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INTRODUCTION

This is a largely expository account of some recent developments in multi-
plicity theory. Emphasis is placed throughout on the benefits of interac-
tion between two rather different ways of looking at the subject - the
approaches of local analytic geometry and of commutative algebra. So if
this paper does not exactly fit in with the theme of the present conference
- the use of analytic methods to prove algebraic theorems - it is at least
meant to support the underlying philosophy that algebraists cannot afford
to ignore analysts (and vice-versaj.

Here is a brief summary of the contents. In Section 1, we introduce
the basic condition £{I) = h(I) on an ideal I in a local ring R; here (1)
is the "analytic spread" of I and h{I) is the height of T; thus £(I) = h{l)
means that I has a reduction of the principal class, and also that the
fipers over Spec (R/I) in the blowup of I all have the same dimension. (All
these terms are explained in Section 1). We also discuss a fundamental
theorem of Rees, extended by Boger and Ratliff, relating reductions of

ideals and equality of multiplicities.
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Section 2 treats some criteria of Dade, in terms of multiplicity, for
£¢I) = h{I). In particular, when I is prime and R/I is regular, one has
that Spec(R) is normally pseudo=flat along Spec{R/I) if and only if the
local rings R and R have the sahme multiplicity. The geometry of this sit-
uation is d1scussed in Section 4 and further in Section 5, where an exami-
nation of tangent and normal cones along lines suggested by Schickhoff Showq
how close normal-pseudo flatness - i.e. equimultiplicity - is to normal flat-
ness (cf. Theorem 5 in Section 5).

In Section 3, we generalize some results of Teissier relating the con-
dition £(I) = h{1) to equimultiplicity in a family of zero-dimensional ideals.
Teissier's results, developed for the theory of equisingularity, are tech-
nically somewhat similar to those in Section 2; both can be viewed as elab-

orations of the theorem of Rees in Section 1.
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§1. .Reduction and multiplicity (Rees, Boger, Ratliff)

In [14] Northcott and Rees introduced the notion of reduction of ideals:

if 1 € J are ideals in a noetherian commutative ring R, then I is called a
reduction of J if " = Jn+l for some integer n; or, equivalently, if J is
contained in the integral closure T of I, T being the ideal consisting of

all elements x which satisfy an "integral dependence" relation of the form
P a™l e a ™ a_ =0, a ¢ tfforisism

(This equivalence is stated in [13, p. 34, Exercise 4]; it is proved in
{14, 'p. 156] in case J contains a regular element; for the general case use




e.g. [11, p. 792, Lemma (1.1)]. For more details on integral dependence cf.
{10, p. 659].)

An important aspect of this notion is its relation with "multiplicity".

If R is a local ring, and I S R is an ideal primary for the maximal ideal of

R, then for large m the length of the R-module R/I™ is given by a polynomial

of degree d = (dimension of R):
A (m) = e(I)md/d! + terms of degree < d

where e(I) is a positive integer, the multiplicity of T (cf. {21, p. 294]).
Now if 1 is a reduction of some ideal J 2 I, say " = Jn+l, then for every

m+n

m > 0 we have G S , whence, for large m,

RJ(m+n).2 RI{m) > RJ(m)

and it follows that e(I) = e(J).
A basic result for our purposes is the following converse, which is
much more difficult. Recall that a noetherian local ring R is formally

equidimensional (or, in-Nagata's terminology, quasi-unmixed) if each minimal

prime ideal p in the completion R satisfies
dim(R/p) = dim(R) (=dim(R)) "dim" = "dimension”

THEOREM 1 (Rees [16]) |, If I < J are ideals which are primary for the maximalli
ideal in a formally equidimensional local ring R, and if e(I) = e{J), then I

is a reduction of J.

We will not describe here the proof, but rather the geometric meaning
of this result in the special case when R is the local ring of germs of
holomorphic functions at a point v on a pure d-dimensional complex analytic
variety V, and J = M is the maximal ideal of R. In this case, any d-tuple
of elements (xl,...,xd) in R defines a map-germ ¢: (V,v) -+ (Ed,O); and
(xl,...,xd)R is primary for M if and only if there is a hoiomgrphic map f
from a neighborhood of v in V onto a neighborhood N of 0 in £, whose germ
at v is ¢, and such that f is proper, with finite fibers, Such an f gives

a branched covering of N, i.e. there is a nowhere dense subvariety W of N

such that f makes f-l(N - W) into a covering space of N - W. The number of
points in the fibre f-l(x) is independent of the choice of x ¢ N - ¥; this
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number can be shown to be equal to the €{{x))-vector space dimension of
Réo¢<x)m((x)) (where C{x) = E(x cea X ) S R is the ring of convergent power

series in x -s%y; and m((x)) is its fraction field); and this is the same

T
as the multiplicity of the ideal (x ..,xd)R. We shall refer to this num-
ber as the degree of ¢. Thus if (x ...,x IR is M-primary then the degree
of ¢ is = the multiplicity of R (i. e of M), and we have equality for some

(in fact "almost any") choice of (x Rees' theorem gives a2 neces-

VR
sary and sufficient algebraic cond1tlon for equality, namely that
(xl,...,x JR be a reduct:on of M. Let us interpret this condition geomet -

rically.
Using Nakayama's lemma, one checks that (xl, greee )R is a reduction
of M if and only if, in the graded C-algebra G = & Mn/ , the images 1

nz0
of the X in M/M generate an irrelevant ideal (i.e. an ideal containing all

elements of sufficiently large degree). What this last condition means is
that first of all the xi are linearly independent over @, s6 that there is
an embedding of the germ (V,v) into (Em,O) for some m (for example m = embed-
ding dimension of R, i.e. the dimension of the €-vector space M/Mz). ind a

linear projection u: (Em Uy - {Id,O) such that the restriction of n to V ig
-germwise- the ¢ associated as above to (x - xd); and secondly, the .
linear space (0) has no line in common w:th the Zariski tangent cone of
V at the origin. {Recall that the Zariski tangent cone - sometimes denoted
by C3 - is the union of all limits of lines joining y ¢ V € ™ to the origin,

the limits being taken as y approaches the origin within V; and G is the
coordinate ring of this cone.) In other words, liwll/|ln(w)}} is bounded for w
in some punctured neighborhood of the origin on V,

This geometric condition for ¢ to have minimal degree is well-known
[4, p. 196, Theorem 6.3], (20, p. 234, Theorem 7P]; but the commection with

Rees’ theorem does not seem to have been pointed out.

Rees' Theorem has been generalized by Boger [2] as follows. First of
all, in [14, p. 149) Northcott and Rees defined the "analytic spread" £(7)
of an ideal I # R in 2 local ring (R,M) to be 5 + 1, where § is the dimension
of the closed fiber fhl({M}] for the map f: X -+ Spec(R) obtained by blowing
up I (6 = -1 if I is nilpotent).

Next, recall that h{I), the height of I, is defined to be m1n(d1m(R M

as p runs through zll prime ideals containing 1. If

£.: £ (Spec(R/1)) » Spec(R/T)

0°




is the restriction of the above f, then we have:

Z(I) = h(I), with equality if and only if all the fibers of fo
have the same -dimension

This follows from the upper semicontinuity of fiber dimension {6, (13.1.5)].
since at a minimal prime p of I, the dimension of the fiber f ({p}) is
dim(Rp) -1 (IRP being primary for the maximal ideal of RP). In fact we

see that
(1) =z alt(l)

where att([}, the "altitude" of I, is max(dim(Rp)) as p runs through the
minimal prime divisors of T.

