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Introduction

A (complex-)analytic subvariety A of an open set U< C" is a (closed) subset of
U whose intersection with some open neighborhood of each point of U is the
set of common zeros of a finite number of functions defined and holomorphic
in that neighborhood. The smooth points of A are those points around which 4
is a complex manifold, so the local geometry of 4 is interesting only near a
non-smooth, or singular, point P. A basic measure of singularity is the multi-
plicity of A at P, which is defined to be the local covering number of a generic
complex projection from A4 to € (d=dim A) (cf. {B.2)). This is the same as the
multiplicity of the local ring of germs of holomorphic functions on 4 at P (cf.
[22, Chap. VIII, §10], [18, Chap.III] for the definition of algebraic multi-
plicity). The question considered here is “How basic an invariant is multiplicity?”
i.e. how does it behave under topological or differentiable deformation of the
pair (4, P)? '
Our main resuit is the following (O = origin).

Theorem. Let A30 (resp. B30) be an analytic subvariety of the open set U= C"
(resp. V=C"). Suppose there is a homeomorphism o from U to V such that
a(A)=B, «{0)=0 and both o and «=" (as functions from IR®*" to R*") have a
derivative (=linear approximation [19, p.16]) at O. Then A and B have the
same multiplicity at O.
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In short, “weakly” diffeomorphic germs have the same multiplicity.

The above assertion is wrong if we drop the differentiability assumption. It
is known, for example, that if 4 and B are any two curves in €3 irreducible at
O then a (non-differentiable) homeomorphism « exists. More concretely, let
u: C*>C be a continuous map such for teC,

u(t?, )=t (lt1=1)
u(e®, )=t/lf|  (t|>1)

(u exists by the Tietze extension theorem). Let «: €*—C? be the homeomor-
phism given by
a(x’ys z)=(x—“()’+x2»z+x3),Y+xza Z+x3).

Let U=D?3, where D is the open unit disc || <1 in C, and let V= o{U). Then «
maps the manifold Un(y=z=0) onto the curve {(0,x? x*)|xeD} which has a
cusp {of multiplicity 2) at O.

However, Zariski asked [Bull. AMS 77 (1971), p. 4831, whether for hyper-
surfaces (dim A =dim B =n — 1) multiplicity is indeed invariant under embedded
homeomorphisms. This is still open. _

Known positive results (special cases) for Zariski’s question are:

1. for plane curves (i.e. n=2) [21].
. 2. when one of 4, B is smooth at O (follows from [1, p. 114, Th. 3] and [16,
p. 261, Prop.]).

3. when the homeomorphism and its inverse both have a derivative at the
origin [7].

Our result generalizes Ephraim’s by removing the “hypersurface” condition.

We sketch the proof of the Theorem. We may assume that A, B are irreduc-
ible (B.2.1). The idea is to use the (Zariski) tangent cones of A and B as inter-
mediaries. The tangent cone C(A4,0) of an analytic variety 450 at O is the set
of all limits of secants from O through points on A approaching O (cf. (B.1) for
the precise definition).

Now the derivative of a at O takes C(A4,0) onto C(B,0), hence (cf. (A.8))
takes each irreducible component A4, of C(4,0) to an irreducible component B,
of C(B,0). The derivative being real linear, we can deduce from a result of
Ephraim [8, p.310, Th.4.6] that 4, and B, have the same multiplicity at O (cf.
(B.2.3)).

The multiplicity of 4 at O is, in general, not equal to the multiplicity of
C(4, 0) which is the sum of the multiplicities of the 4, (e.g. a cusp). However
(cf. Sect. C) it is equal to a linecar combination of the muitiplicities of the A,
with coefficients e; definable through a set S <R x C" which is used by Draper
{5, p. 197] in his analytic intersection theory. (In fact, the idea of this proof has
its origin in Draper’s paper.) § is a geometric avatar of the “Rees ring” often
used in algebraic multiplicity theory (cf. (E.4)).

The set S=S, <R x€" has a natural projection onto R with 1x A and 0
x C(A4,0) as fibres (over 1 and 0 resp.). Thus S0 xC")= U (0x A;). The coel-

ficient e, is then defined by the relation [$]-[0 xﬂJ"J=Zei-[0xA,.] where [ ]
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denotes “fundamental class in Borel-Moore homology” and “.” is the ho-
mology intersection product (cf. (B.4.2)). If we let f; be the corresponding coef-
ficients for C(B,0), then it follows from the existence of a fibre-preserving ho-
meomorphism between S, and Sy that ¢,=f (c¢f. Sect. D). Thus with mult
= multiplicity)

mult of A=) e{mult of A)}=Y f(mult of B)=mult of B.

In Sect. E, we give an algebraic characterization (not used elsewhere) of the
e;: ¢; is the length of the artin local ring G,, where G is the graded ring
@0 #m®* ! (s =maximal ideal of the local ring @, , of germs of analytic

2
?’unctions) - 50 that C(A, 0)=Spec(G) - and p, is the minimal prime ideal in G
corresponding to A,;.

The tools used are the Borel-Moore homology [4] and its intersection
theory developed in [3]. Hence all homology groups in this paper are Borel-
Moore homology groups. In this regard, we would like to thank Professor Rein-
hard Schuitz for helpful discussions.

We conclude this introduction with remarks on the notion of “differential
equivalence™.

Let (4, 0), (B,0) be two germs of analytic spaces (cf. [11, p.150] for the de-
finition). We say that (4,0) and (B, 0) are differentially equivalent if one of the
following three equivalent conditions holds. (For simplicity we write €*, R* for
suitable open sets (30) in C*, IR*, and write 4, B for suitable representatives of
(A4, 0), (B, 0) respectively):

1. There exist analytic embeddings (A, 0)—(C",0), (B,0)—(C",0) and a ho-
meomorphism o with the same properties as in the Theorem.

2. There exist analytic embeddings i: (4, 0)—(C?,0), j:(B,0)=(T%,0) and a
homeomorphism h: A—B such that i and joh are “diffev-equivalent” embeddings,
i.e. there exist a pair of nonnegative integers (r,s) and a homeomorphism
H: R27*7 5 1R24%¢ sych that both H and H™' have a derivative at O x 0 and
Hog,oi=g,ojoh, where g,: R*—>R> xR’ (resp..g,: R¥->R* xIR) is the in-
clusion x—x x O [12, p. 128].

A function f: X —R" (where (X, 0) is an analytic germ) is differentiable at O
if for some embedding (X, 0)—=(C",0), f is the restriction (to X) of a function
from €Y to IR" having a derivative at 0. A map between analytic germs
f:1(X,0)=(Y,0) is differentiable if its composition with some embedding
(Y,0)—{CM, 0) is differentiable at O. (This property does not depend on the
choice of the embeddings.) Condition 3 is:

3. There exist differentiable maps f:(4,0)—(B,0) and g:(B,0)—(4,0) such
that fog and g f are identity maps.

[The implications 1=-2=>3 are trivial. For 3=1, choose embeddings A-CF,
B—T™; extend f (resp.g) to a map F: C¥—>CH (resp. G: CY¥—C") differentiable
at 0: and define a homeomorphism «: €¥ x C¥ ->CV x CM by

alx, y)=(x~G{y+ F(x)), y+ F(x)).]
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The Theorem then states that differentially equivalent germs have the same
multiplicity.

