is regular. (So the “for example” in the statement of Theorem } actually covers
all possibilities). Thus it suffices to prove Theorem 1 with the seemingly stronger
assumption that R and R/I, are regular local rings (so that I, is generated by
a subset of a regular system of parameters in R).

With these assumptions on R and I,,, again let m be the maximal ideal of
R. To any ideal A in R, we associate two integers 5,(A) and 8,(A) with the
property that if A D A’ and A is integral over A’ (ie., A’ is a reduction of
A),thend,(A)=8,(4")and 3,{4) = §,(4 "), Namely,

3,(A4) = (“analytic spread” of 4) — 1

= dimension of the closed fibre f, ({m}) where f,: X, = Spec(R) is the
morphism obtained by blowing up A.

5,(A) = dimension of the R/m-vector space (A + m*)/m*> = A/A N m>

If A’ is a reduction of 4, then X, is finite over X,., and that is why
53,(A)=8,(A"). It is easily seen that for any such 4,

120 1+38,(4')=dim(4’/mA’) = minimum number of generators of A’ ;

and moreover in [15, p. 151] it is shown that if R/m is infinite, then there
always exist A’ for which equality holds in (1.2).

To show that 3,(4’) = 5,(A), we need to show that A’ + m® = A + m? Since
A+ m® is integral over A’ + m?, it suffices to show that A’ + m? is integrally
closed. Let y be integral over A’ + m®; and let y,, ...,y, € A’ be such that their
images in (4’ + m®)/m?® form a vector space basis. Then B =R/(y,,....y, )R is
regular, and 7 (the natural image of y in R) is integral over * (& = maximal
ideal of R); if U is the valuation defined by b(x) =sup{n:x € m"} x€ R)
it follows easily that 7(7) = 2, i.e., 7 € m° Hence y € A’ + m?, as desired.

Now let I be as in Theorem 1, and set 8 = 8(J) = §, (I} ~ §,(I). Since I, is
generated by a subset of a regular system of parameters, we have 3(f) = d (cf.
{(1.2)). So the inclusion I°™ C I of Theorem 1 is implied by the inclusion

(1.3) " cr.

On the other hand, Theorem 1 implies (1.3) for any ideal I in a regular local
ring R (with maximal ideal, say, m). For, standard techniques allow us to assume
that the residue field of R is infinite; and then, taking I’ to be a reduction of




I generated by 1+ 3,(I) elements, say I' = (yy s ) B+ (1,0, 1) R with

8, = 8,{I) =3,(") and x,, ..., x,, such that their natural images in I’ /m*N I

form a basis- of this R/m-vector space, and applying Theorem 1 (with I, = (x,,...,
x5, )R) to I’, we see that indeed I*™ = (I')®** C (I’)* C I*, In fact, then, if I*
is any reduction of I, we have I'™ = (I*)®** ¢ (I*)*. We see easily now that
Theorem 1 is equivalent to:

THEOREM 17, Let R be a regular noetherian ring and let I be an ideal in
R. Setd = 8(I) =sup {3,(I,,) — 8,(,,)} where m runs through all maximal ideals

containing I, and I,,=1IR,. If I* is any reduction of I, then for every integer
A >0 we have I*** C (I*)*,

Remark. In the conclusion of Theorem 17, we can even replace & by

3 = sup {(3,,) - 5,1

where p runs through all associated primes of (I*)*. (It is easily checked that
3y =3). o

Here is the second reformulation:

THEOREM 1”. With notation as in Theorem 1", let X be the scheme obtained
from Spec(R) by blowing up I, and let w:X— X be its normalization. Then
Pn, &) C G,.

To get the equivalence of Theorem 1” with Theorem 1, note first that Theorem
1" is a corollary of Theorem 1" (as previously noted, in Theorem 1’ we may assume
that R* is a regular local ring; now apply Theorem 1” with R=R* and
I=(ty--¥a:1) R, so that the ring S of Theorem 1’ is I' (U, &) for some
affine open subset U of X, and ¢S = I'(U,I%(=, &%)); moreover 8(I) = d.) As
. we saw before Theorem 1’ implies Theorem 1, which implies Theorem 1”. Finally,

in Theorem 1", X = Proj(@ I"), X= Proj(@ T{.), and Theorem 1" gives

Az=0 Az0

I‘(@?)c @rrcdr

=0 AmO =0

whence I°(m, &) C &; i.e., Theorem 1” implies Theorem 1",

In Summary. Theorems 1, 1’, 17, 1” are equivalent statements, and they all
follow from Theorem 2, which we will now prove.

2. PROOF OF THEOREM 2

I Let f:R(X,,.,X,]— S (X,indeterminates) be a surjective R-homo-
morphism, with kernel, say, P. Let 0 =Q rixyyn be the module of Kahler R-
differentials of R[X] =R([X,,...,X,]; Q is a free R[X]-module, with basis
dX,, ..., dX,. Set Q" = A"Q, the n-th exterior power of 1. Our first remark is
that there is an isomorphism of S-modules




(2.1 H = Homg(A"(P/P*),Q"/PQ")S S:dJ.