In case the residue field R/M is infinite, Northcott and Rees show that
£(1) is the least possible number of elements which can generate a reduction
of 1. Since I has the same radical as any of its reductions, we see again
that £(1) 2 alt(I) (and §imilarly'8(1) > dim{R) - dim(R/I} = h(I}); and -
if R/M is infinite - £(1) = h(I) if and only if I has a reduction I0 of the

vprincipal class' (i.e. I0 is generated by h(IU) elements).
The condition £(I) = h(I) plays an important role in the sequel. It
is satisfied, for example, by any ideal I which is primary for the maximal

ideal M.

EXERCISE £(1) = h(I) iff dim(R) = dim(R/I) + h(I) and there is an integer
m> 0 and a system of parameters (xl,...,xr,yl,...,ys) in R such that
(xl,...,xr)R is a reéduction of ™. (We can take m = 1 if R/M is infinite.)

Here is Boger's theorem:

THEOREM 2 Let I € J S VT be ideals in a formally equidimensional local
ring R, such that £(I) = h(l). Then I is a reduction of J if (hard') and
only if (easy!) the RP~1deals IRp and JRP have the same mu1t1p11c1ty for

every minimal prime divisor p of I.

As observed by Ratliff, Theorem 2 is readily reduced to Theorem 1 by

means of the following remarkable result:




THEOREM 3 ([3, Theorem 4], [15, Theorem 2.12}) in a formally egquidimen-
sional local ring R, for every ideal I such that £(1} = h(I), the integral

closure I has no embedded prime divisors.

(Ratliff alsc shows that this property characterizes formally equidi-

mensional local rings [ibid., Theorem 2.29].)

In outline, Dade proves Theorem 3 by considering the above map

f: X - Spec(R) obtained by blowing up I, and its restriction

£, f_I(Spec(R/I)) - Spec(R/1)
The hypothesis that R is formally equidimensional (andé hence satisfies the
naltitude formula") ensures that every component E of f_l(Spec(R/I)] has

dimension dim(R) - 1 at each of its closed points (at least if h(I) = 0,

which we can assume...). From this it follows, since the fibers of fo all
have dimension &(I) - 1 = h(I) - 1, that

dim{(£f(E)) = dim(R) - h(I) = dim(R/I)
so f{E) is a component of Spec(R/I) {and in fact every component of every

fiber of fn has dimension h(I) - 1, i.e. the map fo isiegpidimensional
{6, £13.3.2)]). Now the integral closure T is & finite intersection of

ideals of the form

I = {x € R}v(x) 2 min (v(y})}
v
. y€l
where v is a discrete valuation centered on X at some E as above. lv is a
primary ideal whose radical is the generic point of £(E); thus every asso-

ciated prime ideal of T is a minimal prime divisor of I. QED

Actually Ratliff did not use blow ups, but rather the closely related
- and technically much simpler - notion of "Rees ring" (also used by Rees
in his proof of Theorem 1!). The more picturesque geometric approach was
given independently by Teissier [18, Appendix 1] in the context of analytic

geometry.




We end this section with a reformulation of Theorem 2, in terms which

will be technically useful later on.
For any ideals L, I in a local ring (R,M) such that L + I is M-primary,

we set

e(L,1) = Z e(L(R/p))e(IR ).
p p

where: p runs through the prime ideals containing I and such that
dim(R} - dim(RP) = dim(R/p) = dim(R/I)

e(L(R/p)) is the multiplicity of the ideal L(R/p) in R/p; and e(IRp) is the

multiplticity of IRP.

THEOREM 2°' Let I € J be ideals in a formally equidimensional local ring
(R,M) such that £(I) = h(I) = h{J). If there exists an ideal L such L + I
is M-primary and such that

e(L,I} = e(L,J)

then I is a reduction of J. Conversely, if T is a reduction of J, then
e(L,I) = e(L,J) for every jdeal L such that L + I is M-primary.

REMARKS In a formally equidimensional local ring (R,M), every ideal

I € M satisfies
h{1)} + dim(R/I} = dim(R)

(Reduce to the case where I is prime, which is treated in (13, p. 123,
(34.5)].) So h(I) = h(J) implies dim(R/I) = dim(R/J). Moreover 2(I) = h(I)
implies that every minimal prime divisor p of I satisfies dim(Rp) = h(I)
(since h(I) = &(1) 2 alt(I)), whence dim(R/p) = dim(R/I).

With these remarks, the equivalence of Theorems 2 and 2' is a simple

exercise.
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§2. Equimultiplicity criteria for £{1) = h{l) (Dade)

Let 1 be an ideal in a local ring (R,M) (M is the maximal ideal of R}, let

r = dim(R/I), and let x = (xl,...,xr) be 2 sequence in R such that

~(a) xR + I is an M-primary ideal, and

(b) dim(R/xR) = dim(R) - r = dim{R) - dim(R/I).

(In other words: X is part of a system of parameters in R, and the image
of x in R/I is a system of parameters.)

We define e(xR,I) as in Section 1 (just before Theorem 2'}, and let
e(xR + I) [respectively e(I(R/xR))] be the multiplicity of the M-primary
ideal xR + I [respectively the M/xR-primary ideal I(R/xR)]. Then [8, pp.
119-122] we have the inequalities

e(xR,I) = e(xR + I) = e(I(R/xXR)) ' (2.1)
REMARK {2.1) gives the ineéuality
e(xR,I) = e(I(R/xR)}) (z.2)

which can also be proved more directly, cf. [8, p. 115,'Lemma 3.4). For a
geometric interpretation of {(2.2) cf, Section 3 below ((3.1) and (3.9)).

THEOREM 4 ([3], [11, [7]) Let (R,M) be a formally equidimensional local
ring, with R/M infinite. For an ideal I in R, the following conditions are
equivalent:
{1) £(I) = n(I),.
(ii) For every ideal L such that L + I is M-primary and £(L) = dim(R/I}
we have

e(L,I) = e(L + I)

{iii) There exists a sequence y = (yl,...,yr) whose image in R/I is a
system of parameters, and such that

e(yR,I} = e(yR + I)




(iv) There exists a sequence X = (xl,...,xr) satisfying (a) and (b)
above, and such that

- if r < dim(R) then e(xR,I)

= e(I(R/xR))
~ if r = dim(R) then e(xR,I) = e(xR).
Proof (Indications) (i) = (ii}. There is a sequence x= (xl,xz,...,xt)

generating a reduction of L, where t = £(L) = dim(R/I}. (Actually, since
X(R/I) is M/I-primary, we must have t = dim(R/I).) Also, if s = &(I) = h(I),
there is a sequence z= (zl,...,zs) generating a reduction of I. Since

L + I is M-primary, so therefore is xR + zR; but
t +s £dim(R/1) + h(I) = dim(R)

and hence (xl,...,x . zl,...,zs) is a system of parameters in R. Moreover

it is clear that both Land I - and hence L + I - are contained in the inte-
gral closure of xR + zR, so XR + zR is a reduction of L + I. Applying the
"associativity formula" for multiplicities [13, (24.7)], and the fact that
"reduction preserves multiplicity" (cf. beginning of Section 1), we conclude

that

e(L,I) = e(xR,2R) = e(xR + IR} = e{lL + I)

(11) = (iii). Let y be any sequence whose image in R/I is a system of
parameters; and set L = yR. Clearly £(L) = dim(R/I).