Example. In [2,§4], Bloom shows that the curves 4<C2 B3 given by

A={t%t%)|teC},
B={(:*,1°,1")|teC}

are differentially equivalent at their respective origins (in fact t” is a C! func-
tion everywhere on A). The multiplicities at O are of course the same (namely
3). Incidentally, the Hilbert-Samuel polynomials are different, namely 3n~3 for
Aat Oand 3n—2 for B at O.

A. Preliminaries

This section gives definitions, fixes notations and lists some properties of ho-
mology groups and intersection products. At the end we prove a useful Lemma
(A.8). The main references are [4], [3].

(A1) Z, Z*, R, € denote as usual the integers, strictly positive integers, real
numbers, complex numbers respectively. All spaces will be subsets of Euclidean
spaces with the usual metric topology and hence will be paracompact. Unless
otherwise indjcated, analytic means complex analytic and component means ir-
reducible component (of an analytic variety) (cf. [11] for these and other termi-
nologies in Analytic Geometry).

(A.2) Recall that a family of supports ¢ on a topological space X is a family
of closed subsets of X having the following properties: If 4, Be®, then
AUBe@; if Ae® and if B is closed in 4, then Bed.

We write HP(X) (resp. Hy(X)) to denote the i-th homology (resp. coho-
mology) group of X with coefficients in the constant sheaf Z and supports in
&, as defined in [4] (resp. [9]). We omit i if its value is clear from the context.

In the preceding notations, we omit @ if ¢ is the family of all closed subsets
of X, and we replace @ by F (a closed subset of X) if & is the family of all
closed subsets of F.

(A21) Incase F, X cR" and FnX is closed in X we write, by abuse of no-
tation, H"(X) to mean HF**(X).

(A.3) Let f: X—>Y be a continuous map and & (resp. ¥) a family of supports
on X (resp. Y). If for every ¢e®, f($)e¥ (in symbol: f(P)< ¥) and the restric-
tion of f to ¢ is proper, then f induces a homomorphism f*¥ or f, from
H¥(X) into H¥(Y) (cf. {4, p. 143, Sect. 3] for the definition of f, and its proper-
ties). As for cohomology, if f~*(¥)<=®, then f induces a homomorphism
f*: Hi,(Y)-HE(X) [9, p. 199, 4.16].

If # <@’ are families of supports on X, the map id®®: H(X)» H®'(X) is
called “enlargement of supports”. (It can be checked that this is equivalent to
the definition given in [3, p. 464].)

For U open in X, there is a restriction map j*Y: H?(X)— H®"Y(U) where

A Tl e A~ Tl A ABY 2a oo LaiMes ol e ke el TT D . AL AN
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(A3.1) f, is functorial:
If g: Y—Z is continuous and g¥-9 is defined, then

(gof)‘r"e - g‘P.e of""’u,
(A3.2) f, is compatible with restriction maps:

Let V be open in Y and U=f~1(V) (open in X). If f>¥ is defined then so is
foaUFAV. genl((y— H¥"¥(V), and we have

f@nU.‘FnVon.Uw__jl’.Vofdb'.'P.

(A.3.3) Inclusion maps iy y [4, p. 145, Th. 3.5(b)]:
ip y=i®"F®: H*°F(F)>H®(X) is the homomorphism induced by the inclusion
it F—X (A3). We shall use iy y, i®°F'® interchangeably. If @ is a family of sup-
ports on F, then iy y is an isomorphism. In particular (@ =E, a closed subset of
F;and =F)

HE(F)—> H¥X), and H(F)—— HF(X).

(A.3.4) Homology exact sequence [4, p. 146, Th. 3.81:
Let U be open in X and F=X —U. Then there exists an exact sequence:

oo H(F) H(X)—> H,(U)— H,_(F)>...

FX. u
(Ad) Fundamental classes:

See [3, p. 469, 2.2] for the definition of fundamental classes. For a space X,
[X] will always denote a fundamental class of X (if it exists).

(A4.1) For a d-dimensional analytic variety 4, H,(4)=0 for k> 2d, and
H,(A)~MH,Z,, one Z,=Z for each irreducible component A, of 4 [3, pp- 476,
482). In this case we write [4]eH ,4(A) for the fundamental class, ie. the one
which induces the canonical orientation at all smooth points. When A is irre-
ducible, [A] generates H, {A)~Z.

ir x

(A4.2) Let M be a real n-dimensional oriented connected topological man-
ifold. Then H,, ,(M)=0 and H,(M)=Z [3,p. 467, 1.11]. (In particular, for a
connected open subset U of R”, we have H, (U)=Z.) We write [M] for the gen-
erator of H, (M) which corresponds to the orientation.

(A.43) Let X be a space with fundamental class [X7]. Then the restriction
75Y[X] of [X] to an open subset U, is a fundamental class of U. If X is an
analytic variety, then j*Y[X] is the fundamental class [U]. In particular, if M
denotes the set of smooth points of an analytic variety A, then the restriction
of [A] to M gives the fundamental class [M] {3, 3.2 and 2.3].

If X is closed in some space ¥, we let [X]"=i, ,[X] where iy y: H(X)
—= HX(Y). Note that if Y is closed in Z, then by (A.3.1)

[X12=ix [X]=iy 20 iX.Y[X]=iY.Z[X]Y‘
(A.4.4) Asin{A.2.1), [F]¥ will mean [FAX]* (notations as in (A.2.1)).



(A.5)  Poincaré duality:

We shall write “n” for cap product [3, p. 504, Appendix]. (N.B. the cap pro-
duct HY(X)® H{,(X)—=> H?"¥(X) is defined only if & and &~ ¥ are paracom-
pactifying. This is no restriction for us since we consider only metric spaces.)

For an n-dimensional oriented connected manifold X there is an isomor-
phism A: H?(X)~ H%-(X) which is compatible with restrictions to open sub-
sets [3, p.467, 1.11]. Moreover, the isomorphism is characterized by A4-!¢
=[X]n¢ for (e Hy (X)) [3, p. 510, Th. 7.9 and p. 467-8, 1.11].

(A.6) Intersection Product:

Let X be an n-dimensional oriented manifold. For acH?(X), beH}"(X ) their in-
tersection product, denoted by a- b, is defined to be

a-b=andbeH?PY (X).

{A.6.1) The intersection product is bilinear, associative, anticommutative and
compatible with both enlargement of supports and restriction to open subsets.
(The last assertion foliows from the definition and the corresponding properties
for cap product and 4, cf. (A.5) and [3, p. 565, Th. 7.2])

(A6.2) If i+j=n and én¥=a point Q, then a-beHYX)=H,(Q)=Z. (The
last isomorphism comes out in a straightforward way from the definition of
H,.) We shall call the absolute value of a-b the intersection number of a and b,
and denote it by ao b,

(A.6.3) Criterion of unit muitiplicity [3, p. 484, 4.8].

Let 4,B be two analytic subvarieties of an open subset U of C". Suppose 4
(resp. B) is pure i-(resp. j-)dimensional and AnB=C, where C is irreducible
and dim C=i+j—n (ie. 4,B intersect properly at C). Assume moreover that C
containg a point which is smooth in both 4 and B, and at which A intersects B
transversally. Then the conclusion is [A]Y-[B]Y=[C]". (The special case when
A, B are transversal complex linear spaces is useful for our purpose.)

