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INTRODUCTION

This is a semi-expository account about the role of differential
forms and residues in the duality theory of algebraic varieties over
a perfect field. The main results are summarized in the Residue
Theorem (0.6) stated near the end of §0, and generalized in §10.

In some sense there is little here which cannot be dug out from.
other sources: the basic ideas involved were announced by
Grothendieck in [G2]; the foundaticns of duality theory were then
worked out from a very general point of view {derived categories
dualizing complexes, etc¢.)} by Hartshorne [RD], Deligne (RD, Appendix]
and Verdier [V]; and the "fundamental class", a canonical map from
differential forms to dualizing complexes, was studied by El Zein
and Angénicl [E)}. But, fundamental, powerful, and beautiful as
the resulting theory is, the formalism in which it is ensconced and
some. lack of detail in the literature(l) have prevented it from
becoming as well-known and understood as it should be. For me at
any rate, reaching even the level of understanding represented by
these notes has been a long and arduous process. And the reactions
of audiences to lectures which I have given over the past twelve
years on this subject have suggested that an exposition in the spirit
of [S, pp- 76-81] (case of curves, after Rosenlicht) and [K2] (case
of projective Cohen-Macaulay varieties)- i.e. accessible in principle
to someéne familiar with, say, Chapter III of [H]- may not be

superfluous.

Various forms of the main results to be presented have appeared
in the literature. In this Introduction, and in §0, we gather
some variants together and point out their interconnections. In the
process indications about the contents of the paper will emerge.

1

( )Of course in the writing of any exposition (this one included) the cheoices
about which details to include and which to leave to the reader are a matter
of taste, judgement, mood,...



Throughout Vv willrbe a d-dimensional variety (reduced and
irreducible) over a fixed perfect field k (V and 4 may vary}.
We set

- |
QV = A (Qv/k)
the d (= dim V)-th exterior power of the sheaf of Kihler differential
one~forms.

For V a non-gingular projective curve (@ = 1) the classical
duality theorem states that for any invertible {or, more generally,

coherent) Ov—module 4, the k-vector spaces HI(V.f) and
Homo (y,nv) are naturally dual, In fact there is a natural
v

isomorphism
J st v, - k)
v

such that for all ¥, the composition

natural

(%), , Homp (9,8y) iy Homy (51v, %), 11 (v, 0,))
v

i
———————3> Hom, (H™(V,%),k)
via IV nﬁt ! !
is an isomorphism. In other words, the pair (ﬂv, J ) represents
the functor v

' (%) = Hom (a1 (v,9),k)

This theorem is sometimes proved in twe steps, as follows.
First, by means of certain injective complexes (Weil's "repartitions")
the functor H'(¥%) is shown to be representable by some pair (w,9),
which is necessarily unique up to isomorphism. We say then that
the pair (w,8) is dualizing; and in Particular that w is a
dualizing sheaf. Then, by the theory of residues of differentials,

the canonical pair (QV, is shown to be dualizing,

v

(l)realizable if k =€, via a 3-Dolbeault resolution of Qv, by integrating

(L,1)-forms.



More specifically, the residue res& at a closed point v € V
is the unigque k-linear map from the meromorphic one-forms

ool e . ,
Qk(V) = Qk(V)/k to k (k{V)= field of raticonal functions on V)
such that, for any local coordinate t at v with differential

§t we have:

res;(taét) =0 a €2, a#~1

res’ (t 15ty =1 .
v

In particular res& factors as

I
Qk{V) natural Qk(V)/QV,V B HV(QV) res k
where Hi denotes local cohomolegy supported at v, The local
duality theorem says that the pair [(QV’V) ,resv] {where denotes
completion with respect to the maximal ideal m,, of the local ring

0, ,) represents the functor
'V

1
Homk(Hﬁ (G),k)
v
of finitely generated (OV V)"—modules G.
, )

Now if Qk(v) is the constant sheaf with sections nk(V)' and

QG is the sheaf whose sections over an open U © V are given by
1

1
Qx(U) = & { /9 = @ H_ (f,)
\9 vey k(v)y' "v,v veu VY v

(sheaf of "differential repartitions") then

= natural
BALLLLLULL N *
0 > “V - QR(V) QV + 0

is an injective resolution of Qv; and taking global sections we
get the exact row in the following diagram:

1 1
ﬂk(V) — @ B () —— H"{(V,0Q,) —> 0
veV e
-
©res P
M k fv
k



The key residue theorem says that "the sum of the residues of a

meromorphic differential is zero":; which means that & res,
annihilates the image of ﬂk(v)' i.e, there is a unique map

Hl(V,QV) + k making the diagram commute. This map is I . The

Vv

proof that (nv,j ) is dualizing can be found e.g. in {S5,p.26].
v

What we want to bring out here is that for non-singular projective

curves, differentials and residues give us a canonical realization
of and compatibility between local and global dwality.