(1ii) = (iv). Choose y as in (iii). In Lemma 1 of (7]} it is shown,
R/M being infinite, that for a "generic" sequence x = (xl,-..,xr)

(r = dim(R/I)) of elements in-yR + I, we have:

- X is part of a system of parameters in R;

-~ XR + 01 =yR+1I
{whence e(xR,1) = e{yR,I})];

- if r < dim(R) then e{I(R/XR)) = e(yR + I) and if r = dim(R)
then e(xR) = e(yR + 1)

(The proof is an elaboration of that of [13, (24.1}]): set J = yR + 1, and
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inductively choose
1

X, €3 - (T + M+ (xg,.00,x )IR)

such that the image of Xy in Ri = R/(x],...,xi_l)R is superficial of order

] for the ideal JRi']' So
e(xR,I} = e(yR,I) = e(yR + I)
and (iv) follows,
(iv) = (i). With
s = dim(R/xR) = dim(R) - r
choose a sequence 2z = (zl,....zs) in 1 whose image in R/xR generates a re-

duction of T(R/xR). (This is possible because R/M is infinite.} Then

(z].....zs, xl,...,xr) is a system of parameters in R. Setting IO = zR €1,

we have
dim(R/IO] = dim(R) - s = T = dim{R/I)
and using (2.2) (and the definition of e(l,I} in Section 1) we get
e(xR,1) = e(xR,15) = e(1,(R/xR)) = e(I{(R/xR))
By assumption, then, if r < dim(R), we have equality throughout, so that
e(gﬁ,lo) = e(xR,T) — (2.3)
If r = dim(R), then Io = (0) and e(zﬂ,lo) = e(xR) (cf. [13, (23.53]); S0

{2.3) still holds.
Now by the remarks at the end of Section 1, we have

n
n

dim(R} - dim(R/Io) = h(Io)

L]
n

dim(R) - dim(R/I} = h(I)
£(1,) = h(1y)

wm
v




whence
$ = eIy} = h(ly) = (D) (z.4)
By Thoorem 27, {2.3) and (2.4) imply that Io is a reduction of [; hence
h{l}) = s = z(I) = h(I)
and so 2{1} = h(I). QED

REMARK (2.3} The implication (i) = (ii) is given essentially in [14, p.
158]. It does not require R/M to be infinite (since one can easily reduce to
to this case), nor R to be formally equidimensional. Similarly (ii) w» (iii) =
= (1) and (iv) = (i) without R/M being infinite: and (ii) = (1i1) = (iv)
without R being formally equidimensional. Finally, for (1ii) = (i) the
assumption "R formally equidimensional™ can be weakened to "R equidimensional

and Catenary, cf. [1, Satz 1].

COROLLARY [3]-  Let p be a prime ideal in a local ring (R,M) and assume that
R/p is regular. T1f ¢(p) = h(p) then the local R and R_ have the same
multiplicity; and the converse is true if R is Formally equidimensional,

broof let v = (yl,...,yr) be a2 sequence whose imaée in R/p is a regular
system of parameters. As in Section 1, £(p) = dim(R) - dim(R/p) = h(p). so
if £(p) = h(p) then dim(R) - dim(R ) = dim(R/p); and this last equality also
holds for any prime p if R is formally equidimensional. In any case we have

e(yR.p) = e(pRp) = multiplicity of Rp

e(yR » p} = e(M) = multiplicity of R

S0 the corollary follows from the implications (iii) = (i) = (ii) of Theorem
4. (As in Remark (2.5}, (i) = (ii) requires no assumption on R; and in prov-
ing (iti} = (i)'one can always reduce to the case when R/M is infinite.)

REMARN (2.0} e condition "R normaily pseudo-tlat along p' introduced by
Hironaka in [9] amounts to "R/p regular and ¢£(p) = h{p}". Hironaka proved
the first part of the above Corollary, and Schickhoff [17]) proved the




converse; both these proofs were given in the context of analytic geometry.
We will elaborate geometrically and algebraically on this situation in Sec-

tions 4 and 5.

REMARK (2.7} If R/M is infinite, R/p is regular, and £(p) = h(p) > 0, then
the proof of (iii) = (iv) in Theorem 4 yields that for "almost all" sequences
X whosg image in R/p is a regular system of parameters, the multiplicity of
Rp (or of R) is equal to the multiplicity of R/xR, which is the local ring
of the origin on a "section of Spec(R) transversal to Spec(R/p)". (Here the
word "almost' can be omitted if R is Cohen-Macaulay, cf. the next remark.)

REMARK (2.8} (In connection with (iv) of Theorem 4.) Let I be an ideal
in a local ring (R,M), with £(I) = h(I). Let x = (xl,...,xr) be any sequence

whose image in R/1 is a system of parameters. Then x is part of a system of

parameters in R; and we have
e(xR,I) = e(I(R/xR))

if and only if everv minimal prime divisor q of xR with d4im(R/g) = dim(R/xR)}

is such that R is a Cohen-Macaulay local ring of dimension r (a2 condition

which is automatically satisfied if R itself is Cohen-Macaulay).

Proof Assuming, as we may, that R/M is infinite, we choose a reduction

(zl,...,zs)R =2zRof I (s= &(I) = h(I)}. Then (zl,...,zs, xl,...,xr) is a

system of parameters in R; and by (2.2) we have
e(XR,I) = e(xR,2R) = e(z(R/xR}) = e(I(R/xR)})
By [13, (23.5)]} we have

e(z(R/xR)) = 37 e(z(R/Q}INR_/XR )
o55R a'=q

dim(R/q) = dim(R/xR)
where "\" denctes length. Furthermore, every minimal prime divisor p of zR

satisfies dim(R } = s (since h(zR) = h(I) = s), and so the "associativity

formula™ [13, (24.7)] gives




e(x,zR) = e(xR + zR)

= 2 e(z(R/a)e(R)
q

where 2:'15 the sum over all q as above which also satisfy dim(Rq) =r.
Since A = e, with equality if and only if Rq is Cohen-Macaulay, the assertion

follows.

§3 Equimultiple families of ideals (Teissier)

Let ¢: S +~ R be a homomorphism of commutative noetherian rings, and let I
be an ideal in R such that R/I is a finite S-module (via ¢). For every

prime ideal p in S, let k(p) be the fraction field of S/p, set
R(p) = R®&k(p) and I(p) = IR(p)

s0 ‘that
R(P)/T(P) = (R/1)@Gk(p)

is a finite k(p)-modulé. This setup represents a '"family of zero-dimensional
ideals parametrized by Spec(S)". We have I(p) # R(p) if and only if
P2 ¢'1(I); 50 we get essentially the same family if we replace ¢ by the in-
duced map S/¢“l(l] - R/¢'l(I)R. We will assume therefore that ¢'1(I) = (0),
so that I(p) # R(p) for ‘any p. ‘

By [13, (22.7)] the vector-space dimension

dim o) RE/1EM = dim o (R/1@gk(p))

is given for large integers n by \ (n), where A_is a polynomial whose degree
d = dP(I) is the altitude of the idgal I(p), i.e. the dimension of the
(semi-local) ring of fractions R(P)1+I(p] (or of its completion, which is
also the I-adic completion of R(p)). We have
d
A (n) = e (I)E—T + lower degree terms
P P dp.

where ep(I) is an integer, the "multiplicity of I at p".