(A.6.4) Let Ve W be connected oriented open subsets of IR* and IR' respec-
tively such that V is closed in W, Let i: V—W be the inclusion map. Let Ye W
be either an analytic subvariety of W or the intersection of W with an oriented
real-linear space, and let [ Y] be its fundamental class ((A.4.1), (A.4.2)).

Suppose that V is transversal to Y at all points of ¥ Y, where Yy Vs an
open subset consisting of smooth points. Assume also that dimg(Y—Yp)
<dimg, Y and that dimg(Y— Yp)nV<s—t+dimg Y.

Then X =YnV has a unique fundamental class [X 1€ H(X) such that

diy  [X]=#*41, o [Y], where i*: Hy(W)—H(V);

or equivalently, by (A.4.3)
A[X]Y = ATY]".
Proof. This is a special case of [3, p. 475, 2.15].

(A7) Let U (resp. U’) be a connected oriented open set in IR (resp. R™), &,
¥ (resp. @. ¥ families of citpnarte an I7 (reen TIY and laf 6 T TT don ooinl.



that f&%, fo~¥- 2% and f,. y are defined, ie. f(®) =@, |, is proper for pcP;
f(@NP)cd'AY'; [~ Y{¥)e¥. Under these conditions we have the projection
formula [3, p. 466, 1.9]): in HY ¥ (Y),

flanf*b)=f,anb [acHZ¥(X); be Hy.(Y)].

(A.7.1) Variant of projection formula:
Let (eHP(U), ne HY(U). If y'eHY, . _ (U") is such that dn=fg7J Ax', then

j+n-n
AN (S I AT
Remark. In singular homology # is called the transfer f,%' of ', ¢I. [6, p. 310].
Proof. By Definition (A.6) and the hypothesis we have:
Jivjanl& M =Jis;ndm=Ffi;_Enf"~ 4y,
By the projection formula the last term is:
fiéndn'=f&-v'. qed.

(A.7.2) We apply (A.7.1) to the situation in (A.6.4), ie. take U=V, U'=W,
=X, 9'=Y, f=i: V->Wand &, ¢ such that i®® is defined (=i®"** ¥ is de-
fined). By (A.6.4), n=[X]" and #'=[Y]" satisfy the condition in (A.7.1), hence:

PR (e [X])=i%9()-[Y]¥  forall ZeHY(V).
In particular, letting #=9¢'=V and £=V (A.4.2), we have
FXV]-[XT) ="V VD) -[YIY =[V]7-[YI™.
But [V]- [X]Vg—:r{V}nA[X]":A"A[X]"=[X]” by (A.5). Thus by (A.6.3):

(X1 5, FAIXT =[VT7 - L™,

4.3)

(A.7.3) Topological Invariance of Intersection .

Let U, U’ be as in (A.7). Assume f: U= U’ is a homeomorphism with &' = f(®),
¥ =f(¥). Write f1=£>%, f,=f¥ and f,=£275."~" Then for &eHY(U),
EeHY(U) we have: [ (& = +£0 f. &

Proof. By (A.7.1) it suffices to check:
Al=Hf*4f, ¢
Using (A.5) and {A.7) we have
L AN * A =f{LUInS * An)=f[UIn4n  for neH*(U").

Since f, is an isomorphism, f,[U]= £[U’] by (A4.2). By (A.5) again, we con-
clude that
fod 'frdn=14""49=1n.



In particular, if 5= £, & we get (since f, is an isomorphism)

A7 Af &= %&
ie. f*Af,=+4¢ qed.

(A8) Lemma, Let f: A—B be a homeomorphism of analytic spaces. Then for
every component A_ of A, f(A,) is a component of B with the same dimension as
A, '

Proof. Let d=dim 4, and M =A, —Sing(4) be the set of all smooth points of
A which lie in 4,. M is a connected manifold which is open in A and with clo-
sure (in 4) M=A_. Hence f(M) is an open connected subset of B which is lo-
cally homeomorphic to IR** and, regarding f(M) as an open subvariety of B,
Sf(M)—Sing(f(M)) is a pure d-dimensional complex manifold. 1t follows that
J{M) is also pure d-dimensional.

Now homology groups being topological invariants (A.3.1), we have
H,(f{M))y~H, (M) which by (A42) is isomorphic to Z. By [3, p- 482,
Lemma 4.3] (M) is irreducible, so is contained in one component of B, say
B,. This implies f (A)=f(M)cf(M) c§*=B*. The same argument applied to
f~ltand B, gives that f “(B*) is contained in a component of 4, say A,

Together we have: 4, =f"! f4)sf"1(B,)<4,,. But components are
maximal irreducible analytic subspaces, hence A,=A,,. In particular: f(4,)

=B,. Also f(M)=B,, therefore B, is d-dimensional. q.e.d.

B. The Homology Tangent Cone

(B.1) As mentioned in the introduction, the basic idea of the proof is to relate
the analytic variety 4 to its (Zariski) tangent cone through a map S—IR which
has 4 and the tangent cone as two of its fibres. Let d=dim A.

Definition [20, p. 210, Def. 1G]: Let 4 be an analytic variety and 430. The
tangent cone of A at O, denoted by C(4,0), is the set of all vectors v with the
property that there are sequences of points 4;€A and of complex numbers a;
such that ¢;~0 and a,q,-v, ie. the direction of v (if v=0) is a limit of direc-
tions of secants from O to points of 4 converging to 0.

(B.1.1) We may restrict the a; in the above definition to be real and positive;
this does not change C(4, 0) [20, p. 218, Remark 3E]. '

(B.1.2) If 4 is pure d-dimensional, then C(A,0) is a pure d-dimensional alge-
braic variety which is a cone (ie. teC, xe C(4, O) implies t xe C(4, 0)) [20, p. 211,
Lemma 1L and p. 214, Th. 2E].

(B.1.3) With « as in the Theorem, the derivative of a at O [19, p. 16], denoted
by a,, is a real-linear map inducing a homeomorphism between C(4,0) and
C(B, 0). The proof uses (B.1.1) but is otherwise straightforward, cf. [7, p. 802].

(B.2) Definition. The multiplicity of a d-dimensional analytic variety 4 cC" at
a point OeA, denoted by u(A, 0), is defined to be the local covering number of
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the projection of a small neighborhood around O in A to a generic d-dimen-
sional complex linear subspace (cf. [20, p. 233, Def. 7J]).

In other words, for “most” linear projections =:C"—C% = induces a
u{A, O)-sheeted unramified covering V—z~!(D)-n(V)—D where V=4 is some
neighborhood of O and D is a nowhere dense analytic subvariety of the open
set (V) <=C¥ and where u(4,0) does not depend on =.

Remark 1. u(A, 0) can be shown to be equal to the algebraic multiplicity of the
analytic local ring of A at O (i.e. the local ring of germs at O of analytic func-
tions on A) [5, p. 198, Th. 6.5], [17, p. 123, (A.15)]. Also we can replace “ge-
neric projection” in the above definition by “transversal projection = which
means that O is an isolated point of = n(0)nC(4, 0) (cf. [5, p. 196, Th. 6.3],
[20, p. 234, Th. 7P]).

Remark 2. If A}, 4%, ... are those components of A which have dimension 4 (d
=dim 4) and pass through O, then u(4,0)=Y u(4',0). To see this, just usc

any projection which is sufficiently generic for A and for all the 4; (for exam-
ple, any projection which is transversal for A (Remark 1) and hence for the 4,).
An algebraic proof can also be given by using [18, p. 76, (23.5)].

