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1. Overview. Let me begin by saying what quasi-ordinary singularities are, and
what they may be good for.

A singular point P on a surface F C C° is quasi-ordinary if there is a finite map
of analytic germs 7: (F, P) = (C?,0) whose discriminant locus A (the curve in C?
over which 7 ramifies) has a normal crossing at 0 (i.e. 0 is either a smooth point or
an ordinary double point of A). Given 7, we can choose local coordinates x, y, z
such that #(x, y, z) = (x, y) and such that the germ (F, P) C (C?,0) is defined
by an equation '

AX Y, Z)=Z"+ g(X, ¥Y)Z" ' 4+ +£,(X,Y) =0
1

where the g, are power series; and “P quasi-ordinary” means that, for some such
choice of x, y, z, the discriminant D(X,Y) of f (f being considered as a poly-
nomial in Z) is of the form

D(X,Y)=XY%%(X,Y), £(0,0) # 0.

Such singularities arise naturally in the Jungian approach to desingularization,
where one begins with a projection of an arbitrary F C C’ into C?, then applies
blowups to the discriminant locus until it has no singularities other than ordinary
double points (cf. [L,, lecture 2] and [Z,]). In this way, using no more than
desingularization of curves, one can modify any surface locally to one with
quasi-ordinary singularities. This, first of all, reduces the problem of resolving
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surface singularities to the quasi-ordinary case; and, secondly, suggests that
quasi-ordinary singularities might be useful in analyzing arbitrary surface singu-
larities.

For example, the results on quadratic and monoidal transforms to be given in
§3 allow us to describe quite explicitly how to resolve quasi-ordinary singularities
by a sequence of transformations in which no singularities other than quasi-
ordinary ones appear; and this provides a basis for a proof that a family of germs
of surfaces in C? which is equisingular (in the sense that it has a projection whose
discriminant locus is an equisingular family of curves in C?) admits a simulta-
neous embedded resolution (starting, a la Jung, with a simultaneous resolution of
the family of discriminant curves).

Now I will describe the questions to be considered here. (Other questions are
not hard to come by: as will soon become apparent, almost any question about
plane curve singularities immediately suggests an analogous—and more difficult
—one for quasi-ordinary singularities, and not just in the two-dimensional case!)
For the most part, proofs, or even complete statements of results, are not given;
they can be found in [L,].

For simplicity we assume unless otherwise indicated that our singularities are
locally irreducible.

A quasi-ordinary singularity P lends itself to detailed analysis, because some
neighborhood ¥ of P can be parametrized by a fractional power series
{=H(X'/", Y'/"); in other words, with suitable local coordinates we have
(x, y,2) € Ve z= H(s, 1) where s” = x and " = y. What this amounts to is
that if f = f(Z) is as above (and irreducible), with discriminant D = X°Y %, then
the roots of f can be represented in the form

(L.1)  &=H(XV/" Yy = H{w; X", w,YV/"), 1<ism,

with ;; an n-th root of unity (/ = 1,2). This goes back to Jung, the underlying
idea being that the local fundamental group of the complement of a plane curve
at an ordinary double point is Z X Z. (For an algebraic proof cf. [A,, Theorem
3].) Since

XaYbﬁ =p= H (H,-(XI/”, Yl/n) — I{j(Xl/n’ Yl/")),
i)

unique factorization of (fractional) power series gives

(12) &= §=H,— Hy= X" (X", Y/"),  £,(0,0) #0.

(Here u, v depend on i, j.} The fractional monomials X“/?Y*/” so obtained are
the characteristic monomials of {. The exponents (u/n,v/n) are called the
distinguished pairs of {; they satisfy certain conditions described in the appendix
at the end of this section. This parallels exactly the situation for plane curves,
where we use fractional (Puiseux) power series and characteristic monomials in
one variable X.




