DIFFERENTIAL INVARIANCE OF MULTIPLICITY

YIH-NAN GAU AND JOSEPH LIPMAN¹

An analytic variety A in an open set $U \subset C^n$ is a (closed) subset of U whose intersection with some open neighborhood of each point of U is the set of common zeros of a finite number of functions defined and holomorphic in that neighborhood. The multiplicity of A at $P \in A$ is defined to be the local covering number of a generic complex projection from A to C^d ($d = \dim A$). (This is the same as the multiplicity of the local ring $\mathcal{O}_{A,P}$ of germs of holomorphic functions on A at P.)

Our result is the following (O = origin).

THEOREM. Let U, V be open subsets of C^n , and $A \ni O$ (resp. $B \ni O$) be an analytic variety in U (resp. V). Suppose there is a homeomorphism α from U to V such that $\alpha(A) = B$, $\alpha(O) = O$ and both α and α^{-1} (as functions from subsets of R^{2n} to R^{2n}) have a derivative (= linear approximation) at O. Then A and B have the same multiplicity at O: mult(A) = mult(B). In short, "weakly" diffeomorphic germs have the same multiplicity.

REMARKS. 1. The above assertion is wrong if we drop the differentiability assumption. (E.g. if $u: C^2 \to C$ is a continuous map with $u(t^2, t^3) = t$ for all $t \in C$, then $\alpha: C^3 \to C^3$ defined by

$$(x, y, z) \rightarrow (x - u(y + x^2, z + x^3), y + x^2, z + x^3)$$

is a homeomorphism which takes the line $\{(t,0,0)\}$ to the curve $\{(0,t^2,t^3)\}$ which has a cusp at O.)

- 2. The hypersurface case of the theorem was proved by Ephraim [2].
- 3. If we add the "hypersurface" condition but drop the "derivative" condition then we have the Zariski conjecture: multiplicity is an embedded topological invariant [4].

¹⁹⁸⁰ Mathematics Subject Classification. Primary 14B05, 32C40.

Supported by NSF grant MCS-7903444.

local invariant. Also we can take A, B to be irreducible because of the following useful lemma.

LEMMA. Let $f: A \to B$ be a homeomorphism between analytic varieties (or, more generally, analytic spaces). Then for every component A_* of A, $f(A_*)$ is a component of B with the same dimension ("component" always means "irreducible component").

The idea of the proof of the theorem is to use the Zariski tangent cones C(A, O), C(B, O) of A and B at O as intermediaries. First we note that the derivative of α at O, denoted by α_0 , maps C(A, O) homeomorphically onto C(B, O) and so by the lemma takes each component A_i of C(A, O) to some component, say B_i , of C(B, O). Now since α_0 is real analytic (being real linear), it follows from a structure theorem proved by Ephraim [3] that $\text{mult}(A_i) = \text{mult}(B_i)$.

The strategy is to relate $\operatorname{mult}(A)$ to the $\operatorname{mult}(A_i)$'s. It turns out that $\operatorname{mult}(A)$ is a linear combination of the $\operatorname{mult}(A_i)$: $\operatorname{mult}(A) = \sum_i e_i \operatorname{mult}(A_i)$ for some positive integers e_i . The theorem is then proved by showing $e_i = f_i$, where the f_i are defined similarly for B so that $\operatorname{mult}(B) = \sum f_i \operatorname{mult}(B_i)$. (In the hypersurface case, the e_i are the exponents that appear in the factorization of the initial form of the defining equation. In this case, multiplicity is the degree of the initial form and $\operatorname{mult}(A) = \sum e_i \operatorname{mult}(A_i)$ follows immediately.)

In general, the coefficients e_i are defined through a set $S \subset C \times C^n$ which is used by Draper in his analytic intersection theory. S is constructed as follows. Consider the union $\bigcup_{t \in C^*} (t \times (1/t)A)$, an analytic variety in $\bigcup_{t \in C^*} (t \times (1/t)A)$ in (1/t)U). The set S is then defined to be the closure of $\bigcup_{t \in C^*} (t \times (1/t)A)$ in

$$\mathbf{U} := \bigcup_{t \in C^*} (t \times (1/t)U) \cup (0 \times C^n).$$

It can be checked that S is an analytic variety (which is irreducible if A is) in U and that $S \cap (1 \times C^n) = 1 \times A$, $S \cap (0 \times C^n) = 0 \times C(A, O)$. (Sketch of proof: if A is defined by $\{g_i = 0\}$, then $t \times (1/t)A$ is defined by $\{g_i(tx) = 0\}$ or equivalently $\{t^{-d_i}g_i(tx) = 0\}$. Hence $S \cap (0 \times C^n)$ is defined by $\{\lim_{t \to 0} t^{-d_i}g_i(tx) = \text{leading form of } g_i = 0\}$.) Let T denote the corresponding set for B.