Indeed, Q"/PQ" is isomorphic to R [X)/P =8, so H is a torsion-free S-module
and the natural map H — H ®; L is injective. Now

H® . L=H®(S®,K)=Hom (A" (P /Pi), Qn/P, Q%)
where P is the kernel of
[@L:K[X]=R[X]|®, K> 8®,K=L

and
Q=08 K=,/

Since L is a field, P is a maximal ideal of X [X] and P,/P} is an n-dimensional
L-vector space; hence H ® ¢ L is a one-dimensional L-vector space. Moreover, since
L is separable algebraic over K, the natural map

do:A"(Py/Py) = Q%/PrQ",

which is the n-th exterior power of the L-linear map d,:P/Pi— Q /P Q,
induced by the universal derivation d: K [X] — Q ., is not the zero-map (because
the cokernel of d, is Q,,,=(0)). Thus H®;L= Ld;. We leave it as an
exercise to show that the image of the composition H—» H® L = Ld{— L
(where the last map takes xd; to x) is S:J; whence the isomorphism (2.1).

II. Next, we recall the “fundamental local homomorphism”
(2.2) $:Ext} y, (5,0") — H = Hom (A" (P/P?), Q" /PQ").
[This is obtained by combining the natural maps
Ext} x, (5,2") = Ext}«, (S,0"/PQ") - Hom s(Tor*!(S8,5),Q" /PQ")

with the map A™(P/P?) — TorF¥(8,8) arising from a canonical isomorphism
P/P? 3 Tor™)(S,S) plus the natural anticommutative graded S-algebra structure

on @oTorf 1X1(8,8).] It is not hard to see that & operates as follows (cf. [7, p.

149-06]):let ... - K, —E, ,— ..—» E,— 8- 0 be an R [X]-projective resolu-
tion of S, and let a € Exty ) (5,22") be represented by a map «:E,— Q"; then
for g,,....,8, € P, the map ¢ )}:A"(P/P*)~ Q"/PQO" takes g, A...A B, (8, =
natural image of g;in P/P®) to ¥ (1), where ¥, _ is found as follows: the Koszul
complex K, over R [X] determined by the sequence g = (g,,....8,) is a projective
R [X}-complex augmenting to S, so there is a homotopy-unique map of complexes
K;— (... > E,— ...— E,) over the identity map of S; in particular, we have,
indegreen,R [X] = (K,},— E,,and{ , is the (uniquely determined!) composition

atural

R[X]—E, —»Q" = Q"/PQ".




From this description, it is clear that ¢ “commutes with localization on R [X]”.
Moreover, if @ is a prime ideal in R [X] containing P, and if PR [X] , is generated
by a regular R [X] ,-sequence (g,,...,2,) then the localization

bq: Exth 1z, (50,0%) — Hom (A" (P/P?),Q 2 /PQT)
@

is an isomorphism (because the Koszul complex over R [X] o determined by
(£1,--4&,) 18 an R [X] ,-projective resolution of S,).

IIT. We will use “pre-dhality” theory to establish two facts ((A) and (B) below).
(A). If 8 is normal, then Ext} 5, (S,Q%) is a reflexive S-module.

(A) is really a local statement: it is enough to know that if A is a regular
local ring, B is a homomorphic image of A which is normal, andz = dim A — dim B,
then E = Ext}(B,A) is a reflexive B-module of rank one; i.e., E is isomorphic
to a non-zero B-submodule of the fraction field of B, and E = (") E,, where p

DY

F:4
runs through all height one primes of B. This can be seen, for example, by using
the Cousin complex of A as an injective resolution of A to calculate E (cf. e.g.
[8, p. 239]).

As a corollary of (A), we claim that if S is normal, then the composition of
(2.1) and (2.2}, viz.

(2.3) Ext} .y (S,.0%) > S:J

is an isomorphism.

Indeed, since both modules in (2.3) are reflexive, we can check our assertion
after localizing at height one primes ¢ in S. Lifting such a ¢ back to a prime
@ D Pin R [X], we have that PR [X ], is generated by a regular R [X] o-Sequence
of length n (since R [X), and S, =S, are both regular local rings), so that by
preceding remarks, the localization of (2.3) at g is an isomorphism.

Now, without assuming S to be normal, let § be the integral closure of S
in L. We have a commutative diagram:

RIXY] = R{X;,.. X, Yirn Vo] ——> §[¥] —2> §

. T4

R[X] = R[X,,...X,] ¢ - 8
T

Here the maps labelled 3, 4, 5, 7, 8 are inclusions; 6 is what we have been
calling f; 2 is some surjective S-homomorphism; and 1 is the unique R [Y]-
homomorphism such that 103 = 406,

As above, we can use the surjective R-homomorphism 201 to construct an
isomorphism




2.3) Exty oy, (SQ2T0) S §:J.

We then have:

(B) There is an isomorphism { making the following diagram commute:

Extpiry (S.Q 5wy /») 23 N 5.7
‘I’ i 1 inclusion
Hom (8 Ext} (8,2 % 1x)/2)) L
l evaluation at 1 ‘T inclusion
> S:J

Extzlx](s,ﬂ?il-‘ﬂ .’R) (2.3)

Since (2.3) is an isomorphism, it is clear that Theorem 2 follows from (B).

IV. (B) can be proved by means of [8, p. 190, Theorem 8.7]. We give an
outline of the main steps in the argument.

Given any homomorphism g: 4 — B of noetherian rings, making B into a finitely
generated A-algebra, we denote by g’ the functor on derived categories (of modules)
D*(A)— D*(B) described in loc. cit. Very roughly speaking, g' is uniquely
determined by the following three properties:

(1) If B is a finite A-module, C° is & complex of A-modules, bounded below,
and C* — D" is a map of complexes inducing homology isomorphisms, where D*
is bounded below and injective, then g'C* = RHom 4 (8,C") = Hom ,(B,D" ).