In the case of plane curves, two suitably normalized fractional power series in
X parametrize equivalent singularities if and only if they have the same character-
istic monomials {Z,, Proposition 4.6]. (By “suitably normalized” we mean that
the parameter X is chosen to be transversal, so that the denominator n is as small
as possible, viz. n = the multipiicity of the singularity.) For a quasi-ordinary
singularity P on a surface F, it turns out that quite a lot of the geometry of F near
P is determined by the characteristic monomials of a parametrization, for
example: the local topology, the tangent cone and the multiplicity at P, the nature
of the singular locus, the equivalence class of the singularity of a generic plane
curve germ on F at P, or of a generic plane section of F transversal near P to a
component of the singular locus. So we may anticipate that the distinguished
pairs will provide a good basis for classifying quasi-ordinary singularities.

The first problem with this idea is one of uniqueness. Namely, there may be
many different possible choices of the projection 7, and correspondingly of {; and
furthermore some projections may have a discriminant with only a normal
crossing while the discriminant of the generic projection has a more complicated
singularity! (The simplest example of this phenomenon is provided by the surface
Z? = XY.) So we are led to the question which is the central one dealt with in this
paper:

(1.3) For a given quasi-ordinary singularity, are the distinguished pairs of a
somehow normalized parametrization { as above independent of the possible choices
of §7.

The answer turns out to be yes. And this is not just a technical matter:
approaches to the question which are suggested by the plane curve case lead to
algebraic and geometric considerations which add much substance 1o the idea of
classifying quasi-ordinary singularities by distinguished pairs.

For instance, for plane curve singularities one knows, via the classical knot
theory of Brauner, Burau, Kihler and Zariski (cf. [R]), that the characteristic
monomials of any normalized parametrization are determined by the local topology
and vice-versa (hence the characteristic monomials do not depend on the parame-
trization). For quasi-ordinary singularities, the distinguished pairs still determine
the local topology, but the argument given for this in §2, using saturation, does
not give much geometric insight, and does not help much with the converse
question. So it would be nice to find a topological interpretation of the distinguished
pairs. Such an interpretation might well involve an interesting higher-dimensional
analogue of the knot theory for curves.

Saturation-theoretic criteria for equivalence of plane curve singularities [Z, §2;
Zs, 11, §7] motivate one method for getting an affirmative answer to (1.3) for a
large class of quasi-ordinary singularities characterized, for example, by the
condition dimC, = 2, where C, is the Whitney cone consisting of “limits of
tangents” (cf. beginning of §2). The result for such a singularity 2 is that the
absolute saturation of the local ring of P determines the distinguished pairs.

Yet another—and finally successful-—approach is suggested by the following
well-known result (c¢f. [Z,, p. 8] or [A,, §4]): for an irreducible plane curve
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zation determine and are determined by the sequence of multiplicities of the local
rings appearing in the resolution of Q by successive quadratic transformations
{where by “resolution...” we mean the sequence of one-dimensional local
domains R, <R, < ---<R,, such that R, is the local ring of Q, R,,, is
obtained from R; by blowing up the maximal ideal of R; (1 <i <m), and R,, is
regular while R, _, is not). A corresponding result for a quasi-ordinary singular-
ity P should run along the following lines:

There is some natural way of resolving P, say by a sequence of quadratic and
“permissible” monoidal transformations (i.e. blowing up points, resp. smooth
equimultiple curves), such that certain invariants associated with the local rings
appearing in this resolution determine and are determined by the distinguished pairs
of any normalized parametrization of P.

In particular, the distinguished pairs are indeed independent of the parametri-
zation.

It is possible to establish such a connection between resolutions and dis-
tinguished pairs [L,, §§5, 6]. The precise statement is too detailed to give here;
but let us at least look at some of the problems which arise in carrying through
the idea.