(B.2.1) To prove the Theorem, we can and shall assume that A and B are irre-
ducible. Let A' be as in Remark 2. By (A.8) « maps each 4’ onto some com-
ponent of B, call it B'. Also dimB=d and the B' are all the irreducible d-di-
mensional components of B containing 0. By Remark 2, it suffices to prove the
Theorem for o: A"~ B-.

(B.2.2) It is clear from the definition that u(4, 0)=u(AnU,0) where U =C" is
any open set in C" containing O. Algebraically this follows from the fact that A
and AnU have the same local ring at O.

For simplicity, we omit from now on the reference point O. Thus p(4)
= (A, 0), C(4)=C(4,0) etc.

(B.2.3) Let A* be a component of C(4). By (B.1.3} a,(4*) is an irreducible
component, say B¥, of C(B).

Claim. u(A*)=p(B*).

Proof. We use a structure theorem proved by R. Ephraim [8, p. 310, Th. 4.6]:
Any germ of analytic variety has a decomposition, i.e. it is complex-analytically
isomorphic to a (finite) product of analytic germs each of which can’t be fur-
ther decomposed. If X, Y are two irreducible analytic germs, and X is C*-
isomorphic to Y, then the decomposition of X and Y are the same up to per-
mutations and complex conjugations. To be precise, if X=X, x... xX,, Y=Y,
x...x Y, are decompositions of X and Y (into indecomposables), then k=h

and, after a permutation of Y, ... ¥, either X;~ ¥, or X, ~Y¥,. (=" means com-
plex-analytically isomorphic, ¥; =complex conjugate of Y,.)

Applying the above to «,: A*—B*, we have A* =A% x... x Af, B¥*=Bf x ...
x B¥ and A¥ is analytically isomorphic either to BY or to the complex con-
jugate of B¥. In ecither case, Af and B¥ have isomorphic (as R-algebras) ana-
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Iytic local rings at the origin [8, p. 301, Remark 2.4], hence have the same mul-
tiplicity (B.2, Remark 1). But arguing as in [18, (42.6)], we see that

wAN)=]Tu4}),  wBY=T]uB}.

Hence u(A*)=u(B*). qe.d.

Remark. The assertions u(A4)=u(A) and u(d, X Aj)=pu(4 ) u(A4,) in the above
proof can also be proved topologically by observing that if n {resp. 7,, ®,) 1S
transversal to A (resp. A,, 4,) then the conjugate of = (resp. m, x 7,) is trans-
versal to A (resp. A, x 4,). The results then follow from (B.2, Remark 1).

(B3) Asin (B.2.1), 4 is an irreducible analytic subvariety of the open set U
=", and OeA. We now define the sets S, § from A (resp. T, T from B} which
provide the foundations for the proof of the Theorem. Let C*=C - {0}, R*
=IR — {0}. Consider the map ¥ from € x C* into itself defined by:

Wit zy, .., z)=(ttz,,...,12)

Then #=y~"(CxU) is an open set in € xC" (The corresponding set
1
Y=YC x V) for V will be denoted by ¥7) Since y~(¢ x = (tx? U) for 40,

1

we see that % = | } (tx? U) w0 xC".
teC*

To define S (an analytic subvariety of %) we consider ¥~ (€ x 4). i being

analytic, ¥~ '(C x A) is an analytic subvariety of %, of dimension <n+1, and

one of its components is 0 x C*.
(B.3.1) Definition. S is the union of the other components.

It is clear that S—{0xC")=y~(C*x A). Also note that ¥: % —(0xC")
—-C*x U being an analytic isomorphism, ((¢,z)—(z,(1/¢)z) is the inverse),
the smooth points of §—(0xC") are mapped (by ¥) to the smooth points of
€C* x A, i.e. the points in €* x A~ where 4~ denotes the set of smooth points
in A. Now using the fact that the components of an analytic variety W are the
closures (in W) of the connected components of the smooth part of W [20,
p- 74, Th. 1G], we can conclude the following (B.3.2) and (B.3.3):

(B32) S—(0xCM=y¢~"(C*x 4) is an irreducible analytic variety.
(B.3.3) Sn({0x€")=0x C{4) (in particular, 0 x C(A) is closed in $).
Proofs. It is obvious that, as sets, ¥ ~ (€ x 4)=(0 x C)u(S — (0 x T")).

Since A is assumed to be irreducible, A-, and hence Y~ (C* x A7), is con-
nected; (B.3.2) follows. By [20, p.79, Th.2J] and (B.3.1), (0xC")—S and
¥~ Y C*xA") are all the connected components of the smooth part of
Y= (C x A). It follows that S is irreducible and is the closure (in ¥ ~(C x A))
of Yy~ HTC* x 47). Since

S5 —(O0x C)=9~(C* x A) >y~ HT* x A7),



S is also the closure of S—(0xCY= | (t,%A). From the definition of the tan-

t%0Q
gent cone (B.1), we see then that SN(0x €*)=0x C(A).

(B.3.4) Next we consider a real section S of S. This S will play an essential
role in section D (cf. (D.1)).

Definition. % =% (R x C"), §=8SAR x C")=Sn%.

. 1 )
It is readily seen that % = Lﬁ! (t x? U)u(Ox(E") is a connected open set In
R xT", % is closed in %, S is a real-analytic variety which is closed in %,
= 1 _
St xCH=tx z A (teR*) and SN (0 x C")=0x C{4). The last statement fol-

lows from (B.3.3).

Fix an orientation in Rx C". Consider the inclusion i: % —% and the ana-
Iytic variety S<@. Note that dimg % =2n+2, dimg % =2n+1, dimp S=2d+2,
dimy §=2d+1. It can be checked easily that % is transversal to S at smooth
points of § of the form (t,x) with teR* (cf. (C22, Remark)). Also
dimp(S — ¢ ~H(TC* x A~ )% =2d (B3.3) Thus we can apply (A.6.4) (with Y=3§,

o=y~ C*xA~)) to conclude that S=S~% has a fundamental class
[S]eH,,, (S) and, by (A.7.2) that

(B.3.5) ' [51% =[#]*-[851~

(B4) Through S (or §) we can deform A to its tangent cone C(4). However,
to avoid loss of information we need something like the “algebraic™ tangent
cone Yy ¢, A;, e,cZ*, where A; are the components of C(A4} (cf. [3, p. 198]). Ac-
tually, we work with the “homology tangent cone” Cgy(4)=Cy(4)¥ defined as
the homology class: '

Cu(A)=[ST¥-[0x C]*e H3; ().
Consider @ H (0 x A))—= H,,(0 x C(4))—— H3;““(%). The first map is

an isomorphism induced by the direct sum of inclusion maps: @ i®*40xc

[cf. 3, p. 482, Lemma 4.3]. The second map is also an isomorphism by (A.3.3).

(B.4.1) Let [0x A,]% denote the image of [0x 4,1eH(0 x 4)) in H}} ““Y(4%). By
(A.3.1), (A.3), (A4.3) we see:

[0 x AJ¥=id®*A4r0xCWlloj  [0x A;]=id0*4+0x [0 x A%
(B.4.2) Definition. ¢, is the integer uniquely determined by
Cr{d)=[S1*-[0x C¥=} ¢[0 x 4,1*
Thus ¢, is' the intersection number (in %} [3, p. 483]
e;=I(S-(0xC"), 4).

¢; does not change when U is replaced by a smaller open set {A.6.1).