(ii) If B is a polynomial ring in n variables over A4, and C* is any complex
of B-modules, bounded below, then g'C* = C* ® , Q ;,, shifted n places.

h
(iii) For a composition A-iB—> B’, with g as above and k making B’ into
a finitely generated B-algebra, we have (hog)' = kh'og’ (up to canonical isomor-
phism).

The isomorphism ¢ in (B) is constructed, with reference to (2.4), as follows’
(where “=" denotes natural isomorphism, as in (iii) preceding):

Ext} 7y, G058 0m,, ) = H'2'1'3'T'R) = H°(2'4'6'7'R)
= H°(5'6'T'R) = H°(RHom(5,6'7'R))
= Homy(S,H°(6'7'R))
= Homg(S,Ext} x, (5,9 % 1x1/2))-
Finally, to check commutativity in (B), we can apply ®, K to everything in
gight. This reduces us to showing that (with R replaced by K, and both § and

S:J by L) the map (2.3) is identical with the canonical isomorphism
H°(6'7' K) S H®(8'K) where the one-dimensional L-vector space

H°(8'K) = Hom (LK}




is identified with L by choosing the trace map as a basis. This can be done by
playing with the diagram

L[X]
9
10 in
K [X) § > L
7
1\.K /8

[where 6, 7, 8 are as in (2.4) (with R=K, S=L); 9 and 10 are inclusions; and
11 is the unique L-homomorphism such that 1109 = 6) in accordance with consider-
ations in [8, Chapter IIi, Section 8]. In fact it is nothing but the formula (R86)
of [loc. cit. p. 198}, applied to the simple situation

Wm.ersion)
(smooth) Spec (L)
Spec (K) é/(

Details are left to the reader.

Remark. Let R be regular and let f: Y — Spec(R) be a proper birational map,
with ¥ normal. The fact that (2.3) above is an isomorphism when $ is normal
leads to the conclusion that the sheaf w, of [13, Section 4] is &,:_¢ where _#
is the ¢-ideal which sheafifies our Jacobian ideal. In view of the “Corollary
of (iii)” in loc. cit, we have then another proof that regular local rings are
pseudo-rational,

Spec (K [X])

(This proof can replace the proof of (iv) in loc. cif; however that proof came
up again in this paper in the proof of the lemma in Section 1 above; and this
lemma will be used in Section 4 below to show that certain other local rings
are pseudo-rational.)

3. IN WHICH THE PROOF IS BROUGHT DOWN TO EARTH

The duality theory used in the preceding proof of (B) is quite rich, but also
quite abstract; so that after working through Section 2, one may still be left
with the feeling of having a less than complete understanding of Theorem 2.
This, at least, is what happened to us. So in this Section we give two concrete
versions of the proof, that is, in essence, we give “understandable” descriptions
of the map ¢ in (B).

The first version—involving some restrictions, viz, assumption (3.1)—is based
on a comparison of certain K#hler and Dedekind differents (Theorem 2’) via a
form of “Lagrange interpolation” (Lemma 3.4). It covers the case of algebraic




varieties over a perfect field 2, where Theorem 2 was first discovered. In this
case the Ext’s in (B) can be realized, via the residue isomorphism [8, p. 185],
as canonical duslizing modules of “holomorphic differentials” in the sense of Kunz
[10], [11]; in this way the composition (evaluation at 1) ¥ in (B) becomes identified
with the inclusion map of holomorphic differentials on S into holomorphic differen-
tials on 8. However this realization, illuminating as it is, does not form part
of our proof, and a reasonably simple exposition—which does not seem to exist
in the literature—would take us too far afield; so we leave it at that.

The second version is valid in full generality. As written, it uses no homological
algebra; but in an appendix we will show how it ties in with Section 2.

FIRST PROOF

Notation remains as in Theorem 2. We make the follbwing

Assumption (3.1). There exists a normal noetherian ring &’ C S an invertible
R-module A C L such that S is a ring of fractions of a (module-) finite R’-algebra
S' C S, and Such that JS/R = RJS/R" Jg,rﬂ = AJS’/R"

We will see below (Example (3.5)) that (3.1) holds whenever R is a ring of
fractions of a finitely generated algebra over a perfect field k.

Let K’ be the fraction field of R’; then I, being the fraction field of S,
is finite over K’. Since J commutes with localization and J,,, = L (because
Q¢ = (0)) therefore Jg,, # 0, whence Jg,5- # 0, J,,x- = L, and so ;. = (0},
that is, L is separable over K'. We consider the frace map v:L— K’, and the
complementary module ., = {x € L:7(xS’) C R'}. Let S8’ be the integral
closure of S’ in L. Clearly &, C %.,z-; and Theorem 2’ below gives

(3.2) S-’:Jsngl = g‘gr,Rv C gsﬁ!_ﬁv' C S':JS'/R"

Since “integral closure” and “Jacobian ideal” both commute with localizatidn, we
conclude from (3.1) and (3.2) that

giJsm' = S:Jsm'
il ll
)\(S:Jg/n) }\(S;JS/R)

and Theorem 2 results.

Let us then prove:

THEQREM 2'. Let R be an integral domain with fraction field K, and let
S 2 R be an integral domain whose fraction field L is finite and separable over
K, and such that S is a finitely generated R-algebra. Then, with the complementary
module %, defined as above, we have €5,n C S:Jg,5; and equality holds if R
is noetherian and normal and S is the integral closure of R in L.

Proof. In the terminology of [3], J,, is the 0-th Kdahler different of S/R,
and S: €5, is the Dedekind different. The equality statement in Theorem 2’ is




given then by [ibid, p. 36, Satz 4]. (Basically, by localizing at height one primes
of R one reduces to the case where R is a discrete valuation ring, in which case
the equality of the Kihler and Dedekind differents is a generalization of the
Hurwitz formula for algebraic curves. Cf. also [12, bottom of p. 178].)