By induction on n, we see that R/In is a finite S-module; Nakayama's
iemma implies then that dimk(p)((R/In)egk(p)) is the least possible number
of generators of the Sp-module (R/In)@% Sp. From this it is immediate that

if p £ P are two prime ideals in S, then, for all n > 0,
. n . . n
dlmk{P)((R/I )Gg k(P}) = dlmk(P)((R/I )Gg k{p))
Consequently:

PROPOSITION (3.1) (Semicentinuity) With preceding notation, if p € P are
two prime ideals in S, then either: dP(I) > dp(I), or: dp(l) = dp(l) and
e {I) 2 e (1).

We wlll be interested only in the case when dP(IJ is 1ndependent of p,
and when moreover the dimension of the localization R(p)m is the same for
all maximal ideals m 2 I(p) in R{p). To get a grasp on this condition, ob-
serve flrst that R(p) = R /pR , where q 2 I is a prime ideal in R and

= ¢ (q), note here that R/q is finite over its subring S/p (since R/I is
fznlte over 5), so that dim(R/q) = dim(S/p). We assume that dim(R) < =,

Then we have:

dim(R/pR) - dim(S/p)

dim(R/pR) - dim{R/q) (3.2)

W

dim(Rq/PRq)

v

dim(R ) - d1m(Sp)

v

dim(Rq) + dim(S/p) - dim(S)

dim(Rq) + dim(R/q) - dim(S)
Also, by (3.1), and since dim(R) < =,
sup{dP(I)} = dp(I) for some maximal ideal P in §.
P

Thus we are led to:

PROPOSITION (3.3) Assume that

3.1

(73]

every prime ideal g 2 I in R satisfies {

dim(Ro) + dim{R/q) = dim(R) < =




and that
every maximal ideal P in § satisfies (3.3.2)
dim(R/PR) = dim(R) -~ dim(S)

Then for every prime ideal p in $ we have

dp(I) = dim(R) - dim{8) = h(I)
and
e () = 2. [k(q): k(p))e(I(R /PR )) (3.3.3)
P -1 q q
¢ (Q)=p
q2l

where for every prime ideal q 2 I in R with ¢'l(q) = p, the fraction field
k{q) of R/q is a finite field e;tension of the fraction field k(p) of S/p,
and the multiplicity e(I(Rq/qu)) is well-defined because I(Rq/qu) is
primary for the maximal ideal of the local ring Rq/qu (which is a local-
ization of R(p) at a maximal ideal containing I{p)).

Proof Let q 2 T be a prime ideal in R, and p = ¢-1(q). From the remarks
preceding {3.3), we get, for some maximal ideal P in §,

v

dim(R/PR) = dP(I) > dP(I) z dim(Rq/qu)
> dim(Rq) + dim(R/q) - dim(8)

From (3.3.1) and {3.3.2) we then conclude that

d (I} = dim(R R ) = dim(R} - dim(S

p( ) im( q/P q) (R} (s)
Now (3.3.3) is an easy consequence of [13, (21.2)]. Moreover, since R/I is
finite over its subring S/¢'1(I) = §, we have dim(S) = dim(R/I); and (3.3.1)

implies that the height h(I) = inquI{dim(Rq)} satisfies

h(I) = dim(R) - dim(R/I) = dim(R) - dim(S)
QED




Before continuing the algebraic discussion, we describe the geometric

avatar of the above situation.

EXAMPLE (3.4) Let F: X = Y be a morphism of complex analytic varieties.
Let Xg € X, Yo = F(xo), let § = OY'YO and R = Ox’xo be the corrgspondang
local rings of germs of holomorphic functions, and let ¢: S = R be the ring
homemorphism induced by F. Let T be a coherent Oxjideal such that R/I is a

finite S-module and ¢'1(I) = 0, where I = Ix S R. This means that if Z is
0 :
the subspace of X on which the functions in ] vanish, then ~ after X aznd Y

are replaced by suitable neighborhoods of Xy and Yo - Zhn F"‘({yo}) = {xo},
and F induces a proper surjective map Z - Y with finite fibers.
Corresponding to (3.3.1) and (3.3.2) we assume that:

Every irreducible component X' of X satisfies {3.3.1)*

dim(x') = dim (Yo) + dim (F "'y })
0 0
It follows - after shrinking Y - that every component of Y has the same di-
mension, and - after shrinking X - that the local fiber dimension
dimx(F-l{F(x)}) is constant on X (and equal to dim(X) - dim({Y)).
For any v € Y, we set Xy = F'l({y}), and

e (D= I e(IOx o) (e = multiplicity) (3.3.3)*
y x€X_NZ ¥y’
y
Here is the pgeometric meaning of ep(I) for a prime ideal p in S. Let Yp be
the irreducible subvariety of Y whose germ at Yo is defined by p. (Again

we may need to shrink Y.)
PROPOSITION (3.5) In a suitably small neighborhood of Yor e have
ey(T) z eP(I) for all y € Yp
with equality for y ¢ Yp - W, where W is a2 nowhere dense subvariety of YP.

The proof involves techniques of analytic geometry which can be found
in [12, §8]: one shows that, ip: Yp -+ Y being the inclusion map, the graded

0Y - algebra

p




i;F*(ngb In/In*l) is finitely presented, hence flat over YD - W for some W
as above; then for eachn = 0 )

n+l

ROV e, ©  (ye Y, - W

Y,y

is a C-vector space whose dimension Xy(n) does not depend on y; in partic-
ular, eyfI) - which is determined by the function ky(n) - is constant on
Y - W. The transition from geometry to local algebra can then be made by
means of the following observation, applied to M==F*(In/In+1) n=0,1,2,...):

Let M be a coherent 0Y~module, presented in a neighborhood U of Yo by
an m * n matrix of functions (aij] (i.e. M is the cokernel of the map
03 - OE given by this matrix}. Then for y € U, the vector-space dimension

of M(y) = hﬁb € is n-(rank of (aij(y))). Hence if Yp is a subvafiety of

Y,y

Y, irreducible at Yo and represented by the prime ideal p in S = () ; and

Y,yo

if M is the S-module My ; then, with k(p) the fraction field of $/p, we have,
0
in some neighborhood of Yo that for zll y ¢ Yp

dimEM(y) z d:i.mk ) (M@Sk(p] )

with equality outside some nowhere dense subvariety of Yp'
{Another possibility at this point would be to use techniques suggested

by [5, §41.)

This Section is related to Section 2 via the following Corollary of
{3.3):

COROLLARY f3.6) With assumptions as in (3.3), suppose further that R is
local, with maximal ideal M, and that S is a domain. Note that since R/I
is finite over its subring S/¢-1(I) = S, therefore S is local with maximal
ideal m = ¢-1(M), and oR + I is M-primary. Let L be any m-primary ideal in

S. Then, with the notation of Section 1, we have
em(I) = [(R/M}: (8/m)]e(I(R/mR)} (3.6.1)

e(l)e (1) = [(R/M): (S8/m)Je(LR,T) (3.6.2)

(0}

If, moreover, 3 is Cohen-Macaulay and Rq is flat over S for every minimal




prime divisoer q of mR, then, for any system of parameters x = (xl,...,xr)

in §, we have
e(xSye (I} = [(R/M): (S/m)]e(1(R/XR)) (3.6.3)

Proof (3.6.1) is immediate from definitions (or from (3.3.3)). If § is
Cohen-Macaulay, then the muitiplicity e(xS) is also the length of the S-module
§/xS; so if q is a minimal prime divisor of mR, and Rq_is flat over 5§, then

denoting length of an Rq-module E by A(E) we see that
AR /XR ) = S)A(R_/mR
( q/_ q) e(x5)n( q/m q)

and since xR £ mR & VxR, (3.6.3) follows from (3.6.1) and [13, (23.5)].