(B4.3) Similarly, from B<V we can define ¥, ¥, T, T, and integers f; are
then defined by
Cy(B)y=[T1"-[0xC"]" =Y £[0xB]".

(B4.4) Itis a fact that all the e, (and 1)) are positive (cf. (3, p. 488, 4.16]). This
also follows from the fact that e, and f; can be defined algebraically (E.1.1).
(B.5) The integers ¢; can also be derived from S <@ (resp. f; from T <7).

Let [0xA4.J* be the natural image of [0 x A in H}3C4(%). Then by
(A.4.3) and definitions:

(B.5.1) [0 x AJ¥ =i0*C-0x 0 x 4,]%,

where i: % - is the inclusion. '

(B.5.2) Lemma.

[S17-[0x C"]?=Y ¢,[0 x A, ¥ e H® * C4(gp),
Proof. We choose an orientation on R x €" as before (B.3.4), and on iR xC" in
such a way that [R x C"]¥.[iR x C"J¥=[0x C"]¥ (cf.(A.6.3)). (We are using
the convention [X]¥*=[X%]¥ (A.2.1); and iR stands for the pure imaginary

numbers in C.) Then the lemma results from (B.4.2), (B.5.1) and the following
two assertions: .

(1) ’ !-0 ® C(A), 0 x C(A)([S_]ﬂﬂ . [0 X cn]"ﬂ) = [S']‘Fl , EI]R X cn]@t'
) [S]*-[iR x C]¥=[S5]%- [0 x C"]*<H° *CA) (),
(1) follows immediately from (A.7.2) (let V=%, W=, X=0xC)n%,
Y=(R xC)n%Y, &=¢ =5 and £=[51%; by (A.4.3) i[S]¥= [31%.
(2) follows from (B.3.5) and associativity of intersection (A.6.1):
[S7%-[iR x C1*=([S]*- [R x €"]%)- [i R x C]*
=[S]%*-[0x C"]* g.ed.
Similarly:
(B.5.3) [T]"-[0x 03"]“’=Z fIoxBJ".
(B.6) We can now outline the approach we shall take.

By (B.2.1) and (B.1.2) C(A4) is pure d-dimensional; let A,..,A, be its
components. Then B, =w4(A,),..., B, =u,(A,) are the components of C(B,0)
(by (B.1.3), (A.8)).

Let Cy(A)=} e[0x A,J% (resp. Cu(B)=Y fil0x A4,]*) be the homology
tangent cone of 4 (resp. B).

In view of (B.2.3) (u(4)=p(B)), the theorem results from the following
assertions:

(1) u(A) =; e;u(A), u(B)= Zf; H(B)).
@ &=,

These are proved in sections C and D respectively.



C. Multiplicity of the Homology Tangent Cone
In this section we prove assertion (1) of (B.6). Notation remains as in (B.3).

(C.1) Let n: C"—>C* (d=dim 4) be a complex linear projection (n*=rn) such
that =~ 10" C(4)=0. (It is easy to see that such = do exist) We write L
=" H{ONU.

The idea of the proof (quite similar to that of {5, Thm. 6.4]) is to interpret
multiplicity as the intersection number [A]Y s [L]Y between A and z~*(0). It is
easy to see that [A]Ve[L]Y=[1x A]%<[C x L]* which in turn can be shown
to be the intersection number [S]¥o[1x L]¥ (using the associativity of in-
tersection and the fact that S and 1x U intersect transversally). Similarly
Ve u(d)=Y e[AJVo[L]’ can be shown to be the intersection number
[S]#<[0x L% To complete the proof we need only show that [S1¥e {1 x L]
=[$]%[0x L]* This is done by showing that both numbers are equal to the
value of [S]% [C x L]%e H$* (%)~ Z. Details are given in (C.2), (C3).

(C2) By shrinking U if necessary (this is O.K. by (B.2.2), (B4.2), (B.2.1)) we
can assume that Ln4 = O (because near the origin A is “close” to C(A), cf. [20,
p.215, 2.100); and that (4nU,xl,.,) is a branched covering over an open
connected subset W=n(4nU) of €%, i.e. n|,,.py is a topological covering outside
an analytic variety D in W [10, p. 101, Th. 16]. By (B.2, Remark 1) u(A)
=covering number of n=#(ANUnn"a)) for aeW—D. Then for aeW-D,
7~ Ya) intersects A transversally at smooth points of 4 [10, p. 106, Th. 19].
Moreover, joining a to O by an arc y in W, we have that n-l(y)n A is compact
(because = is proper). Hence, by [3, p. 485, 4.10], #(Ann~'(a)=[4]1"-[L]".
Thus

(€2.1) p(A)=[4]%[L]".

Next we apply (A.7.2) with V=U, W=, Y=(CxL)n%, X=YnU=1xL,
d=0¢'=A and £=[A]Y. (Here we identify U with 1x U and A4 with 1 x A).
Singe 401 *LANTXL( = j1x0.1x0) and 44 are jsomorphisms, (A.7.2) gives:

[A1Ye [L]Y=[1x A"« [Cx L}*.
(C22) Together with (C.2.1) we have: u(A)=[1xAJ*e[Cx L% Similarly,
p(A)={0xA]¥(CxL]*
Remark. Recall that Sn(1 x U)=1xA. In fact the intersection is transversal.
Let s=(1,z,) be a smooth point of 5. By (B.3.1) ¢:(t,2)— (t,%z) induces an

isomorphism d¢ between € x T, (4), (the tangent space of €x 4 at s) and T.§
(the tangent space of S at (1,z,)). Straightforward computations show that
dé(1,0),=(1, —z,),. (Here O0eC"). Hence T,S and T (1 x U)=(0 x C7), generate
(Cx €%, ie. S intersects 1 x U transversally at smooth points of § which lie in
1xU.

By the above remark and the criterion of unit multiplicity (A.6.3) we can

conclude
[S]% JixU)*=[1x A}‘y.



And the Eq. (C.2.2) becomes, by associativity (A.6.1),
#A)=[S1"=([1x UT*- [Cx L]*).
But 1 x U is transversal to € x L, hence, by (A.6.3),
(C23) u(A)=[S1%e[1 x L]~
Similar arguments also give
[51% [0 L]*=[S]%s ([0 x C"]*- [€ x L]%)

=([S]*-[0x C"I")e [C x L]*
=3 e[0x A% [C x L]¥
=Y e[0x A]¥ o [T x L]

(We have used (A.6.3), (A.6.1), (B.4.2), (B.4.4) here))
In view of the definition of [0 x 4,]% (B.4.1), by the compatibility between
intersections and enlargement of supports (A.6.1) we have

[0x A]*e[Cx L]*=[0x 4,]% [€ x L%, ,

which in turn is equal to u(4,) by (C.2.2).
Altogether we conclude

(C.2.4) [S17o[0x L] =Y e, u(4,).

(C.3) In view of (C.2.3) and (C.2.4), to complete the proof we are left with
proving
[S1%e[1x L]*=[S1*<[0x L]%

Proof. By associativity (A.6.1), for any reC we have
(C3.1) [S1%-([C x L]*- [t xC]%)=([ST¥- [T x L]¥)- [t 2.

By the criterion of unit multiplicity (A.6.3), the left side of (C.3.1) is
[S)*- [ x L1* On the other hand, since L~ (1/t) A=0 and L~ C(A)=0, we see
that SN(CxL)=Cx0, and (since HE* () ~Z (A3.3), (A.42)) therefore
[S1%- [€ x L]*=A[T x O]* for some icZ; hence, by (A.6.3) again, the right side
of (C.3.1) is A[tx O] Thus:

[S1¥o[txL]¥=)1] for all teC.