In [12, p. 179], Kunz shows that the Kahler different Jg,r is contained in
the Noether different d,,(S/R), which can be described as follows:

Represent § as S=R[X,,....X,.]/P=R[x,,...,x.]; then, with X=(X,
cX b X =(x,y,...,%, ), one has '

dyS/R)= {Gx}|GX)EPS[X]: (X, —xp,...K, —x,)}

For convenience to the reader we include the proof:

Let (g,(X),....g2,.(X)) be any sequence of polynomials in P. It is enough to
show that the jacobian (9g,(X)/0X ;) = gx(X), say, satisfies gy(x) € dy(S/R).
Write the usual (first order) Taylor-series expansion

&/(X) = g,(X) - g,(x) = > R X)X, - x,)

where the coefficients h;(X) € S [X) exist and are unique modulo
Xy =2y Xa - 2.
By Cramer’s Rule it follows that H(X) = det (2 (X)) satisfies
HX)X; - x) € (g,(X),....8,(X)) C PS[X].

Thus H{x) € d,(5/R). On the other hand it is clear that H(x) = g,(x), hence
the conclusion follows.

We will prove even more than Theorem 2/, namely that

(3.3) #.,ndn(S/R)C S

that is, the Noether different is contained in the Dedekind different.

Remark. (3.3) is proved in [2, Prop. 3.1] when § is finite over R, a case
which suffices for the present proof of Theorem 2. But anyway the following
simple proof covers the general case.

LEMMA (3.4) (Lagrange Interpolation). Let v4:L[X]— K [X] be the map
obtained by applying the trace v:L — K coefficientwise. Fix
(3.4.1) GX)ePSIX)&X,-x.,..X,—x,)

For any v € L, write: G,(X) = 75 (vG (X)). Then we have: G, (x) = vG(x).

In particular, if v € 4, then the coefficients of G,(X) lie in R, sovG(x) € S,
proving (3.3).




To prove (3.4) let (8, = identity, 6,,...,8,) be a complete set of K-isomorphisms
of L into some fixed algebraic closure, so that r = Z 6;. Let G, be the poly-

nomial obtained by applymg 6, to the coefficients of G From (3.4.1) we obtain
Gilx}x, —0,{x.)) = (1= z< n) whence, for j > 1, G;(x) = 0. Thus

G x) = 8,(0) G,(x) = vG ).
F=1

Example (3.5). Suppose that the regular ring R is a ring of fractions of a
finitely generated algebra over a perfect field k. By normalization [14, (39.i1)}]
the finitely generated K-algebra S is a ring of fractions of a finite R’-algebra,
where R’ =k [¢],...,t..] is a polynomial ring with ¢}, ..., ¢, a separating tran-
scendence basis of L/k. Since R is regular we have A"Qy,, = Adt] A...n dt,,
with X an invertible R-module. We claim that R’ and A satisfy assumption (3.1).

Without harm we may assume further that R is local. Then the Q,, is free.
We have a natural exact sequence

Qg ®pS— Qgp—Qgp— 0

and since Q ;,, ®5 S is a free S-module and o @ L is an isomorphism, therefore
o is injective, Similarly we have an exact sequence

05 Qp )y ®g- S Qg = Qg — 0.

So our claim is obtained by applying the following generalization of [4, p. 65,
Prop. 15] toM =0, , E=Q,,®,5 and E' =Q , ,, @ S:

PROPOSITION. Let A be an integral domain, with fraction field, say, F. Let
M be a finitely generated A-module, and let E, E’' be two free submodules of
M such that M/E and M/E’ are torsion (i.e., annihilated by a non-zero element
of A). Let J and J' be the 0-th Fitting ideals of M/E and M/E' respectively.
Then J = \J' where 0 £\ € F is as follows: let (e,,....e,,) be a free basis of E
and let (e1,...,e,.) be a free basis of E’; then in the m-dimensional F-vector space
E®, F=M®, F=E ®,Fwe have (uniquely)

e,-=2a,}-e,’- (e, € F;1=<1i,j=<m),

and we set A = det(a ;).

Proof. Choose a free A-module H with basis m, ..., MmN -s Nims £15 -oos Ens
and a surjective map f:H— M with f(n;,)=e,, fn})=¢;, (1= i=m). Let C
be the kernel of f. We have then an exact sequence of F-vector spaces
0—=Cp— HF-;: Mp— 0 where C, = C®, F, etc, and hence a natural isomor-

phism of one-dimensional F-vector spaces ¢:A" M= Hom (A™""C, A PR H )
satisfying, for ¢;, ..., ¢,,,,InC, by, ..,k in H;, and A, = f(h,):
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[dP, A A B Nle,hcne ) =R A AR AC A AC,, .

Using the presentation M/E = H/C + Avn, + ... + Ay, one checks that the image
of the map dle, r...ne,) is

Im[dle,r...ae )]l =dnan’ AL Mm=n,A...A7,,etc.).
Similarly
Im [dle;a..ne )l =d' v anat=Jd qman" Ak,

Since e, A...a e, =N ey A...A e, we conclude that JJ = AJ’, as asserted.