To get (3.6.2), applx {3.3.3), noting first of all for any prime ideal
g 2 1, since R/I is finite over S and R/q is finite over S/¢'1(q), and by
(3.3.1):

¢'1(q) = (0) e dim(R/q) = dim{S) = dim(R/I)
i
dim(R) - dim(Rq)

and secondly that if ¢'1(q) = (0), the "projection formula" [21, p. 299,

Cor. 1) gives

e(L) [k(@): X((0))] = [(R/M): (S/m))e(L(R/a))
’ QED

The main results in this Section are contained in the following
Theorems 4a and 4b, which give another equimultiplicity criterion for
£(I) = h(I).

THEOREM 4a With assumptions as in (3.3), assume further that R is local,
with maximal ideal M (whence, as in (3.6) § is local, with maximal ideal
m= ¢"1(M)), and that R is flat over S (which implies (3.3.2)). If

£(1) = h(I), then

e (1), = e (D)




for every prime ideal p in S.

Proof Assuming, as we may, that p # m, we first construct a local homo-
morphism ¥: S -+ S* with kernel p, where $* is a one-dimensional local noe-
therian domain, essentially of finite type over S, with residue field purely
transcendental over that of S, and with fraction field equal to that of S/p:
to do this, let f: X -+ Spec(S/p) be obtained by blowing up an ideal in S/p
generated by a system of parameters (yl,yz,...,yd), then the closed fiber
£ ({m/p}) is a projective space Pd -1 over the residue field of S; and we
can take S* to be the local ring on X of the generic point of this fiber
(i.e. 8* is the localization of(S/p)[yzfyl,...,yd/yl] at the prime ideal
generated by m/p).

Now in RG%S* there is just one maximal ideal N containing I(R@ 5*%); in
other words (R/I)® S* is a local rln& To see this, note that since (R/I)GBS*
is finite over S*, every maximal ideal in (R/I)e%s* contains m*((R/I)GgS*),

where m* is the maximal ideal of S5*; so we need only check that

(R/I)G%(S*/m*) = (R/I ™+ mR)@g/m(S*lm*)

is local, which is clear because R/I + mR is a local Artin ring finite over

S/m, and S*/m* is purely transcendental over S/m. We set
= (R 8 S*)y (localization at N)

We have a natural map ¢*: S* =+ R*, via which the noetherian local Ting
R* is flat over the Cohen-Macaulay local domain S* (we are preparing to

apply (3.6) to $*!). With I* = IR*, we have that
R*/I* = (R/I)Ggs*
is finite over S$*. Moreover
w1l *Y] =
(¢*) ~.(1*) = (0)
becaus2 otherwise every prime ideal in R/I ﬁ% S3* would contract to the max-
imal ideal in S*, hence to m in S; but if q 2 I is a prime in R with

b-l(q) = p (such q exist since R/I is finite over § = S/¢"1(I)), then the

natural commutative diagram




§ =————— R/I

iR

S* =t k(p) e % (q)

defines a homomorphism (R/I)Gés* -+ k(q) whose kernel is a prime ideal con-
tracting to p in S, contradiction.
So ¢* defines a family of zero-dimensional ideals. We have, for every

integer n,
R/ (INHRLK(P) = ((R/INBSHIBLK(P) = R/ ek (p) (5.7)
(R*/(14)7) 8, (S*/m%) = ((R/T7)88%) @, (5*/n%) (3.7)"

n
= {(R/I )G:S (S/m))@s/m(S*/m*)
From this it follows that

ey (1) = ep(I)

em.(l*) = em(I)
It will therefore suffice to show that
e 0y 1% = e, (17)
If we can verify the hypotheses (3.3.1) and (3.3.2) for §*: $* = R* and

I*, and that £(I*) = h(I*), then (3.6.2) and (3.6.3) apply with L = xS*, x
being any non-zero element of S*. This reduces us to showing that

e(xR*,I*) = e(I*(R*/xR*) (3.8)

But (3.8) follows easily from Remark (2.8) because R* is flat over S$*, so

that for every minimal prime divisor g of xR* we have that
dim(R;) &« dim(5*) + dim(R;/xRa) =1

and x is & regular element of Ra, i.e. Ra is Cohen-Macaulay 
Let us then verify what we need to (see above). To begin with we check




- -

that (3.3.1) holds for ¢*. Since R*/I* is finite over its subring S*, there-
fore dim(R*/I*) = 1, and it will suffi;e to show that for every non-maximal
prime ideal q 2 I*, we have

dim(R;J = dim(R*) - 1 (3.9)
But these q correspond precisely to the maximal ideals in REO) = R* 2, k(p)
containing I*REO). hence to the maximal ideals in R(p) = R @%'k(p) containing
I(p)} (cf. (3.7)), and so by (3.3) '
dim(Ra) = h(I)

On the other hand, by flatness,

dim(R*) =-dim($*) + dim(R*/m*R*)

= 1 + dim(R/mR) (c£. (3.7)1)
= 1 + dim(R) - dim(S) (c¢f. (3.3.2))
= 1 + h(I) (cf. (3.3})

This gives us (3.9); and furthermore, it follows that

h(I*) = dim(R*) - 1 = h(I).
But clearly

E(I*) = e(I} = h(I) = h(I*) = g(I%)
and so

2(I*) = h(I*)

Finally (3.3.2) helds for ¢* because R* is flat over S*. This completes
the proof. '

For the next Theorem 4b, we need the following analogue of Theorem 2:

THEQREM 2"  With assumptions as in (3.3), suppose further that R is a
formally equidimensional local ring (which implies (3.3.1)), and that




£(I) = h(I). Let' J 21 be an ideal in R, with ¢'1(J) nilpotent in §. 1If
ep(I) = ¢ (J) for every minimal prime ideal p of S, then T is a reduction
of J. Conversely, if I is a reduction of J, then ep(I) = ep(J) for every

prime ideal p in S,

Proof . By Theorem 3 of Section 1, it will suffice to show that IR is a
reduction of JR_ for every minimal prime divisor q of I. Since 2{I) = h{I)

and R is formally equidimensional, every such q satisfies

dim(R/q) = dim(R/I}
! I
din(s/0°(q)) dim(S)

(cf. end of Section 1). So the q we are interested in are precisely those
which contain I, and for which p = ¢'1[q) satisfies dim({S/p) = dim(S). For
such g p, S_ is artinian, so qu is a nilpotent ideal, and it is enough to
show that I(Rq/qu) is a reduction of J(Rq/qu) (¢f. [16, p. 9, Lemma 1.2]
or {11, p. 792, Lemma (1.1)]}.