Our principal Theorem (0.6) establishes a similar canonical

compatibility for arbitrary proper k-varieties.

Here are some historical highlights in the development of such
a generalization. 1In his 1952 thesis, Rosenlicht constructed {in
essence) an isomorphism like (*), for V any (possibly singular)
projective curve and ¥ invertible, with QV replaced by a certain
sheaf of "regular" meromorphic differential forms, definable e.g.
through residues (cf. [S,pp.76-8l}). Shortly afterwards, Serre
established for any d-dimensional normal projective V an
isomerphism of functors of coherent Ov-modules 4

() Hom, (4,9, ) —=» Hom, (H3(V,%),k)
a Ov v k

where ?'=Hom0 (#.0,) for any (-module F (cf. [2,§8]). In
v

other words: 93' is a dualizing sheaf on V. Then Grothendieck
showed for arbitrary projective V that the functor Homk(Hd(V,g),k)
is representable ([Gl], [AK], [H,§7]).(l) Grothendieck's method is

to deduce from the fact that QP is dualizing on P = PE = projective
n-space over k (a fact proved, following Serre, by explicit
caleulation), that for a closed embedding 1:V = P, the sheaf

- i n-d Lo A o .
w, 1 ExtqP (OV,%P) is dualizing on V. Of course w, ~ is not

canonical on V; but if V is non-singular, then using suitable

1
( )Though we concentrate here on the dual of Hd(V,g), that is only one aspect of

duality theory. For example the isomorphism (*)q extends uniquely to a
homomorphism of é-functors Ext™(¥,&) = Hom (=1 (v,%),k} (i20), which is an
isomorphism for all i when V is Cohen-Macaulay (cf. [H,§7); and also
{13.8.7) below for the local case). Moreover the general theory requires the
consideration of dualizing complexes, one of whose homologies is a dualizing
sheaf. 2All this lies beyond the scope of these notes.




Koszul complexes Grothendieck shows that w, is isomorphic to Qv,
so that the canonical sheaf Qv is dualizing. This approach and

its elaborations involve a considerable amount of homological algebra
{cf. 8§13 below, where a closed embedding 1:V - X of a singular
d-dimensional V into a smooth n-dimensicnal X is considered, with
the object of constructing an "adjunction" iscmorphism of

1*Extg-d(ov,ﬂx) onto a canonical dualizing sheaf of V).
X

There is however a more elementary approach {indicated e.g. in
[H,p.249,Ex.7.2)), which we will follow everywhere except in §13.
Namely, instead of embedding V in ZPE, choose a finite surjective
map Tn:V -+ P' = Pg. Then there exists a coherent'ov—module @,

together with an isomorphism
My —3 Homqp (Malgr 50 ) -
L3

aAs above, %P, is dualizing on P'; and it fo;lows easily that wo

is dualizing on V. Moreover, using the trace map for differential
forms, Kunz constrnéts, in [K1l], [K3), a concrete realization of

such an we as a sheaf of meromorphic d-forms, which turns out to
depend only on V (not on the choice of w)! Thus we have a

canonical dualizing sheaf 5&, the sheaf of "regular differentials”,
which (as Kunz shows) coincides with Qv at the smooth points of V,
and which is identical with Rosenlicht's sheaf of regular differentials

when V is a curve.

Now since G& is dualizing, there is a map
6,1 (V,T) + k
v* s

corresponding to the identity map of 3&. This Oy is determined,
a priori, only up to multiplication by non-zero elements of Kk
(which give automorphisms of Gv). For non-singular V, where

Gb = Dy Grothendieck describes a canonical Oy via the
"fundamental class of a point" ([Gl,p.149-13)). For general V,
the existence of a canonica; Bv is closely related to a theory of
residues, as in the above discussion of when 4 = 1; when

d > 1 this idea is worked out explicitly ix [K2], at least for
Cohen-Macaulay characteristic zero V.



Actually a higher-dimensional theory of residues was announced
by Grothendieck in 1958 [G2], in connection with his proof of a
duality theorem for arbitrary proper k-varieties. (Details appear
in [RD].) Most of what we discuss in these notes is implicit in
Grothendieck's theory; but it needs to be brought out into the open.

our global existence and uniqueness statements {for instance
(0.6) {d} and (0.6} (e)) make use of the following results of
Grothendieck: (i) the representability of the functor
Homk(Hd(V,g),k) of coherent OV—modules for any proper d-dimensional
V; and (ii) surjectivity of the natural maps Hg(f) + Hd(v,g) (vev)
from local to global cohomology. Fortunately, relatively simple
proofs of these results have been provided by Kleiman in [Km 2]
resp. [Kml].