SECOND PROOF

I. Preliminaries. As in Theorem 2, we consider noetherian domains R C S
such that S is a finitely generated R-algebra, and such that the fraction field
L of S is finite and separable over the fraction field K of R, The only additional
assumption we make throughout is that R is locally Cohen Macaulay (an assumption
which is of course satisfied if R is regular). Equivalently [14, (25.6)], if an ideal
I'in R of height n = 0 is generated by n elements, then every associated prime
of I has height n. Note that an ideal I = (g,,...,8,,) R has height r if the sequence
(2;,...&,) is R-regular (i.e.,

(£15-08 )R &0y = (81,8 )R
forO0=i<n, and (g,,....2,) R# R).
We represent Sas S=R [X,,....X,]/P=R[X] /P, sothat
L=K[X]/Py (Py=PKI[X]),

and then R([X],=K[X], is a regular local ring of dimension n. Set
Qu=Qgx)x 50 that Q, is a free R [X]module with basis dX,, ..., dX,.
Put M = PR[X]p. Since L =R [X]p/M is separable over K (i.e., @, = (0)
therefore the natural map M/M?*— Q. /MQ , is an isomorphism. For a sequence
g=(g,,-..8,)in P, set g, =49(g,,...,8,)/8(X,,...X,). From the preceding, we
conclude in a straightforward way that

(3.6) (gR[X}P=PR[X]P=M)ﬁ(gxe_P)-

LEMMA (3.7). Let S=R[X]/P be as above. For any z in R[X], let Z be
its natural image in S. Then J = J 5, is generated by all gy with g = (g,,....&,,)
an R [X]-regular sequence in P such that gy & P (and such g exist!).

Proof. By (3.6), and since R [X] ; is regular and n-dimensional, we can find
a sequence g = (£,,...,£,) in P such that g, & P. Then, we claim, there is a
regular sequence g’ = (g1,...,8.) with g/ — g, € P? (whence: g, — g, € P, i.e.,




z = g_). Indeed, R [X] is locally Cohen Macaulay [14, (25.10)], so we can apply
the following Lemma, with I = P*:

LEMMA (3.8). Let I be an ideal of height = n in a locally Cohen Macaulay
ring T, and let g ={(g,,....8,) be a sequence in T such that I+ gT'# T. Then
there exists a T-regular sequence g’ = (g1,...&,) withg; - g, € I (1=j=n).

Proof. Suppose inductively that for some { = n we have found a regular sequence
(81,...8!_y) with g/ —g, € I (j<i). Let Q,, ..., Q, be those associated primes
of (g4,....&"_,) R which contain g,, and let @/, ..., @ be those which don’t. Since
the @ and Q™ all have height i — 1 <n, there is an element %; such that
REINQIN..NQ:H A &Q,U ...UQ,. Then g| =g, + h, does not lie in
any Q@ or Q%, and I+ (g],....g )T C I+ gT# T, so the sequence (g},....87) is
regular. Proceeding in this way, we get the desired g’.

II. Main steps in the proof. We now give an outline of the proof; details will
follow.

First we choose a regular sequence g = (g,,...,£,) in P such that
&R [X]p=PR[X]p;

that is, g x & P (cf, (3.6), (3.7)). Denoting by (g) the ideal gR [X], we then define
a homomorphism of S-modules ¢,:((g):P)/(g)— Lby

(3.9) b (u+ (@) =1i/g,

(where, as in (8.7), “ " denotes natural image in S = R {X] /P).

Remark (3.10). Examining the primary decomposition of (g}, one finds that
(g) =P n((g):P). e, b, is injective.

LEMMA (3.11). The image Imd . of the map &, does not depend on the choice
of g. Consequently, by (3.7),Im ¢, C S:J.

The proof will be given below. (Actually, in the appendix we will see that
¢, is just the map (2.3) in disguise; but this will not be used in the proof.)

Next, for any prime ideal @ containing P, let @ be its image in S and let
¢, o be the natural extension of ¢, to the localization at Q:
(gRI[X1o:PRIX]q) _(g):P
¢ gRIXle (&)

®SSQ—)L'

$,.0 is also given by (3.9), mutatis mutandis; and it is easily checked that

LEMMA (3.12). If PR[X],=gR[X]q then JSq=dJs, g =gx S, and the
image of &, 085 (S5:JS4) = (8:J) 4.

The second fact (equivalent to (A) of Section 2) whose proof is given below is:
LEMMA (3.13). If S is normal, then the 8-module ((g):P)/{g) is reflexive.

From this we obtain:




COROLLARY (3.14). Suppose that S is normal, and that for every height one
prime q in S, the local ring R is regular. Then b, ((g):P)/(g)— S:Jis an
isomorphism,

Proof of (3.14). We have already seen in (3.10) that ¢ ¢ 15 injective. Because
of (3.13), it follows from [4, p. 52, Prop. 7] that every associated prime ideal
of the cokernel of ¢, has height less than or equal to 1, so that ¢, is surjective
if and only if all its localizations at height one primes of S are surjective. But
if ¢ is such a height one prime, then, replacing R by R ., in (3.12), and S by
S®: R, .x, and choosing @ so that @ = g, we find that the localization of b,
at ¢ is indeed surjective. (The hypothesis of (3.12) is satisfied for some g because
R,z and S, are both regular local rings.)

Finally, in view of (3.11) and (3.14}, Theorem 2 will be proved if we show,
for some representation §= R [Y,,...,Y,.]1 /P’ of the integral closure S of S, and
some regular sequence g’ = (g1,....£.,) in P’ with g\, & P’, that

Imé, (=8:dgz) CImd,(C S:dgp).