First of all, here is what is meant by a “normalized” parametrization of a
quasi-ordinary singularity: because of the following lemma, which is a two-
dimensional elaboration of the “inversion formula” for plane curve singularities
[Z,, §3], we can always find a parametrization of the form

§ = Xe/"y /R X7 YY), H(D,0) = 0,

where

(i) a and & are not both divisible by n,

(i)ifa + b <n, thenbotha >0 and b >0,

(i) labelling the distinguished pairs (A, #;),cics Of § SO that A, <A, < ... <
A, and py<p, < ---<p (cf. Proposition (1.5)) we have (A, A,,...,A,) >
(B1s Bgy- .- 12,) (lexicographicaily).

LemMMA (1.4). Let § = X°/"H(X'/", Y'/*) be a parametrization with 0 < a < n
and H(0,0) % 0. Then, by a definite procedure (given in [L,, §2]) we can derive
from § a parametrization of the form ¢’ = X"/*H'(X'/", Y'/") with H'(0,0) # 0;
and the distinguished pairs of {" depend only on those of { (cf. Table (3.4)).

Second, while resolving we want to stay inside the class of quasi-ordinary
singularities, so that we can argue by induction on the number of steps in the
resolution process. We need then to show that a quadratic or permissible monoidal
transform P' of a quasi-ordinary singularity P is again quasi-ordinary; and more-
over, from any normalized parametrization { for P we can construct one for P’ whose
distinguished pairs depend only on those of {.

This result is discussed in more detail in §3. For a simple example, blow up the
origin on the surface 24 = XY?2,




Third, which “infinitely near” points shall we consider (where infinitely near
points are those which can be obtained from P by a sequence of quadratic and
permissible monoidal transformations)? After all, a quadratic transformation
produces a whole curve of infinitely near points. And how do we know at any
stage of resolution whether to blow up a point or a “permissible” curve (and
which curve, if there is more than one)? Roughly speaking, these problems are
handled as follows. In the case of quadratic transformations, i.e. blowing up a
point Q, it turns out to be sufficient to consider only those finitely many points in
the fibre over Q at which the blown-up surface is not equisingular along the fibre.
As for the choice of what to blow up, what we do is to blow up a curve whenever
possible (and a point otherwise), and if more than one curve can be blown up at
any stage, we can always choose the one which appeared as the “exceptional
curve” (inverse image of the blown-up curve or point) at the previous stage. In
this way, we can associate to each quasi-ordinary singularity P a ““resolution tree”
consisting of finitely many infinitely near points, with branching structure de-
pending only on the distinguished pairs of a normalized parametrization of P.
(See below for an illustration of how the singular locus—and in particular the
possible curves to be blown up—depends only on the distingunished pairs.)

Finally, which numbers do we attach to the various points in a resolution tree?
The numbers we use must be intrinsically associated to the points; and further-
more, given any normalized parametrization for such a point, the numbers in
question should be determined by the corresponding distinguished pairs, hence
ultimately by the distinguished pairs of some parametrization of the original point
P. Conversely, these numbers should give us enough information so that when we
look at the entire tree, with its attached numbers, we can reconstruct the original
distinguished pairs. Some possibilities which present themselves (as numbers
attached to a singularity P) are: the multiplicity, the number of components of
the Zariski tangent cone; the number of curves in the singular locus, together with
the multiplicities of these curves on the surface, and the multiplicity of P on the
curves; the characteristic pairs and intersection numbers of the branches of the
plane curve singularities obtained by taking a plane section transversal to the
singular locus (away from P), etc. In practice this is more than enough informa-
tion; and the reconstruction of distinguished pairs from a resolution tree can be
carried out, by a very tedious induction based on the transformation formulas of
distinguished pairs under quadratic and monoidal transformations (cf. Table
(3.4)). Moreover, we do not need the whole tree, but only one specific path
through it. Once again, precise statements can be found in [L,, §§5, 6]. For a
simplified treatment, cf. [Lu}.