Now p 2 ¢'1(J)-(which is nilpotent); and replacing ¢ by the induced
map S/¢h1(J) - R/¢—1(J)R we see that (3.3.3) holds with J in place of I.
Since ep{I) = ep(J) and J 2 1, (3.3.3) gives

e(I(Rq/qu)) = e(J(Rq/qu))

and the conclusion follows from Theorem 1 (R /pR_is formally equidimensional
by [6, (7.1.8)]). Conversely, if 1 is a reduction of J, then (3.3.3) gives

ep(I) = ep(J) for every prime p is S.
QED

The underlying idea of the following Theorem is due essentially to
Teissier [18, Appendix 1]. It is similar to the proof of (iv) = (i) in

Section 2.

THEOREM 4b Let ¢: (S,m} -+ (R,M} be a homomorphism of noetherian local
rings, and let I € M be an R-ideal such that R/I is a finite S-module
(via ¢) and ¢—1(I) = (0). Assume that R is formally equidimensional and
that




dim{R} = dim(S) + dim(R/nmR)

If for every prime ideal p in S we have
ep(I) =e (I)

then £(I) = h(I).

Proof As usual we may assume that S/m and R/M are infinite. Since R/1

is finite over §, therefore mR + [ is M-primary. So, with
s = dim(R/mR) = dim(R} - dim($)

we can choose a sequence z = (zl,...,zs) in I whose image in R/mR generates

a reduction of I(R/mR)(*)T Let I0 = zR. Then, I c¢laim,
B(IO) 2z h(IO) =5 = 8(10]

The only thing to check here_is that h(Io) = 5: but if X = (xl,....xr) is

a system of parameters in S, then any prime ideal in R containing zR + xR

contains 2R + mR, hence must be M; and since
r = dim(S) = dim(R) - s

we gee that (zl,...zs, xl,...xr) is a system of parapeters in R, so that
dim(R/Io) = diﬁ(R) -8

Finally, since R is.formally equidimensional we have (cf. end of Section 1)

h(Iy) = dim(R) - dim(R/I,) = s

We will show that I0 is a reduction of I, whence

s = ¢(I) 2 h(I) = (I

* This is where we need R/M to be infinite. To aveid the reduction to this
case, we could replace I by some power T,




so that indeed 2(I) = h(I).

If we knew that R/I0 was finite over § (which is necessary if I0 is to
be a reduction of I) then by semicontinuity (3.1) we would have, for any
prime p in § (since d (I) = d (1) = h(D), cf. (3.3)):

ep(I) = ep(IOJ = em(IOJ = em(IJ

s0 that ep[l) = e (10), and by Theorem 2V, IO would be a reduction of I.

Now we do know that R/Io is quasi-finite over §, i.e. R/(IO + MR} is
finite over S§; so if the local rings R and S were cogglete? then R/Io would
indeed be finite over S [21, p. 259, Corollary 2}. Let us therefore reduce
the general case to the case where R and S are complete,

First of all, if I IR and m = ms (the maximal ideal of S), then
clearly the image of 2 in E/;ﬁ generates a reduction of f(ﬁ/ﬁﬁ)

Moreover, if 1 R is a reduction of IR then for some n we have

In+1

()™ nr [(IOE)(IE)“] N R

(IOIn)R n R

n
IOI

s¢ that I0 is a reduction of I. So we need only check that the hypotheses
of Theorem 4b hold for the completion ¢: S = R and for I.

Since R/I is finite over S, therefore

R/T = (R/I) = (R/T)wg S

-~ oA

is f1n1te over S and S -+ R/I is 1n3ect1ve (because S -+ R/I is .injective
and S is flat over 8) i.e. 1(I) 0. R is formally equidimensional (since

R is), and

~ AA

dim(a) dlm[S) + dlm(R/mR)
I I
dim(R) = dim(S) + dim{R/mR)

Finally, if P is a prime ideal in'S, and p = P 1 §, then for any integer n,

we have (since R/I'n is finite over $):




(R/T*Y ®2 k(P) = (R/T e k(P)

(R/1" 18 SG§ k(P)
: n
®R/TI8s k(IS () k(P)

and we conclude that

ep(D) = e (1) = & (D) = ex()
QED

From (3.5) and the preceding three theorens, we obtain the foilowing
geometric statements, which constitute an expansion of Teissier's "principle
of specialization of integral dependence" [18, Appendix 1}. This principle
has some beautiful applications to equisingularity theory, cf, [18, p. 128},
[19, p. 603, Theorem 2. 18],

SCHOLIUM In Example (3.4), assume that e (1) is independent of y. Then
£{I) = h{I). ([In fact if I €I is any coherent ideal such that I Ox
YO:-KO

is a reduction of T0 , then Io is a reduction of I in some neighborhood

XYO’xo

U of Xy i.e. I " In+1 in U, for some integer n.] Conversely, if F is flat
at Xy and £(I) h{I}, then there is a neighborhood V of Yo such that

e (I = (T) for all y in V.
Y o

Now suppose that ¢(I} = h(I), and let 7 2 I be a coherent ¢ -1deal
Assume that there is a set W S Y whose closure is a neighborhood of Yo+ and

such that for every y ¢ W, IOx is a reduction of JOx [equivalently:
’ y Yy :
e (I) = ey(J), where we set e (J) 0 if y £ F(zero-set of J)]. Then I is

a reduct1on of J in some nelghborhood of Xy [and hence (since
ZneE ({yo}) = {xph e (I) yo(J)]-

.§4 Equimultiplicity along subvarieties

In this Section, we give another approach to the Corollary in Section 2.
Though this approach is technically less simple, nevertheless it is inspired
by geometric considerations which make it, I think, more illuminating.
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let v € V, a complex analytic variety, and let W be a subvariety of V
passing through v and irreducible near v. Let R = Ov’v be the local ring
of ‘germs of holeomorphic functions at v, let p € R be the (prime) ideal of
germs of functions vanishing on W, and let e(Rp} = e(pRp) be the multiplicity
of the localization R_. For any v € V, let e(V,y) be the multiplicity of V
at v (i.e. the multiplicity of the maximal ideal of Ov,y). By methods sim-

v

ilar to those indicated in the proof of (3.5), one proves:
PROPOSITION (4.1) " Ina suitably small neighborhbod of v, we have
e(V,y) = e(Rp) for all y ¢ W

with equality for y € W-Z, where Z is a nowhere dense subvariety of W,
This Proposition may also be interpreted as follows: there is a se-

quence -of closed subvarieties

Ve=y 2V 2V

22V

3 2

such that
y € Vi - e(V,y) 21

(cf. [12, §8) or {20, p. 237)). After shrinking V, we may assume that each

Vi passes through v, and correspondingly we get a sequence of ideals in R
= c c...C =
(0) 10 < I1 c...c Ie e = e(V,v}
Proposition (4.1} says then that:

PRI, ~eR)zc

In other words, the (global, analytic) multiplicity stratification on V
induces the (local, algebraic) multiplicity stratification on Spec(R).

DEFINITION (4.2) V is equimultiple along W at v if e(V,y) is constant in
some neighborhood of v in W, i.e. (by (4.1)), if R and Rp have the same

multiplicity.
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The discussion in Section 1 leads to the following criterion for equi-

multiplicity:

PROPOSITION (4.3) Assume that every component of V has dimension d, and
that (V,v) is embedded germwise in (mm,O). Then V is equimultiple along W
if and only if there exists a linear projection w: (Em,O) - (Ed,OJ such that,

near v, each y € W satisfies

n'ln(y) nve= {y} (non-splitting)}, and

i) 0 CyV.y) = i)

wheTe c3(v,y) is the Zariski tangent cone of V at y.