We assume here that §is a finite S-module (cf. remarks preceding Theorem 2
in Section 1). It will be enough, then, to proceed “one generator at a time,” as
follows:

Let S=R [X]/P be as before. Let $* = S[y] C L be an integral extension
of S, generated by a single element y. Extend the natural map R[X] — S to
anepimorphism f*:R [X] [Y] - 8” (Y = one indeterminate)with f*(Y) = y.Then
the kernel P* of /* contains an element of the form oY — 8 (o, B € R[X],c & P)
and alsc a monic polynomial

Ray =Y +r, Y™ 4 +r (r;€R[X];m>1).

m

If g=1(g,,-.&,) is, as above, a regular sequence in P with g, & P, then clearly
the sequence k= (g,,....&,,h,.,) is regular, and the Jacobian A xy satisfies
hyxy=8x0h,,,/3Y). For any v in R [X,Y], write & = f* (v). Replacing &,,, by
A ..y + aY — B if necessary, we may assume that the polynomial

Ao =Y +F, Y™+ +F )EL[Y]

is not divisible by (&Y ~ B)?; then it follows that ok,,,/3Y &€ P*, and hence that
m# 0. So, dencting by (%) the ideal AR [X,Y] we may define as above a map
G ((R):PY)/(R)> L by d,(v+ BN =0/hyy=0/g50R ,../00). To complete
the proof, we will show:

LEMMA (3.15). Imdé, CImd,. In other words, for every v € R[X,Y] with
vP* C (h), thereis a u € R [X) with uP C (g) such that

ve=u(dh,,,/dY) (mod. P*).

It remains to prove (3.11), (3.13), and (3.15).
II1. Proofs of the Lemmas.




Proof of (3.11). Leth = {k,,....,h,) be a regular sequence of elements of P with
hx# 0. We are claiming that Im¢,=Im¢,, ie., Imd,_ o, =Imd,, for every
prime @ 2 P, cf. remarks following (3.11); so we may replace R [X] by R’ = R,
{(We do this, folowing a suggestion of E. Kunz, toc be able to permute elements
in a regular sequence without destroying regularity.)

Define a “distance” between two sequences x = (x,,...,x,.), ¥y =(¥,,...,¥,) in
a commutative ring by

- plxy) =min {s:2E, = (x',...,x,w,,,,....,w,) and

YEy = (¥l Y oo puzserny)
for some invertible matrices E,, E ,}.

We will prove the claim by induction on p(g,k). The claim is easily checked
when p(g,h) = 0. Hence when p{g,h) = 1, we may assume that

g={gwy,...w,) k=0, w,,. . ,w,)

For u€(g):P write uh,=uvg,+ En zhiwi. It is easy to see that
u+{g)-»v+ (k) is a well defined isomorphism ((g):P)/(g) = ((R):P)/(h); and
that #h, = 0g,. Consequently Im ¢ ¢g=Imd,.

Now for the inductive step let p(g,h} =m > 1.

As before, without loss of generality we may assume that g, = Ak, for i > m.
Since the ideal (2) = (h,,]) with I = (A,,...,h, )R’ has height n we can find, as
in the proof of (3.8), an &} =k, + >, Wb, such that for all i=1,2, ..., m, &}

does not belong to any associated prime of the ideal (g,,....8, 1 :&ii1s- 8- R’
(all such primes being of height 7 — 1); in other words all the sequences

i =(81ss8it P :8is1+&,) (1= i< m) are regular. Since (g)R,= PR,
we can find an element u € (g): P, u & P, and then we can write uh, = 2 - L Y-
Now some A; with i = m is not in P, since otherwise we would have

uh; € P*+ (g purs i) B =P+ (Apyy s )R

contradicting the fact that (k] ,k,,...,h,) is a minimal basis of PR,..If, say, » ;& P,
then with g* = g, as above, we have g*R. = gR} = PR} so ¢ ,, is well-defined;
and since p{g,2*) = 1 and p(h,g*) < m, the induction hypothesis gives

Imé,=Iméd,.=Imd,.
Proof of (3.13). Since R’ is locally Cohen Macaulay and the sequence g

is regular, therefore the ring A = R’/ (g) is also locally Cohen Macaulay; and
P = P/{g) is a minimal prime ideal in 4. There is an obvious isomorphism




P
(—g—)— = Hom (A /p,A).
(g)

So (3.13) is given by the following Lemma:

LEMMA (3.16). Let A be a noetherian ring satisfying the Serre condition (S,)
(i.e., if @ = 0 or if a is not a zero divisor in A, then the ideal aA has no embedded
prime divisors). If p is @ minimal prime ideal in A such that A/p is a normal
domain, then the A /p-module Hom , (A /p,A) is reflexive.

Proof. Let T be the total ring of fractions of A. Let & be the set of height
one prime ideals in A. Since A satisfies (S,), it follows easily that the natural

sequence 0 = A—- T— @ (T/A), is exact. Hence so is the derived sequence
gEPF

0— Hom,(4/p,A)— Hom ,{A/p,T)— Hom (A /p,®(T/A)},).

Now Hom_ (A/p,T) can be identified with the set of elements in T annihilating
the maximal ideal pT, and so Hom ,(A/p,T) is a finite-dimensional vector space
over T/pT, which is the fraction field of A/p. Moreover, it is easily checked that
every associated prime of the A/p-module Hom ,(A/p,®(T/A),)} is of the form
g/p (p C g € &), and so has height 1. The conclusion follows then from [4, p.
50, Théoreme 2].

Proof of (3.15). It will be convenient to prove a slightly more general fact:

LEMMA (3.17). Let T be a commutative ring, Y an indeterminate, and P*
an ideal in T Y] such that P contains a monic polynomial h, of degree say
m, and also P* contains an element oY — B where a,B8, € Tand P*:(@) = P™.
Let G C P* N TbheaT-ideal. Then forevery v € T[Y ]| such that vP* C (h,G)T[Y]
there is a u € T such that u(P* N T) C G and such that

v=uh,(mod P*) (hy=0h/3Y).