We close this section with somie examples to illustrate the relation between
distinguished pairs and some geometric invariants (tangent cone, singular locus).
(A) Tangent cone. If a quasi-ordinary P is represented locally, as before, by an

equation
m

(x,%,2)= T (Z=£) =0




then the Zariski tangent cone (= Whitney’s C,) is the zero set of the leading form
fo of f( £, is the sum of the monomials in f of lowest total degree). The “algebraic”
tangent cone is the Spec of the graded ning C[X, ¥, Z]/f,. One finds that this
graded ring is determined up to isomorphism by the smallest distinguished pair of
any normalized parametrization. The possibilities are typified by equations of the
form Z" = X?Y* (with one distinguished pair, viz. (a/n, b/n)), for which

fo=2" ifa+b>n,
fHh=2"—XY® ifa+b=n,
fo = X°Y? ifa+b<n.

(We assume that the equation is normalized, so that if @ + & < n then both g and
b are greater than zero.)

(B) Singular locus. (i) Every normal quasi-ordinary singularity can be given by
an equation of the form Z”% = XV,

(i1) There may be one or two smooth curves in the singular locus. For example:

Z*=X?Y  (Sing.locus: [Z = X = 0]).
Z>=X?Y® (Sing.locus: [Z=X=0]U[Z=Y=0]).

(iii) The following is typical of the worst that can happen: the singular locus
consists of two plane curves, one of which is itself singular. For an example,
consider the normalized fractional series

;; X3/2 + X7/4 + X9/4yl/4 + XlQ/Syll/S.
Multiplying X'/8, ¥/ by various 8th roots of unity, one finds that ¢ has 32
distinct conjugates {;; f(X, Y, Z) = [[,(Z — {;) has order 32; and the correspond-
ing singularity has multiplicity 32. The discriminant is

TG —&) =X"™72%(X,Y), 0,0)+0.
i#j .

Either X or Y vanishes on the singular locus S; and we find that S consists of two
curves:

C:X=2Z=0 (32-fold line),
C:¥Y=0,Z= X2+ X/

(2-fold curve, having itself a 4-fold point at the origin).

Exercise. What happens to the multiplicity of C, if we replace the term
X?79Y /4 in § by X743/ by X%/4Y3/42 (Answers (cf. [L,, p. 39)): 6, 8.)

Appendix. Characterization of distinguished pairs. The following description of
distinguished pairs turns out to be quite useful. If (A, p), (o, 7) are ordered pairs
of rational numbers, we write (A, p) < (o, 7) to signify A <o and p<71. We
write (A, ) < (o, 7) if (A, p) < (0, 7) and (A, ) # (o0, 7). Also, we let T, be the
set of non-negative rational numbers a such that ne is an integer. As usual, Z
denotes the set of all integers.




PROPOSITION (1.5). Let § = B igyer xr.Cap X“Y? be a fractional power series.
Then ¢ parametrizes some quasi-ordinary singularity if and only if there exist pairs
(A, 1) €T, X T, (1 <i<s5)suchthat

(DO <A, p) <Az p)<--< (Mg py)

D, *=0forl<is<y,

(3ifey, #O0then(Ap) €L XL + Zon, < TG B,

@ (Apo 1)) € Z XL+ Zr, <oy s 1) (1 S < 5).

If such pairs exist, they are uniquely determined by {; in fact they are the
distinguished pairs of §.

2. Saturation and local topology. In the sequel, C{ ---) denotes a ring of
convergent power series with complex coefficients. We say that

§= H(Xl/", Yl/n) e C<X1/", Yl/n)

is a quasi-ordinary branch if { parametrizes a quasi-ordinary singularity, i.e. if for
any two distinct conjugates §; # §; of { (cf. (1.1)) we have (asin (1.2))

G- 8= XY e (XY, YY), 640,0) % 0.