In particular [S]%o {1 x L}*=[S]¥-[0x L]*. qe.d.

Remark (not needed: elsewhere). If we define the local degree of n: A-C*
(denoted by degn|,) to be Iz, [A]| where n . Hyy{A) = H o (CY)~Z, then it can
be shown (using the projection formuia (A.7)) that

+deg i, =[A]% 0 [LV.

(In fact we need only that = is continuous and 7~ 1(0)nC(4) has an isolated
point at 0.)



Moreover, if 7 is real-linear (or even “close to” real linear, e.g. differen-
tiable) then the argument in this section gives

degnl, =) te.degnl,,

D. The ¢, are Differential Invariants

Consider the situation in Section B (especially (B.6)), i.e. we have homeomor-
phisms a: (U, 4,0)=(V, B,0), u,: (C(A), A)~{(C(B), B) and sets %,S5, %,8 (resp.
¥, T.7,T) which are derived from (U, A) (resp. (V, B)). Here a, is induced by a
real-linear map «,: C">C" (the derivative at O of «). Note that dimglU=2n,
dimg % =2n+2, dimy%¥ =2n+1, dimgA=dimg4;=2d, dimgS=2d+2, dimy §
=2d+1. Also recall that the natural numbers e, (resp. f;) are uniguely de-
termined by the equation (B.5.2) (resp. (B.5.3)):

517 [0x C"1%=Y ¢[0x 4.]"
(resp. [T17-[0x €7 =¥ £[0 % BF).
(D.1) We show in this section that ¢;=f;.

The approach is the following. First we construct a homeomorphism h
from (%,83) to (¥, T) which respects the fibres, i.e. maps Pt x T 1o ¥ (¢
x €") for all zeR. (We can not do so for (%, S} and (¥, T), and this is the sole
reason for introducing %,¥"). Since homeomorphism preserves intersections
(A.7.3), we have:

h,[51%- b, [0x €% = +h ([51% [0 x €"T%)
= 1Y e;h, [0x 4]%

" On the other hand, we have (by definition)
[T17-(0x €T =Y f[0x B]".

Now it is easy to see that: h [0xCJ¥=+[0xC, h [OxA]¥=
+[0x B]” (cf. (D.3.2)). In (D.4) we show: k LS =2[TY. It TFollows that
e;= + f.. But the ¢, and f; are all positive (B.4. 4) hence e;=f,.

Remark. It follows that the “+” in h [0x 4,]%= +£[0x B]” is independent of
i '
(D.2) We now carry out the above scheme.

Definition. For (t,x* %,
e taltx))  t£0
ke, x)'{(o, o (x)) 1=0.

Notation. For simplicity we also write h for restrictions of & to subsets of %;
and h, will always mean hP"®(x) for some subset X of % and family of
supports ¢ which will be clear from the context.

We check that h has the desired properties.



(D2.1)  h maps (@,8) into (¥, T) and (%, §) into (¥, T).

Proof. The first assertion follows easily from definitions and from Sn(0x €
=0x C(4) (B.3.3) and «,(C(4))= C(B) (B.1.3). The proof of the second assertion
is similar.

(D.2.2) The maps in (D.2.1) are bijective. In fact the inverse is defined by

(e la~'(tx) t=+0

h—l(t’x)={(0,oc5“(x)) £=0.

(D.2.3) h:9—¥ is a homeomorphism (hence so is h: §-1).

Proof. By (D.2.2) it suffices to show that k is continuous (then by symmetry
h=1 is continuous too). It is clear that h is continuous at all points (t, x)e#%
with telR*, so we consider points (0, x)e%, i.e. xeC". Let (t, )% be a nearby
point.

Case 1. If =0, then
10, y) = h(0, x) = (0, () — (0, ()
=(0, 00(y —x)).
Case 2. If teR*, then
h(t, y)—h(0,x)=(t,t =" a(t y)) — (0, oo(x))
=(t, ™! a(t y)—ay(x)).

We estimate the second coordinate:

=

1
7 oot ¥)~aq(x)

I 1 1
n a(t y) —ap(x) 'E“(f ¥} 7 oo (t y)’ +

=}a(ty)—a(?)-%“y){+1ao(y)—ao(x)|

|oelt y) = 2(0) — o (2 )|
I ¥|

=|y—x+x] +lag(y —x)|.

The first term tends to 0 with ¢ and ly—x| (by the definition of derivative).
Hence, in either case, h{t,y)—h(0,x) can be made arbitrarily small if (¢, ) is
close enough to (0, x), i.e. k is continuous at 0, x).

(D.2.4) The same proof breaks down when we attempt to prove the con-
tinuity of h: % =¥ (because a, is only real-linear). However, h clearly induces
a homeomorphism from % ~(0xT") to ¥ —(0x@"; and this fact will be
needed in (D 4.1).

(D.3) In this subsection (D.3) everything happens in % =%~IR x C").

With the homeomorphism h defined above we can conclude, using (A.7.3)
and (B.5.2), that



(D.3.1) h, [5)%. h [0x %= ih*([.?]"ﬂ- [0 x €"1%)
= ih*(z &[0 = Ai]]ﬂ)
=+ eh,[[0x 4]%),

where 1 J0 x A,]%eH C (7).

(D.32) Remark. It is clear that i, [0xC"]*= +[0xC"]” (h, induces an iso-
morphism between H (@) ~Z and HY*T' (W )~Z (A.3.3), (A 4.1)).
We show that h_[[0x A]%= +[0x B,]”. Recall the Definition (B.5)

IIOXA]]@ O”A‘OXC(A)[OXA]
!IO X Bi]]’r=IOXB ,0 xC(B)[O % Bi]-

Since h=hly, =0x(xly, ) induces an isomorphism Z=~H,,0xA)—
Hy,(0x B)~Z (A4.1), we have h [0x A,]= +[0x B;]. The result then follows
from the commutativity of the following diagram (A.3.1):

0 xA;, 02 C(A
HOxA) 20770, goxcugg)

B e

H(0xB) HO*CBY(y)

0 % B;, 0 x C(B)
(D4) As in (D.1), it remains to show that h [S]"?— +[TY; and for this it
suffices to prove: h [S] +[T] (because then using h «Clsg=iryoh, (A3l)
we have

hES1% =h, i5, g[S1=iz ¢ b, (8] = tiz ,[T]= £[T]").

Idea of Proof. By definition [5] and [T] come from intersections that occur in
% and ¥ respectively. However h is continuous only on % —(0x C") (D.2.4).
Hence we restrict the intersection (between S and R x €") to # —(0xC") in
order to obtain

7, [§—(0% €)= +[T—(0x CY].
This will then imply: k,[S]= +[T]. We now give the details.

Notation. “Superscript *” means “leave out the part in 0xC"”, Thus %*=
U—(0xC", U*=% — (0% C"), $*=S—(0x C") etc.

(DA.1) Remark 1. 1f X is a closed subset of # having a fundamental class
[X], we write [X*]=j%%*"[X], cf. (A.3). By (A.4.3), [X*] is a fundamental class
of X* It follows from (A.3.2) that
JEPIXY =" iy o[ X ] =ie e X [X]
= lxs,qp[X*] = [X*]%*.
In particular, the restriction of [S]¥ (resp. [§1%, [#1¥) to ¥* is [S*]** (resp.
[S*]%, [#*]*"). (N.B.: §* and %* are not connected.)