Proof. We may replace T by T/ @; in other words, we may assume that G = {0).
We have

v=hw+0,Y" v, Y™ P+ 4y, WweET[Y]v,ET)
and since v(P* N T) C vP* C (h,G)T[Y] = AT [Y] we see that
(3.17.1) ' v P*NTY=(0) l=is=m-1
Moreover, v{aY — B) € vP* C AT [Y) whence
(3.17.2) (v — hw)aY —B)=v,ah
Differentiating (3.17.2) with respect to Y, we get (v — Aw)a =v,ah , (mod P*).

Since P*:{a) = P* and h € P*, we have v = v, h, (mod P*) which, by (3.17.1),
gives the desired conclusion.




This completes the proof of Theorem 2.

APPENDIX. CONNECTING SECTION 3 TO SECTION 2

LEMMA (A.1). With the notation of the second proof, there is an isomorphism
", making the following diagram commute:

(g):P L n N
Hompg x, (S, R[X]/(g) = _Té-'_ Extg x,(5,0")

)
bg \l/ J/ (23

L€—28:J

inclusion

(Note, by the way, that (A.1) gives another proof of (3.11).)

Once we have proved {A.l), then (3.13) gives (A) of Section 2; and to prove
(B) of Section 2, the key point is:

Observation (A.2). With notation as in Lemma (3.15), the element # is uniquely
determined mod. (g) by v (cf., (3.10)); and if v € (k) then we can take u = 0;
so that in fact we have a map

(r):P* (g):P
: —
M (h) (&)

such that ¢, = ¢,°¥, ,; and therefore (via m, and 7,) we have a commutative
diagram:

(2.3)
n+l * n+1l *
Extgix,y) (S*, Qg y,r) —>S ‘sur
inclusion

. L

in¢lusion

Exty x $Qkix,/n) —> Sid

From ¢’ one gets the map ¥ in (B) (Section 2), with $* in place of 5§ A proof
that ¢ is an isomorphism (using, for example, the description of ¢, provided
by the proof of (3.15}) is left to the interested reader.

Proof of (A.1). Let A be any commutative ring, and g = (g,,....€,) a regular
sequence in A. Then the sequence consisting of the Koszul complex K4 over A
determined by g, augmented by the natural surjective map A — A/(g):

(*) : 0—)A=Kn-—)Kﬂ_lﬂ)...—)K(,:A—)A/(g)_)O

is exact, and hence determines an element £ € Eitf; (4/(g),A). (One may think
of £ as an equivalence class of exact sequences; or one may use K% as a projective




resolution of A /(g), and then £ is the homotogy class of the n-cocycle inHom , (K 5,4)
given by the identity map: A=K,— A) For any A/(g)-module M, and any
0 € Hom, (M,A/(g)) let 6*:Ext;(A/(g),A)— Ext),(M,A) be the corresponding
map. Then we have an A-homomorphism v ,,: Hom , (M, A /(g))— Ext} (M, A) given
by n{0) = 0" (£) (6 € Hom , (M, A/(g).

(A.1) is a direct consequence (details left to the reader!) of the following more
or less well-known lemma:

LEMMA (A.2). (1) v,; is an isomorphism.

(ii) Let P be an ideal in A containing the regular sequence g, let B= A /P, and
let w:A/(g) — B be the natural map. Let ¢ :Ext (B,A)— Hom,(A " (P/P?),B) be
the fundamental local homomorphism (cf. Section 2). For any 6 € Hom, (B,A/(g)),
set 8 = ¢z (0); and for any g € P, let g be its natural image in P/ P*. Then

(g, A8an...AF,) = wb(1).

Proof. (). It is easily seen that the map 7, is the iterated connecting homomor-

phism associated with (*). In other words, (*) breaks up intc short exact sequences

0—-L,,»K—>L—-0{0=i<n)whereL,=K,=Aand L,=A/(g); and n,,
is the composition of the corresponding connecting homomorphisms

Ext’, (M,L,)~ Ext:**(M,L,.,).
Now, by induction on n, we have an isomorphié.m
Ext} (M,A) = Hom ,(M,A/(g,,..8)A) = (0) (i<n)
where the vanishing is due to the fact that g,,,M = (0) and
(8158 A) 1 &isy = (818D A
Since each K, is a free A-module, we have
Ext,(MK,)=(0) (i<n), Ext"MK)=0) (G<n-1)

50 that the kernel of 5, vanishes for i < n, and the cokernel vanishes for i <n — 1.
Thus we are left with an exact sequence

0— Hom ,(MA /(g) > Ext} (M,A)— Ext] (MK, _,).

But o, which comes from the boundary map (X,— X,_,) € g Hom (K,,K,_,)
is the zero-map, because gM = (0); $0 1,, Is an isomorphism.

(ii). Let ... > P, =P, _,— ..— P,— B— 0 be an A-projective resolution of
B. Lifting the maps 6 and 7, we get a commutative diagram




K P K
Kn—l —_— Pn—l _—HKR—l
A N A
KO ; Po > KO
| Lo
Al(g) > B > A/(g)
By the definitions,
(A.2.1) B(Z, A n ) =8, 7, (1),

Now the composition of the maps in (**) is an A-homomorphism K4 — K% lifting
the map 8w. But so is multiplication by «, where o is any element in A such
that o + (g) = 6(1). By homotopy uniqueness of liftings, 8, +,(1) = «{mod(g))
whence

(A.2.2) v, m, (1) = via) = w6(1).