The distinguished pairs (X, u;) of a quasi-ordinary branch { determine the
C( X, Y )-saturation of C{ X, Y, {, and hence L3, Theorem 6.1] determine the local
topology of the corresponding analytic germ together with its embedding in C 3

Indeed, as is readily checked, the saturation in question is the C{ X, Y )-algebra
generated by all the monomials X*Y* for which (A, p) satisfies

(2.1) ©,0<(M\p)EZXZ+ T Z(A,k)
(ALe)=(Ap)

(cf. Proposition (1.5) for notation).

In case (1,1) < (A, py), the above saturation is the absolute saturation A of
A=C(X,Y,¢) (cf. {Zs, 111, paragraph preceding Proposition 3.6]). Now A
depends only on 4 (a nontrivial fact!); and, 1 claim, the distinguished pairs of § can
be recovered from A, hence do not depend on the choice of §.

To justify this claim, note first that the condition (1,1) < (A}, p) is intrinsic to
A: it is in fact equivalent to the condition that the singular locus of Spec(4)
consists of two nonsingular m-fold curves intersecting transversally, where m is
the multiplicity of 4 (cf. example B(ii) in §1). (It is also equivalent to the Whitney
cone C, for the corresponding singularity P having dimension 2; or to every
transversal projection of a neighborhood of P to (C?,0) having a normal-crossing
discriminant, where “ transversal” means “with local degree equal to the multipl-
icity of P”.) Now since saturation commutes with localization [Zs, III, Proposi-
tion 1.2), and since any saturation of a one-dimensional local domain is a local
domain with the same multiplicity [Zs, I, Proposition 2.5], we see that the singular
locus of Spec(A) consists of two m-fold curves (m is also the multiplicity of 4, cf.
[Zs, 111, Theorem 4.1]). Let »,, », be the discrete valuations belonging to the




integral ciosures of the local nngs O these curves. (1ne integral closures are
discrete valuation rings because

C{X,Y)CA cC{x/ v/}
and because XY vanishes on the singular locus.) Then, with suitable labelling,
r(X)=w(Y)=m, n(X)=»(Y)=0;
and from Proposition (1.5) and (2.1) we find that if

5(4) = {m"'(v,(a), v{a)) |« € /i}

then (A,, it;) is the smallest pair in S(A) — (Z X Z), (A, #5)
is the smallest pair in S(A) — (Z X Z) — Z(A,, #4;) and, in
general, for 1 </ <5, (A, p;) is the smallest pair in S(A) —
(Z X Z) — Z,;Z(A;, p;). The claim is thereby proved.

In general, when there is no condition on (A, ,), we know for other reasons
(indicated in §1) that the distinguished pairs of a normalized { depend only on
A =C(X,Y,}), so that the C({X,Y )-saturation 4* described in (2.1) is still
determined up to isomorphism by A (independently of the choice of X, ¥, {). But
A* may be strictly larger than A. 1t would be interesting to have a more direct
intrinsic description of A*. This could lead again to an affirmative answer to (1.3).

Of course one would like a more explicit description of the local topology, as
one has via knots for plane curve singularities (cf. [R]).

Conversely, it would be nice to know whether or not the local topology de-
termines the distinguished pairs.

(I do not know whether the local topology determines even the multiplicity.)

In attempting to understand the local topology of a surface F C C? having a
quasi-ordinary singularity at the origin 0, one thinks first of the intersection of F
with a small 5-sphere S* centered at 0. Since the singularity at 0 is usually not
isolated (example (B)(i), §1), F N §° may not be a manifold. It might then be
better to look at the normalization F — F, induced say by a linear projection

- A
F C C" - C3, and the resulting map
L=FnXx(8’)nB-s*

where B is a suitable neighborhood of 0 in C*. The link L of F is a manifold
obtained from a 3-sphere by factoring out a finite cyclic group action, i.e. L is a
“lens space”. (This corresponds to the fact that the origin on F is a quotient
_ singularity: for suitable n the fraction field of C(X'/", Y'/") is a cyclic Galois
extension of that of C{ X, Y, {).)

