DIFFERENTIAL INVARIANCE
OF MULTIPLICITY

YIH-NAN GAU AND JOSEPH LIPMAN'

An analptic variety A in an open set U C C” is a (closed) subset of U whose
intersection with some open neighborhood of each point of U is the set of
common zeros of a finite number of functions defined and holomorphic in that
neighborhood. The multiplicity of A at P € A is defined to be the local covering
number of a generic complex projection from A 10 C? (d = dim A). (This is the
same as the multiplicity of the local ring 0, , of germs of holomorphic functions
onAatP)

Our result is the following (O = origin).

THEOREM. Let U,V be open subsets of C", and A D O (resp. B3 0) be an
analytic variety in U (resp. V). Suppose there is a homeomorphism a from Uto V
such that a( A) = B, «(Q) = O and both a and a~! (as functions from subsets of R
to R?") have a derivative (= linear approximation) at Q. Then A and B have the
same multiplicity at O: mult{4) = mult(B). In short, “weakly” diffeomorphic
germs have the same mudtiplicity.

REMARKS. 1. The above assertion is wrong if we drop the differentiability
assumption. (E.g. if u; C? — C is a continuous map with u(2?, 13y =1 for all
t € C, then a: C* —» C? defined by

(x,y,2) »(x—u(y+x* 2+ ), y+xtz+ x%)
is a homeomorphism which takes the line {(£,0,0)} to the curve {(0, 12, 1%)}
which has a cusp at 0.)

2. The hypersurface case of the theorem was proved by Ephraim [2].

3. If we add the “hypersurface” condition but drop the “derivative” condition
then we have the Zariski comjecture: multiplicity is an embedded topological
invariant [4]. '
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Tr MV PLUVL WE V-IL SLULIK U, 4 (and ¥, B). 1his 15 because multiplicity is a
local invariant. Also we can take A, B to be irreducible because of the following
useful lemma.

LEMMA. Let f: A> Bbea homeomorphism between analytic varieties (or, more
generally, analytic spaces). Then for every component A, of A, f(A,) is a component
of B with the same dimension (“component” always means “irreducible component ™),

The idea of the proof of the theorem is to use the Zariski tangent cones
C(A4,0),C(8,0) of A and B at O as intermediaries. First we note that the
derivative of « at O, denoted by ay, maps C(A,0) homeomorphically onto
C(B, 0) and so by the lemma takes each component A4; of C(4, O) to some
component, say B;, of C(B, 0). Now since a, is real analytic (being real linear), it
follows from a structure theorem proved by Ephraim [3] that mult(4,) = mult(B,).

The strategy is to relate mult(4) to the mult(4,)’s. It turns out that mult( A) is
a linear combination of the mult(4,): mult(4) = 2;e;mult(4,) for some positive
integers ¢;. The theorem is then proved by showing e, = f,, where the £ are
defined similarly for B so that mult(B) = 3 fmult(B,). (In the hypersurface case,
the ¢, are the exponents that appear in the factorization of the initial form of the
defining equation. In this case, multiplicity is the degree of the initial form and
mult(A4) = e, mult(4,) follows immediately.)

In general, the coefficients e; are defined through a set § C C X C” which is
used by Draper in his analytic intersection theory. § is constructed as follows.
Consider the union U, _..(¢ X (1/£)4), an analytic variety in U,_..(+ X
(1/1)U). The set S is then defined to be the closure of U,eelt X (1/8)A4) in

U:= U (ex(1/0U)u(0xcr).

teC*

It can be checked that S is an analytic variety (which is irreducible if 4 is) in U
andthat SN(IX C"=1XA4,8N0X C") = 0 X C(4, 0). (Sketch of proof:
if 4 is defined by {g, =0}, then ¢ X (1/8)4 is defined by {g(tx) =0} or
equivalently {r~%g(1x) = 0}). Hence S N (0 X C") is defined by
{lim,_o ¢~ g,(2x) = leading form of g, = 0}.) Let T denote the corresponding set
for B,

We then apply the intersection theory in Borel-Moore homology (1] to define ¢,
(and f;). The following properties are needed (among other things):

I. For a d-dim (complex) analytic variety A, Hy,(A) ~ ILH, (A4) ~11,Z,
where the A4, are the irreducible components of A4 with dim 4, = d. For 4
irreducible the fundamental class of 4, denoted by [4], is a generator of
Hy,(A)=Z.

2. If L is an open subset of a linear space of real dimension 4, then H(L)y=2Z
and is generated by the fundamental class which is denoted by [L].

3. The intersection theory for homology classes has the usual associativity,
anticommutativity, unit multiplicity and projection properties,



4. Topological invariance of .intersection: If % is a homeomorphism, then
ho(€-m)= =h& - hn, where “-” is the intersection product.

Consider now [S]- [0 X C"] € H,,(0 X C(4, 0)). (Recall that $ N {0 X C")
=0 X C(4, 0).) Since H,,(0 X C(4,0)) =I1,H, (0 X A)) and H,,(0 X 4,) =
Z is generated by [0 X A,], we can write [S]- [0 X C”"] = Z,e,J0 X A;] for some
unique integers ¢;, and similarly

[T]-[ox c"] =3[0 B].

It is a fact that both e, and f; are positive. As mentioned earlier, to complete the

proof it suffices to show:
1°. mult(A) = 2., mult(4,) and mult( B) = Z, f; mult(B,),

2% e; = f, foralli.

To prove 1° we take a complex linear space L of dim(n — d) which is
transversal 10 A (meaning L N C(A4,Q0) = {O}). Then it is well known that
mult(4) = [L] ¢ [A](the intersection number at 0). Applying the usual properties
of intersection product, it can be shown that [§] o [7 X L] is independent of ¢,
and that [S]e [l X L] = mult(4), [S] 0 [0 X L] = Ze, mult(4,). (Here we need
the fact that S intersects 1 X C” transversally along 1 X 4.)

As for 2° we can construct a homeomorphism between

U=un@®xcy= U (ex/0vu)ufoxcn)

tER*
and
V:i=vn(rxc)=U (x(Q/nvyuexcr)
tER*
which takes 1 X 4 to 1 X B and 0 X 4, to 0 X B.. (We cannot construct a
homeomorphism between U and V; however, it is easy to see that U* = U — (0

X C"yand V* =V — (0 X C") are homeomorphic. This is needed later.) So we
define [S]=[S] - [R X C"*],{T] =[T] - [R X C"]. Then on the one hand

IST-10X C™]) = hy(Ze,f0 X 4,]) = Teh,f0 X 4] = T = e,[0% B],
and on the other hand (using topological invariance of intersection),
m([8]-[0x ]y = h,[S]- £,J0 % C"]
==x[T]-[oxCc"]==3f[0XB]

(We need “U* is homeomorphic to V*” to prove the second equality.) Hence
e;= =f. Q.ED,

REMARK. It can be shown that ¢, is the length of the Artin local ring Gp where
G is the graded ring @, omj o/m%% (m, , = maximal ideal of 0, ,,), and P, is
the minimal prime ideal in G corresponding to 4,. (Note that C( 4, O) = spec(G).)
From this we see that ¢, > 0; and by local algebra, we get another proof of
mult(4) = Ze, mult(4,).
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