(A.2.1) and (A.2.2) give the desired conclusion.

4. REMARKS ON THE CASE d = 0 OF THEOREM 1

Recall from the discussion preceding Theorem 1” in Section 1 that in proving
Theorem 1 we may assume both R and R/I, to be regular local rings. So part
(i} of the following proposition contains the case d = 0 of Theorem 1, (We are
grateful to W. Heinzer for some illuminating discussion about this result). A special
case of part (ii) was proved by Viehweg [18, Proposition 2].

PROPOSITION. (i) Let R be a commutative noetherian ring, let (x,,...,x,) be
a regular sequence in R such that Rf(x,,...x, )R is normal, and let v € R, Set
Iy=(xy,..,x, )R and I=1I1,+yR. Then all the powers I" (\= 1) are un-
mixed and integrally closed in R (i.e., I = I").

{ii) Assume furthermore that R and R/I, are both regular. Let X be the scheme
obtained from Spec(R) by blowing up I. Then all the singularities of X are
pseudo-rational, of multiplicity two.

Proof of (i). I is unmixed because R/I, is normal. For x > 1, assume induc-
tively that 7*~? is unmixed, i.e., every associated prime of I*~! is a minimal prime
of I If ¢ € R is such that its image in K/I is not a zero-divisor, and x € R is
such that cx € I", then x € I* ™' (since cx € I"™* and I* ™" is unmixed). But [ is




generated by a regular sequence, so @ (*~'/I*) is polynomial ring over R/L

Azl
it follows at once that x € I*. Thus I is unmixzed.

Now to test the inclusion I' C I* we can localize at the associated primes
of I, i.e., at the minimal primes of I For such a prime p, R, /I R, is normal
of dimension less than or equal to 1, hence regular; and therefore R, is regular.
By Theorem 1 (or, without much difficulty, directly) we see then that all the
powers I"R_ are indeed integrally closed.

Proof of (ii). First of all, by (i), X = Proj ( (—D I ") = Proj ( @ I ) is normal.

n=0 nz=0

Also, the local rings of points on X are analytically unramified [17, Theorem
1.6].

We assume that y & I,, since otherwise X is regular. Thus (X150%,,y) is a
regular sequence. To examine the singularities of X, we must look at localizations
at prime ideals P in rings of one of two types:

@ R'=R[x:/7,..2,/y]
(b) B' =R [y/x;%,/ %%,/ %,] I=i=r)

Furthermore we may assume that R is local, with maximal idealm = PN B o I
because e.g. R} is a localization of R -1 [%,/¥,...,x,/y] (where $:R — R’ is
the natural map), and if 7 ¢ ¢ *(P), then R, is a localization of the regular
ring R,

We first consider case (a). If y € m — m? then y can be interchanged with
one of the x,, so that R’ is of the type to be considered below in case (b). So
we assume that y € m® In this case, R, is actually regular for any prime P O m.

The proof is by induction on r. For r = 1, since (x,,y) is a regular sequence,
we have R [x,/y] = R[T) /yT — x, (T-indeterminate) (cf. {16, Lemma 2.1]). If
M is any maximal ideal in R [T') containing m, then (yT - x,) & M?, since otherwise
x, € M?, contradicting the fact that R[T}/x, = (R/x,)[T] is regular; hence
R [x,/y] pis regular for any prime P O m.

For r>1, set R*=R|[x./y], P* =P N R*. As we have just seen, R, is
regular; and moreover, (z,,...,x,_,) is part of a regular system of parameters in
Ri.,sincefor 1<i=<r-1,R}= R;./{x,,...,x,) is a localization of

R/(x].!"'!xi) (T1/3T - x,

(where “™” denotes “natural image in R/(x,,...,x,)),” and so the case r = 1 applied
to the regular local ring R/(x,,...,x;) gives the regularity of R} (and note that
05 %,,, =imageof x,,, in R}). Now R} is a localization of R}, [*./¥sX,_1 /7]
at a prime ideal containing the maximal ideal of R}., so by induction we conclude
that R, is indeed regular.

Next we consider case (b). The ring R* = R [x, [%:i5.0% /%] is regular; and
so is R* /x,, which is a polynomial ring in  — 1 variables over the regular ring
R/1,. So we are reduced to the case r = 1. As before

R'=R[y/x,)=R[T}/(x,T—¥)




and so the Jacobian ideal J' = Jg.,p is x,R’. Now R’ is normal, and so (2.3)
(with S =R’} is an isomorphism. It follows that if, as in [13, Section 4], we
take wp = R, then if R, is any localization of R’, for the R ,-module v, we should
take w;, = Ro:J’ = x;'R,. Note that R, is a complete intersection, hence Cohen-
Macaulay. From the Lemma in Section 1 above, with ¢ = x,, (and again since
(2.3) is an isomorphism when 8 is normal}, and from the corollary of (iii) in Section
4 of [18), it follows that R, is in fact pseudo-rational (because if : Y — Spec(R,)
is proper and birational, with ¥ normal, and § is the local ring of a closed point
son Y, then the stalk of w, at s is S: /g, which contains x;'S = @, S).

Finally the multiplicity of R, is less than or equal to 2. To see this, it is
enough to check, for any maximal ideal M of R [T'] containing the mazximal ideal
m of R, that x,T—y & M®°. But if x,T—yE€ M, then applying the deriva-
tion 8/4T we get x, € M?, which contradicts the fact that B [T') /x, = R/x,)[T]
is regular.
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