Remark 2. Since [S]*=[4]*-[S]¥ (B.3.5), it follows from the above remark
and the compatibility of intersection and restriction (A.6.1) that

[$*]% =[4T - [$*]".
Similarly _ _

[T*)7" =[7*]""- [T*]".
(D42) Claim. b [S*]™" = £[T*]""

Proof. In view of (D.4.1, Remark 2) the assertion will result from (A.7.3) if we
can show

(@) h,[S*]"= £[T*]"* and
(b) h [F¥]" = +[T+]""

Proof of (a). Recall that S* (resp. T*) is an irreducible analytic variety (B.3.2).
By (A41), HY, o(U*)=H,,, (S*)~Z (resp. HI,, ,(¥*)~Z) and has the fun-
damental class [$*]*" (resp. [T*]”"} as a generator. Since h, is an isomor-
phism, (a) is proved.

Proof of (b). By definition we have (cf. (D.4.1, Remark 1))

[(U*]" =ige guoi # T[],
(7T =gy o7 T[],

By (A4.2), [%] (resp. [V"]) generates H,, , (H)~Z (resp. H ans 187 )=Z). Thus
h [%]= £[?"] (h, is an isomorphism). By (A.3.2), (A3.1),

R IT]™ = (7] qed.

(D.43) We are now ready to prove h [S]=+[T] (D4). Let fs =g grer
ir=ipeys, js=I~%, jr=j"T. Consider the following commutative diagram
(A3.1), (A32):

[§] €H2d+1(§) =, H2d+1(§*) _E{""ngﬂ-l(%*)
1 By ' ha ke

£ITIeH 001 (T) =5 Hyp o (T*) " HI,(9%)
As in the proof of (b) (D.4.2) we have (by definition)
isJs18)=[5*1%,
and similarly
(D.4.4) irir[T1=[T*]".
By the commutativity of the above diagram and (D.4.2) we see that

irjr h [S1=h, isjs[S1=h,[S*]* = +[T*]""



By (D.4.4) it remains to show that i ojy is injective. But ip: H(T*)—HT'(¥7%) is
an isomorphism (A.3.3), and the fact that j; is injective can be seen from the
following exact sequence (A.3.4) (keeping in mind T—-T*=Tn({0xC"=
0 x C(B) (B.3.3)):

0=H,y, (0% C(BY)— Hypyy (T)—> Hyy (T,

where dimg C(B)=24, so by (A4.1), H,,,, C(B)=
This completes the proof of (D.1), hence of the Theorem.

E. Appendix: Algebraic Definition of the ¢,

(E.1) In this section we prove the following algebraic characterization of e,. (It is an adaptation
of folklore, cf. e.g. [14])

Proposition. Let OcA, an analytic subvariety of USC" all of whose components have the same
dimension, and let 0, , be the local ring of germs at O of analytic functions on A. Let m=um, , be
the maximal ideal of O, 4, and let G be the graded ring @ w2, Then there is a natural one-one

correspondence A —p, between components of the mngent cone C(Ay=C(A, O} and minimal prime
ideals in G, and e, is the length of the artin local ring G,

Before discussing the proof we note:
(E-1.1) Corollary. ¢,>0.

(E.12) From [18, (23.5)], applied to the localization of G at its maximal ideal @) »%=""!, we
now obtain the main result of Sect. C: a0

#Ay=3 e p(4,)

However the proof in Sect. C is more in keeping with the spirit of the rest of the paper; and it
gives a more general result - cf. the remark at the end of Sect. C.

(E.2) We begin the proof of the Proposition with some preliminary observations.

Let f=f(z,,...,z,) be a convergent power series, and write

f=)2,+ﬂ,ﬁ+...+f,,.+...

where f,,=/,,(z;....,2,) is 2 homogeneous polynomial of degree m, and f,+0.

Recall [20, p. 221, Theorem 4D]J, that C{4) is the algebraic subvariety of € defined by the
vanishing of all the initial forms f, as f runs through the power series vanishing in a neighborhood
N of O on A (here both d and N depend on f). Accordingly, we consider C(4) to be the (not
necessarily reduced!) affine algebraic variety with coordinate ring C[z,,...,2,1/{ fi(z;, .--,2,)} (fac-
toring out all f; as above), which is nothing but the graded ring G in the Proposition. So the
minimal primes of G correspond naturally to the components of C(4). (“Components” are the
same in the algebraic or analytic categories, since irreducible algebraic varieties have connected
smooth part, so are irreducible as analytic varieties.) These minimal primes are homogeneous, so
each component of C{A)} is mapped into itself by multiplication by any complex number, and
hence passes through O. Let us show that the map from the set of irreducible components of the
germ of C(A) at O to the set of algebraic components of C{A4), taking an irreducible germ to the
unique aigebraic component containing it, is bijective (whence each algebraic component is irre-
ducible at 0).

Algebraically this map is realized by considering the algebraic local ring R of C(4) at O (ie. R

is the localization of G at the maximal ideal @ »%/»%*1) as a subring of the analytic local ring
q=0

R=Clz, 20/ Uil -n2))



(where €(...> denotes “convergent power series”) and associating to each minimal prime ideal j of
R its contraction p=pnR. Now R and R clearly have the same completion, say R. R/pR is the
completion of R/p, and if # is the maximal ideal of R/pR, then the graded ring @ #Y53*" is

gZ0
isomo:‘phic to the graded integral domain G/pG; it follows that R/pR is also an integral domain,
i.e. pR is a prime ideal. So
pR=[pR)RInE=pRnR

is a prime ideal contained in §, and since j is minimal, therefore pR=p5, so that our map is
injective. Also, since every minimal prime in R is the contraction of a prime ideal in K, our map is
surjective (this is also geometrically clear), hence bijective.

In summary, we have:

Lemma, Ler A; be an algebraic component of C(A), and let p, be the corresponding minimal prime
ideal in G. Then A; is analytically irreducible at 0, and if P is the corresponding minimal prime
ideal in the analytic local ring R, then p;=p;nG, p;=p,R, and the artin local rings G, R, have
the same length.

Proof. Everything has been proved except the last assertion, which follows from p, =~p,.R and the
fatness of R, over G,,. (Note that R js flat over R since R is faithfully flat over both R and R)

(E3) Lemma. Let SSTxCT" be the analytic ser defined in (B.3), and let t: CxC"—C€ be the
praojection. Let R be as in (E.2) above. Then

Rz ot 0 .

Alfter proving this Lemma, and in view of the preceding Lemma (E.2), we can get the Proposi-
tion from the following fact, which expresses the equality of algebraic and topological intersection
numbers. (This fact is “well-known™, cf. {3, p. 488, 4.16] and for zero-dimensional intersections [5,
Theorem 6.5] or [17, p. 118, (A.8)]; but we don't know of an adequate reference, so a proof will be
given.)

Fact. Let L,S be pure-dimensional closed analytic subvarieties of an open set U< C™, and let B be an
irreducible component of LNS such that

codim B=codim L + ¢codim §

{where “codim™ denotes * codimension in €"). The topological intersection number i(L.S, B) is defined
as in [3, p. 482, 447. Assume that B contains a point where L is smooth, and thar OcB. Let B* be a
component of the germ of B at O, set R=0s ,, and let p be the prime ideal in R consisting of germs
of functions vanishing on B*, Let I be the Opn o-ideal consisting of germs of functions vanishing on L,
so that (by standard local analytic geometry) IR, is primary for the maximal ideal of R,,. Then the
multiplicity of the ideal IR, is i(L.S, B).