This raises the question, which seems to me worthwhile pursuing, and perhaps
not too difficult for knowledgeable topologists:

Can one relate the distinguished pairs of § to some homotopy invariants of the
above map L — §°7




3. Quadratic and monoidal transforms, We say for convenience that a local ring
A is quasi-ordinary if 4 = C(X, Y, {) with { a quasi-ordinary branch (cf. §2), i.e.
A is the analytic local ring of some quasi-ordinary singularity. (We could just as
well work with formal power series over any algebraically closed field of char-
acteristic zero.)

Let A be a quasi-ordinary local ring, and let #: T — Spec(A4) be the quadratic
transformation, i.e. the map obtained by blowing up the maximal ideal m of 4,
After choosing three generators X, Y, { of m, we have an embedding of the closed
fibre 1~(m) into the projective plane PZ. By the quadratic transform of A in the
direction (o:f:v) we mean the analytic local ring of the closed point on T
corresponding to (a, 8, v) € t-'(m) ¢ PZ. (The reader may prefer to rephrase all
this entirely in terms of local analytic geometry.)

A monoidal transform of A is a local ring 4’ obtained by blowing up a
permissible curve, i.e. a height one prime ideal p in 4 such that 4 and 4, have the
same multiplicity. If 4 = C{X, Y, {) with a normalized quasi-ordinary branch {
having distinguished pairs (A}, p,) < (A,, p,) < ---, we find that if A, > 1 then
p may be the ideal (X, {), if u, = 1 then p may be the ideal (¥, {), and there are
no other possibilities for p. We see then that 4’ is a finite A-module, uniquely
determined by p.

. DeFNITION (3.1). Let A be a quasi-ordinary local ring. We say that A" is a
special transform of A if A’ is not a regular local ring and if one of the following
conditions holds:

(1) A4 has a permissible curve p, and A’ is the corresponding monoidal
transform of 4.

(2) A has no permissible curve, A" is a quadratic transform of A, and there is a
curve ¢ in the singular locus of 4 whose proper transform passes through 4’ (i.e.
some prime ideal in A’ contracts to ¢g).

(3) A has no permissible curve, and 4’ is a quadratic transform of A in a
direction corresponding to a singular point of the (reduced) closed fibre of the
quadratic transformation of Spec( A).

When A is represented by a normalized quasi-ordinary branch, then it is easily
verified that any special quadratic transform of A must occur in one of the
directions (1:0:0), (0:1:0), (0:0:1).

REMARK (3.2). It can be shown that a quadratic transform 4’ of A is nonspecial
if and only if the blow-up T is equisingular along the closed fibre at the point
whose analytic local ring is 4",

THEOREM (3.3). Let A be a quasi-ordinary local ring. Any special transform A’ of
A is again a quasi-ordinary local ring. If § is a normalized branch representing A,
i.e. A =C{X,Y,{), then, by one of the processes given in [Ly, §3], we can find a
“standard ” quasi-ordinary branch {’ (not necessarily normalized) which represents
A’, and whose distinguished pairs depend only on those of { and on the process
employed, the exact nature of the dependence being as in Table 3.4.




TABLE 3.4

Transformation Distinguished Pairs of
Resulting Branch
(omit i = 1 if the corresponding
pair consists of integers)

LEMMA (1.4) (A, + 1= A0/,
MONOQIDAL TRANSFORMATION
Center (X, §) A= L
Center (¥, 1) Appi— 1

QUADRATIC TRANSFORMATION
“Transversal Case” (A, + ¢, = 1)

Direction (1:0:0) A tp = L,
Direction (0:1:0) Aod =1

“Non-Transversal Case” (A + g, < 1)
Direction (1:0:0) AL+ X = A/ =210+ p) ] ]
Direction (0:1:0) p [ MK = )N - LK+ AR
Direction (0:0: 1) A =p) X0 — A —p, ey (0 A1 — A —

We have given the distinguished pairs only for “special” directions in the case of quadratic
transformations. This information can always be used to give us the distinguished pairs for non-special
directions, ef. (L, §4].