For example, if W is smooth at v (i.e. the local ring R/p = Ow'v is
regular, and if £(p) = h(p}, then we get such a w by using
(xl,...,xt,zl,...,zs) as coordinates, where s = £(p), (zl,...,zS)R is a re-
duction of p, and the image of (xl,...,xt) in R/p is 2 regular system of
parameters. (This is basically how Hironaka first proved the easier half of
the Corollary in Section 2, c¢f. [9, §3].) Conversely, if V is equimulitple
along W, then the idea behind what we are about to do is that every m as in
(4.3) can be obtained in the manner just described, whence &(p) = h{p).

We next give an algebraic generalization of (4.3); and then show how it
leads to another proof - and perhaps a better understanding - of the Corollary

of Theorem 4 in Section 2.

LEMMA (4.4) Let (S,m) be a formally equidimensional local domain; and let
(R,M) 2 (S,m) be a local ring whi;h is a finite torsion-free S-module, such
that the natural map S/m + R/M is an isomorphism, and such that mR is a re-
duction of M. Let P be a prime ideal in R such that the completion {R/P}"
is reduced (i.e. without nonzero nilpotents). Then the following conditions

are equivalent:
(i) e(R) = e(Rp)

(where e(R) = e(M) is the multiplicity of R, and similarly e(Rp) = e(PRP) is
the multiplicity of RP).
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(ii) With p = P N S, we have
(a) e(5} = e(Sp)
{b} The natural map Rgésp - R is an isomorphism.

(¢) The fraction fields of $/p and R/P are naturally isomorphic
and

() e(@Ry) = (R ).

[To relate (4.4) to (4.3), note that (b) and (c) express "generic non-
splitting" and (d) expresses "generic transversality" for Spec(R/P) < Spec(R)
with respect to the projection Spec(R} - Spec($).]

Proof Let P = pl’Pz"“’Pt be the prime ideals in R lying over pi the
fraction field of R/P1 is a finite extension of that of S/p, of degree, say,
fi' Every minimal prime Q in R consists entirely of zero-divisors; so
QNS = (0) and therefore dim(R/Q) = dim(S); consequently [6, (7.1.8)] R is
formally equidimensional and so for each i

dim(RP )

dim(R} - dim(R/Pi)
i

dim(S) - dim(S/p)

dim(sp)

So we can apply the “projection formula" [21, p. 299) to get
[R:S]e(S) = e(mR) = e(M) = e(R) {(4.4.1)
t
R: = S :S 5) = £, R z e(R 4.4.2
[R:sTe(s)) = [REGS :S Je(S) i‘% j€PRp ) 2 e(Ry) (4.4.2)

Now S/p is a subspace of R/P (since R/P is finite over S/p), so that

(8/p)" € (R/P)” is reduced, and therefore [13, (40.1)] e(8) 2 e(SP) If

e{(R) = e(RP), then (4.4.1) and (4.4.2) give e(S) = e(S ), whence e(S) = e(Sp)
and equality holds throughout (4.4.2); thus iy = (11) Conversely if (ii)
holds then we have equality throughout (4.4.2) and (i) follows.

LEMMA (4.5) With assumptions as in (4.4), suppose that conditions {b) and
{(d} of (ii) are satisfied, and that £(p) = h(p). Then £(P} = h(P).




eroct If Q 2pR is a prime ideal in R, and q = QN 5 > p, then, as in the
proof of (4.4), we have

dim(RQ) = dim(sq) z h{p)

with equality when Q = P. Then h(pR) = h(p).
Clearly, then,

¢{p) = ¢(pR) Z h(pR) = h(p)

so that ¢(pR) = h(pR). Consequently (cf. end of Section 1) every minimal

prime divisor Q of PR satisfies
dim($/Q N 8) = dim(R/Q) = dim(R/pR) = dim(S/p)

i.e. QN8 =p; and since'R@éSp = RP’ we conclude that Q = P; thus Vﬁﬁ = P,
Now Theorem 2 of Section 1 shows that pR is 2 reduction of P, so that

£(P) = ¢(pR) =-h(pR} = h(P)
QED

Now here is the promised proef of the Corollary in Section 2. More
precisely, we prove the implication [e(R) = e(Rp)] = [£(P) = h(P)}, the con-
verse being, as in Section 2, an easy consequence of "associativity."

COROLLARY (4.6) Let R be a formally equidimensional local ring, and let P
be a prime ideal in R such that R/P is regular and e(R) = e(RP]. Then
£(P) = h(P).

Proof (Sketch) Imitating the proof of (40.1) in {13] {to which, inciden-
tally, {4.4) is clearly related), and using (4.5), we reduce to the case
where R is of the form T/fT, with T a complete regular local ring and £ € T.
In fact, if R is equicharacteristic, we can take f = 0, and then.P itself
is generated by h(P) elements, so that ¢(P) = h(P). '

If £ # 0, let Q be the inverse image of P in T, so that T/Q is regular,
and the graded ring G = 4;30 Qn/MTQn (MT = maximal ideal of T) is a poly-
nomial ring in h(Q) = h{P) + 1 variables. Now it is easy to see that the
graded ring G = ®P"/MP" is just G/FG, where T # 0 is the image of f in
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Qe/MTQe {e = e(R) = e(RP)). Hence the Krull dimension of G is h(P), i.e.
L(PY = h(P).

REMARK In the context of algebraic varieties over a field, the method of
reducing (4.6) to the hypersurface case by using a generic¢ projection was

shown to me by Zariski in 1972.

§5. Tangent cones and equimuitiple subvarieties (Schickhoff)

Let v € W c V, p C R be as at the beginning of Section 4, We assume further
that V is pure—dimensional,'i.e. all its components have the same dimension
(so that R is formally equidimensional [13, (45.1), (45.6)]); that W is

smooth near v (i.e. R/p is 2 regular local ring); and that V is equimultiple
along W at v (i.e. e(R) = e(Rp)). By (4.6), the blowup f: X — Spec(R) of P
is equidimensional over Spec(R/P). Correspondingly, the analytic blowup

E. Y = V of W has all its fibers over W - near v -~ pure dimensional, of di-
mension equal to [codimension of W in V] -1 (which is the same as dim (Rp)—l}.
We can, however, say even more about the fibers.

The fiber F'l(v) can be interpreted as follows (details omitted). Embed
(V,v} into (Im,O) in such a way that W becomes a linear subspace of (a neigh-
‘borhood of 0 in) €”. Let E be a linear éubspace of complementary dimension,
in gereral position, intersecting W at 0. let v = (vi) e a sequence of
points of V-W approaching 0, let vi o+ W be the linear space spanned by vy
and ¥, and let Li be the line (vi + W) N E. Assume that as v, 0, the line
Li has a limit L =-LV (think of lines in E through 0 as points of a projec-
tive space). There is a natural one-one correspondence between the set of
all such Lv and the fiber F-I(OJ. {To avoid choosing E, one can use the
set of all limiting positions of the spaces vy ¥ W, in some Grassmannian).