We then apply the intersection theory in Borel-Moore homology [1] to define e_i (and f_i). The following properties are needed (among other things):

- 1. For a d-dim (complex) analytic variety A, $H_{2d}(A) \simeq \Pi_i H_{2d}(A_i) \simeq \Pi_i Z$, where the A_i are the irreducible components of A with dim $A_i = d$. For A irreducible the fundamental class of A, denoted by [A], is a generator of $H_{2d}(A) \simeq Z$.
- 2. If L is an open subset of a linear space of real dimension d, then $H_d(L) \simeq Z$ and is generated by the fundamental class which is denoted by [L].
- 3. The intersection theory for homology classes has the usual associativity, anticommutativity, unit multiplicity and projection properties.

4. Topological invariance of intersection: If h is a homeomorphism, then $h_*(\xi \cdot \eta) = \pm h_* \xi \cdot h_* \eta$, where "·" is the intersection product.

Consider now $[S] \cdot [0 \times C^n] \in H_{2d}(0 \times C(A, O))$. (Recall that $S \cap (0 \times C^n) = 0 \times C(A, O)$.) Since $H_{2d}(0 \times C(A, O)) \simeq \prod_i H_{2d}(0 \times A_i)$ and $H_{2d}(0 \times A_i) \simeq Z$ is generated by $[0 \times A_i]$, we can write $[S] \cdot [0 \times C^n] = \sum_i e_i [0 \times A_i]$ for some unique integers e_i , and similarly

$$[T] \cdot [0 \times C^n] = \sum_i f_i [0 \times B_i].$$

It is a fact that both e_i and f_i are positive. As mentioned earlier, to complete the proof it suffices to show:

1°. $\operatorname{mult}(A) = \sum_{i} e_{i} \operatorname{mult}(A_{i})$ and $\operatorname{mult}(B) = \sum_{i} f_{i} \operatorname{mult}(B_{i})$, 2°. $e_{i} = f_{i}$ for all i.

To prove 1° we take a complex linear space L of $\dim(n-d)$ which is transversal to A (meaning $L \cap C(A, O) = \{O\}$). Then it is well known that $\operatorname{mult}(A) = [L] \circ [A]$ (the intersection number at 0). Applying the usual properties of intersection product, it can be shown that $[S] \circ [t \times L]$ is independent of t, and that $[S] \circ [1 \times L] = \operatorname{mult}(A)$, $[S] \circ [0 \times L] = \sum e_i \operatorname{mult}(A_i)$. (Here we need the fact that S intersects $1 \times C^n$ transversally along $1 \times A$.)

As for 2° we can construct a homeomorphism between

$$\overline{\mathbf{U}}:=\mathbf{U}\cap (R\times C^n)=\bigcup_{t\in R^*}(t\times (1/t)U)\cup (0\times C^n)$$

and

$$\overline{\mathbf{V}}:=\mathbf{V}\cap (R\times C^n)=\bigcup_{t\in R^*}(t\times (1/t)V)\cup (0\times C^n)$$

which takes $1 \times A$ to $1 \times B$ and $0 \times A_i$ to $0 \times B_i$. (We cannot construct a homeomorphism between U and V; however, it is easy to see that $U^* = U - (0 \times C^n)$ and $V^* = V - (0 \times C^n)$ are homeomorphic. This is needed later.) So we define $[\overline{S}] = [S] \cdot [R \times C^n], [\overline{T}] = [T] \cdot [R \times C^n]$. Then on the one hand

$$h_*([\bar{S}] \cdot [0 \times C^n]) = h_*(\sum e_i[0 \times A_i]) = \sum e_i h_*[0 \times A_i] = \sum \pm e_i[0 \times B_i],$$

and on the other hand (using topological invariance of intersection),

$$h_*([\bar{S}] \cdot [0 \times C^n]) = h_*[\bar{S}] \cdot h_*[0 \times C^n]$$

= $\pm [\bar{T}] \cdot [0 \times C^n] = \pm \sum_i f_i [0 \times B_i].$

(We need "U* is homeomorphic to V*" to prove the second equality.) Hence $e_i = \pm f_i$. Q.E.D.

REMARK. It can be shown that e_i is the length of the Artin local ring G_{P_i} where G is the graded ring $\bigoplus_{n\geq 0} \mathfrak{m}_{A,O}^n/\mathfrak{m}_{A,O}^{n+1}$ ($\mathfrak{m}_{A,O}=$ maximal ideal of $\emptyset_{A,O}$), and P_i is the minimal prime ideal in G corresponding to A_i . (Note that $C(A,O)=\operatorname{spec}(G)$.) From this we see that $e_i>0$; and by local algebra, we get another proof of $\operatorname{mult}(A)=\sum e_i\operatorname{mult}(A_i)$.

KEFERENCES

- 1. A. Borel and A. Haefliger, La class d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513.
 - 2. R. Ephraim, C1 preservation of multiplicity, Duke Math. J. 43 (1976), 797-803.
- 3. ____, The cartesian product structure and C^{∞} equivalence of singularities, Trans. Amer. Math. Soc. 224 (1976), 299-311.
- 4. O. Zariski, Some open questions in the theory of singularities, Bull. Amer. Math. Soc., 77 (1971), 483-491.

RUTGERS UNIVERSITY

PURDUE UNIVERSITY