In (E.4} below we will prove the Lemma, and in (E.5) we will prove the Fact.
Finally, to get the Proposition, apply the Fact with L given by t=0 (notation as in Lemma), so
that I=¢8; , and LnS§=0 x C(A); and with B the component 0 x 4, of L~S. Then

e,=i(L.5,B) (Definition (B.4.2))
=multiplicity of {05 o),  (by Fact}
=length of (@5 5), /L)
=length of R, (by Lemma)
=length of G, (cf. (E.2)).

(Note: from the proof of the Lemma, it will be clear that if pc@; , is the ideal of germs vanishing
on 0 x A, then pf{t)=5,)

(E4) (Proof of Lemma). As before, represent a convergent power series f as a sum of homo-
geneous polynomials:

f=f.‘:+fd+1+fd+2+--' U;*D)



- and set

FHzpenz)=t 0z, ot =fattfyo o st

We call f) the “initial form™ of f.

Let J & Ogn , be the ideal of germs of functions vanishing on A4, and let F<I be a finite set of
generators of I whose initial forms generate the kernel of the graded C-algebra homomorphism
C[Z,,...,Z,]—G taking the indeterminate Z, to the natural image of the corresponding coordinate
function z; in s/ S G, We will show that the ideal of germs in Ogu.. o vanishing on S is generated
by {f*|feF}; the Lemma is then obvious,

With notations as in (B.3), Iet N< U be a neighborhood of O such that all the feF converge in

N, and such that
(xg,..c.xJ6ANN < f(x,,...,x,}=0 V¥feF.

Then if x € - {0}, we see that

(x,%,,...,x )88~ (C x N}
XXy, ., XX JEANN
< flxxy, .., xx)=0 YfeF
<= f¥x,x,...,%x)=0 VfeF;

while if x=0, then

(%, %, 00, X JESAY ~HE X N)
<Xy, .. X, €C(A) (B.3.3)
< folxy, 0 x)=0 YfeF (d depends on f)
< f¥x,x,,.0.,%,)=0 YfeF,

Thus the vanishing of the f*(feF) defines the germ of § at O set-theoretically, and it remains to be
shown that the ideal I* generated by the f* is a radical ideal, ie. is equal to its own radical.
Roughly speaking, this is true because I* is a “proper transform™ of the radical ideal
IC<t, 2, ..., 2,> under blowing up. Here are the technical details.

Let H, be the convergent power series ring ©{4,y,,...,¥,» and let I, =H, be the ideal

generated by {f(v,,....¥)lfeF}, so that Iy=]/z. Define a C-algebra homomeorphism
yo: Hg— €2y, .00, 2,0 by
rod=tz; {lSign)

Yo{t)=t.

Set
H=Ht " y,ent™ v,

Then y,etH (12i5n), and so for f=f,+... as above, since fe(y,, ..., ¥, Hq, therefore
1= f (s, -, ya)EH.
The ideal J in H generated by all such ¢t=9f (feF) is the “proper transform” of I, i.e.

J=( H,[t 'InH

(cf. [13, p. 216, Lemma 6]). Clearly J=}/J.
Now y, extends to a map
¥ H-FC([,ZL, ""zn>
with
yety)=z, 15ign,

and the ideal I* is the extension of J:

*= () €2y, 0 2D



To show that I*=1/T*, let M be the maximal ideal
| M=(t,t 'y, ...t ) H.
Then y extends 1o a local homomorphism of (1 + 1)-dimensional regular local rings
s Hy =€z, 20

Since MC{t,z,,...,2,> is the unique maximal ideal, we see that Yy €xtends to an isomorphism of
completions

Fart (Hal =Lt 2y, .00 2,.0]

Hence .
P = (/)T ITDNCC-);

and since H,, is excellent and J =]/.7 » therefore §,,(J}CT[-]] is a radical ideal, so the same is true
of I*. Q.E.D.

(E.5) (Proof of Fact). Suppose first that O is smooth both on L and on LnS. Then we can carry

out, as follows, the standard reduction to the case B={0}:
There is a coordinate system (z,,1,, -..2dy) in a neighborhood ¥< U of O in €™ such that LAV

is given (ideal theoretically) by
ty=t,=..=t,=0 (r=codim.L)
and LnSn V=BnV is given (set-theoretically) by
Lh=...=t=t,,=..=t,,=0 (e=codim.$)

By [3, p. 483, Proposition 4.5)
i{L.S, B)=i{(LAV).{SAV),BnV);

50 we may assume that ¥V=U,

Algebraically, we have 1 =0y, st} Opm g, p=V IR, and R/p is a regular local ring of dimen-
sion m—e—r, with maximal ideal (,, . ,,....t.) (R/p). Algebraic associativity for multiplicity
{denoted “u™) [18, p. 81, (24.7)] gives

H((tli “"tr, t;+¢+ 1 ----tm)R)=P((tl'- ""tr)Rp)#((tr+g+ 13 "'3tm)(R/p))
=u(IR)).

If M is the submanifold of U given by fraesy=...=1,=0, then topological associativity {3, p. 484,
4.7] gives

i(M.L, MALYi(MAL).S, 0)=i(L.5, B i(M.B, 0)

that is (c¢f. (A.6.3))
#{MNL).S,0)=i(L.5, B).

So it suffices to show that
By, ettt s L RY= (M NL.S, 0).

Thus we may indeed assume that B={(}; and this case can be settled by [3, p. 485, 4.10] and the
references mentioned in (E.3) above.

To reduce the general case to the preceding ome, note that the points of B which are not
smooth on both L and LnS form an analytic subvariety of B, which is nowhere dense in B (since
B is irreducible and contains, by assumption, a smooth point of L). So we can choose seB at
which L and L~S are smooth, and set R'=0;,.Let ¥ (resp. %) be the @gp.-ideal of functions
vanishing on L (resp. B). Then p’=#R’ is a prime ideal in R’ (since B is smooth at s), and it will
suffice to show that the ideals I R,, # R, have the same multiplicity. (The multiplicity of # R, is
#(L.5, B) by the preceding case.)
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In fact we will show more, namely that the Hilbert-Samuel functions

A(ny=length of the R -module I"R /I"*'R,
and
A'{n)=Ilength of the R;,--module J"R;,,/.f"*’ ‘R;,,

coincide.
For this purpose, observe that if f=IR and

Eor= [pa(fnﬂ-n + I)}/[Pa +1 (rnﬁn + 1)]

then

Aln)= Zo dim, ,(E*" ®g R }=(say) Zo e

where “dim,,” denotes vector-space dimension over the field k(p)=R,/pR,. (Note that ¢*"=0 if
P'R,cIR,, so the sum makes sense). Now if 5 = .# O and £" is the coherent {p-module

gu.n=[l@a(jn/jn+ l)]/[g)a+ l(jn/jn+l)]

then E™" is the stalk £5" and from [15, p. 20-10, Prop. 6] we see that outside a nowhere dense
subvariety of B, £%" is locally free of rank e*". Thus for fixed a, n, ¢*" depends only on £ and .#;
and a similar argument with s in place of O gives

An)= E ™",
a=0
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