To illustrate what is involved in Theorem (3.3), let us examine more closely the
quadratic transform 4’ in a direction (1:0:v), in case A is represented by a
normalized quasi-ordinary branch

$ = X¥/rye/rH(XV, YY), H(0,0) # 0,
where u, v, n are integers with # + v < n (“non-transversal case”). Let f( X, Y, Z)
be the minimum polynomial of §{ over C{X,Y), of degree, say, m. Then
A =CX, Y, 2Z)/f" where
(X, Y, Z)=[f(X, XY, X(Z + y))] /X (mutmer/n,

It is clear that £(0, Y,0) = Y™*/"-(unit in C(Y)). Thus, by the Weierstrass
preparation theorem, there is a wunique power series g'(X,Y, Z) such that
g’ € C(X, Z)[Y] is a monic polynomial of degree mv/n in ¥, and such that
g’ =f-(unit in C{X,Y, Z)); g’ is called the distinguished polynomial in ¥
assoclated with f°. Since C{X, Y, Z) /()= C{(X,Y, Z)/(g"), it will be suffi-

“cient for our purpose to study the roots of g’
Let G(Z'/°), G,(X'/", Y'/") be such that
[6(z' ) =2z +y, [G(x'/",¥/")]" = H(X'/",y'/").
Let { = G(Z'/?), & = G(X'/", X1/*Y1/"). Then
(XY, Z) = H {-[X(n—u—v)/noﬂ“ — [Yl/ngi]"}
=1

= X

{%X(n—u—u)/nvg _ Yl/nsi}’
1

INank:
e

i=1j

where w; runs through the vth roots of unity.




Let W be an indeterminate and let E,(X, Y, W) be such that E(0,0,0) + 0,
and ‘

E{X, Y, W)W~ YG,(X, XY)) = Y= WG(X,W), G(0,0)+0.

Since G,(0,0) # 0, the existence of E, is guaranteed by the preparation theorem.
Setting

g = E,-(Xl/n, Y!/n’ ij(n——u-—v)/nvé)
and
zi - E,-(Xl/n, wjx(n—u—o)/nug)
we have
si(ij(n—u—u)/nog _ Yl/ngr_) = Yl/n —_ wjx(n—u—v)/nugéi.

Hence for some unit e in C{ X'/7°, Y'/", Z'/*) we have

P(xv,zy=e]] T {¥V/"— axnu=o/mgE ),
i=1j=1
The double product on the right is clearly the distinguished polynomial in yl/»
associated with f(X, Y, Z) when f(X,Y, Z) is thought of as an element of
C( X'/, YV/7, Z1/°Y; but so also is g'( X, Y, Z). By uniqueness we must have

m v
g(x,v,2)y =[] I[ {¥"/"— axtreroy/meg ).
=1 j=1
It follows that the roots of g’ (considered as a polynomial in ¥ over C{X, Z}) are
the n-th powers of the fractional power series w; X" 7“~*/ vz Thus the roots of
g’ are fractional power series which are non-units.

Now we have to show that the roots of g’ are quasi-ordinary branches, with
distinguished pairs depending only on those of {, and on whether or not y = 0.
(For uniformity of notation, we can interchange ¥ and Z.) For this we study the
behavior of the semigroup generated by the pairs of exponents of the non-zero
terms in a power series under the operations used above (extraction of v-th roots,
passage to associated distinguished polynomial...); and then we apply Proposi-
tion (1.5). After obtaining Table 3.4, we can calculate the number of conjugates of
¢’ (a root of g’), and compare this number with the degree mv/n of g’, to
conclude that g’ is irreducible when y = 0 (g’ need not be irreducible if y 0).
Details are in [L, ]
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