In particular, if we consider sequences (viJ with vy € VN E, we see that
if F: ¥+ VN E is the blowup of the origin 0, then the fiber F *(0) is
Y00). (in fact F1(0) is the projectivized

naturally contained in F~
Zariski tangent cone of VN E at 0, i.e. it is the set of all Lv with
v £ VNE.) Note that -




dim(F "*(0)) =dim(VNE) - 1 = din(R ) - 1

even if V is not equimuitiple along W.
Now the main result of this section is that, under the above assunptions
(V equimultiple along W which is smooth at v} the f1bers F- (0) and F‘I(OJ

are equal (as sets).
From this we will deduce that - as a reduced variety - the tangent cone

of Vat 0 is a product

C3(V.0) g = C5(V N E, 0)__, x W (5.1)

This should be compared with the condition of normal flatness of V along W,
which says that (5.1) holds even with non-reduced structures.
The above result - and more - is due to Schickheff {17, §3; in particular
Theorem 3.27]. We will give here an algebraic generalization.
Algebraically, the space E gives an ideal [ = (xl,.. »X )R with
dim(R/p) such that I + p = M, the maximal ideal of R; and the mclusmn
f 1fO) = F (0) corresponds to the natural surjective homomorphism of graded

rings
> et = P ™ e e Y™ LY

nz0 n=0 n=0
=6 "+ /™ 4

n=0

@ D"yt
n=0
The equality F71(0) = F"1(0), and (5.1), become:

THEOREM 5 Let (R,M) be & formally equidimensional local ring, and let p
be a prime ideal in R such that R/p is regular. Let x = (xl,...,x ) be a
sequence in R whose image in R/p is a regular system of parameters, and let
[ = xR {so that T + p = M}. Consider the commutative diagram (with indeter-

minates X .,Kr):

e




I II

(o MM, x ) L e

n=0 n=0
j ﬁ
s (p"/mp™ 2. e pvn)" o™
nz0 n=0
1 i
i g

where the vertical arrows are the natural maps (j = inclusion, nej = identity,
n(Xi) = 0); and ¥ and & are induced by the inclusions pn E,Mn, and the con-~
dition that W(Xi) is the image of X in M/M2 (so that ¢ and & are surjective).

The fellowing conditions are equivalent:

(i) e(R) = e(Rﬁ).
(ii) dim(R/I) = dim(R) - r, and the kernel of 8, ker(§), is nilpotent.

(iii) ker(¥) is nilpotent.

Proof (iii) = (i). The Krull dimension dim(G) is the same as dim(R}; so

if ker(¥) is nilpotent, then

dim(H) = dim(H) - T = dim(G) - r

dim(R} - dim(R/p)

din(R )

(the last equality holds because R is formally equidimensional), i.e.
£{p) = h{p), and therefore (Corollary, Section 2} e(R) = e(Rp).
(ii) = (iii). As in the preceding proof, if (ii) holds then

dim(H) = dim(G) = dim{R/I)

= dim(R) - r




Hence

dim(H) = dim(H) + r = dim(R) = dim(G)

Now R, béing formally equidimensiomal, is universally catenary; and Proj(G)
is a divisor on the scheme obtained from R by blowing up M; it follows that

every minimal prime ideal Q in G satisfies

dim(G/Q) = dim{G) = dim(H)

and so every minimal prime divisor of ker(y) is a minimal prime ideal in H,
i.e. it is of the form qH with q a minimal prime ideal in H.

What we need to show is that every minimal prime qH in H contains ker(y)
Let X be the ideal (xl,...,xr)u. Then

ker(v) € v l(ker(8)) ¢ n'lq) = qH + X

and 50 qH + X contains a minimal prime divisor of ker(y), say qH + X 2 q*H
(see preceding paragraph). But then

Q= (QH+X) NH2qHNH= q*
whence
qQH 2 q*H 2 ker(y)

as desired.

() = (D). TEe(®) = e(R) then i(p)
and dim(R/I) = dim(R) - r (Remark (2.8)).
We also have [ + p = M and

h(p) .(Corollary, Section 2),

h(I + p) = dim(R) = dim(R/p) + din(R) = r + h(p) = £(I) + ¢(p)

So the fact that ker(®) is nilpotent is contained in Corellary (5.3) below.

LEMMA (5.2) Let (R,M) be a formally equidimensional local ring, and let
I,J be ideals in R such that




- P

h(l + J) = £(I) + £(J)
Then, with " " denoting "integral closure" (of an ideal) we have
IJ=TnJ

REMARK To understand better the condition h{I + J)} = £(1I) + £(J), note
that if I is integral over xR = (xl,...,xs)R, (s = £(1)), and J is integral

n

over zR (zl,...,zr)R, {r = £(J)), then I + J is integral over xR + 2R and

dim(R/xR + zR) = dim(R/I + J) = dim(R)-h(I + J) = dim(R)-r-s

So (xl,...,x s 2

s 1,...,zr) is part of a system of parameters in R.

CORCLLARY (5.3} ¥With assumptions as in (5.27, the canonical surjective
map of graded rings

o @ e — e i ia Y
nz0 n=0

has nilpotent kernel.

Proof of (5.3) We must show that if x € Jn+1 + 10 Jn, then for some in-
teger m,
e I L™l ™.y (5.4)

Now blowing up g gives the same result as blowing up J, and therefore
e(™ = £(J). So we have

h(I +J%) = h(I +J) = £(1) + &) = &(1) + ¢

whence, by (5.2), I N J" = 1J°. Hence x is integral over Jn+l + IJn, i.e.

there is an equation

where, for i = 1,2,...,m, we have




a, € ("Mt Mg et
Since

LN (Jn+1 1N Jnjm-i < Jam-ni
(5.4} follows immediately.

Proof of (5.2) Clearly TJ ¢ T N J; so we have to show that if z €R is
integral over both [ and J, then z is integral over IJ.

We may assume that R is complete (cf. [11, top of p. 796]). Now z is
integral over an ideal X if and only if it is so modulo every minimal prime
ideal p in R {11, p. 792, Lemma (1.1)}. Using the remark following (5.2)
(assuming, as we may, that R/M is infinite) we see that the condition
R(I + J} = &¢(I) + &(J) continues to hold modulo each such p. Thus we may

assume that R is a complete local domain.

Let £: X — Spec(R) be obtained by blowing up IJ and normalizing.
Since R is complete, f is proper. Let VisersaVy be the discrete valuations
corresonding to the components of the divisor on X defined by the invertible
ideal IJUx. [t will suffice to show, for each i = 1,2,...,t, that if
vi(z) = vi(I) and vi(z) g vi(J) then vi(z) Ed vi(IJ). This is c¢learly so if
either v;(I) = 0 or vi(J) =0, ile. if vi(I +J) = 0. But if vi(I +J) >0,

then we would have
dim(f'l(Spec(R/I + J}) = dim(X) -1 = dim(R)-1 = dim(R) -1
and consequently

(19)-1 = din(£™ (M} = dim(R)-1-dim(R/I + J)

h{(l + J)-1

B(I) + £(J)-1
So, finally it is enough to prove:
PROPOSITION (5.5) For any two ideals I,J in a local ring (R,M), we have

E(IT) < £(I) + E()




Proof For any ideal K in R, let fK: XK —_— Spéc(R) be obtained by blowing

up K, so that (by definition}

aim(fl"(lmn = 2(K)-1

There is a natural R-morphism

X3 — %%

which is in fact a closed immersion. So fij{M} is a closed subscheme of

f;l{M]Gh/MfSI{M}, and comparison of dimensions gives

$(13)-1 = (£(I}-1) + (£(J)-1)
QED
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