We will not repeat Kleiman's proofs, but rather concentrate on
defining a canconical dualizing pair for any proper k-variety V. We
will show, first of all, that Kunz's sheaf 5& - which can be defined
locally via a finite surjective map to affine space, then globally
by patching - is still dualizing. Note that for arbitrary proper V,
finite maps onto smooth varieties exist only locally; so that for
example if w is a dualizing sheaf (for whose existence we refer

AY
to [Km2]), then Kunz's methods give us isomorphisms

~ -~

b, = wvlw

only for affine (or guasi-projective) open W < V. Why should these
isomorphisms patch together to give a single isomorphism over all
of vz This problem typifies the essential difficulty in the

non-projective case.

Another one of our main concerns is to describe higher-dimensional

residue maps
res"-Hd(~ )y + k (v € V)
v Hy {0y .

With these maps we have a local duality theorem (cf. (0.6){c)), which

2 -

¢ }Following Verdier (V], Kleiman shows in [Km 2, Prop. (22)] that if V is
Cohen-Macaulay, then the restriction of a dualizing sheaf to any smocoth open
Vg €V is isomorphic to QVO. It is not clear a priori that Kleiman's

iscmorphism coincides with Kunz's when VO is affine.



says in particular that @,
'

sense of [HK]. Furthermore, residues provide the means for over-

is a cancnical —OV y-module in the
r

coming the patching problems just mentioned; they may be used to
give a local description of Eﬁ (cf. (11.4)); and for proper V¥
they glue together (as in the above-described residue theorem for
curves) to a k-linear map

~ a ~
ev=H (V,mv) + k,

giving us the desired canonical dualizing pair (G&.EQ) as well as
a natural compatibility between local and global duality (cf. the

main Theorem (0.6)).

As we are limiting ourselves more or less to the topics already
indicated, we do not go very far into the theory of residues. There
are numerous other treatments in the literature (¢f. remarks following
the proof of (7.2) below), each of which illuminates some interesting
facets of the theory, though none seems to be definitive.

In §0 we give a more complete discussion of the main results.
As this discussion will be rather long, a few orienting remarks are

in order.

First of all, as already indicated, the main theorem is (0.6),
which gives a local characterization of residues, and describes via
residues and the canonical sheaf G& the compatibility of local and
global duality. A generalization to the “"relative case" is given
in §10.

The statement of (0.6) should be understood, even if nothing
else is. The reader may wish to begin with this statement,
referring back to (0.2A) and (0.4) as needed. The proof of (0.6)
occupies most of §81-9, and some of §0, proceeding roughly as
follows:

(4.2) === (0.3A)

==‘7>(0-3_2) (0.2) =E>[0.6.1) (0.6)

§9 (gj-:r % =» (0.3B)



Theorem (0.1} and the remarks following it are not really
needed in the sequel. They are included to set the mood, and to
indicate one of many possible ways to think about matters related
te {0.6).

Fipnally, a word about the style in which results are stated.
We are concerned here with concrete realizations of certain aspects
of duality theory. These realizations may not be constructed
directly, but, for example, by non-obvious patching procedures
(which, incidentally, are greatly facilitated by the language of
{~modules reviewed in §1). So it is important to enunciate a
minimal number of characteristic properties which make explicit the
canonicity of the objects in guestion. When it comes to details,
the subject is not a simple one; and if some statements of theorems
seem lengthy, it is because they compress a lot of information which
seems to me essential for ‘a proper understanding. The reader is
therefore encouraged to take the time to absorb these statements.



§0. Discussion of results

As before, V 1is a d-dimensional variety over the verfect field
k, and QV = Ad(né/k) is the sheaf of holomorphic Kihler d-forms.

Among ouy principal results, the easiest to state is the following
portion of [E, p.34, Théoréme 3.1]:

THEOREM (0.1). There exists a unigue family of k-linear maps

d
P HO(V,G,) + k
IV

indexed by proper d-dimensional k=-varieties Vv, and sétisfying the

following conditions (a), (b), (c):

(a) If V is the projective space :Pi, then I is the
. v

well-known canonical isomoxrphism (defined, for example, in (8.4)

below) .

(b) For any finite surjective map f£f: V- W with W a proper
é&-dimensional normal k-variety, if T is the map

(trace®l): f*OVQOWnW —y 0w®0w“w = 0,

then the following diagram commutes (trivially if £ dis not
separable, i.e, if the function field k(V) is not separable over
k(w)):

a
H (W, £,0,80,) natral 5 wd(w,£,0,) = 1 (v, 0,
via T I
v
W
|
19w, 0,) —s k

10



(c) If g: V> W is a birational map of proper d-dimensional

k-varieties, then the following diagram commutes:

natural

Hd(W,Q ) __natural H (w,g*ﬂ y -patural Hd(V,Qv}

Furthermore:

{d) If Vv is a smooth d-dimensional proper k-variety, then the

pair (Qv,( ) is dualizing, i.e. represents the functor

L

Homk(Hd(V,E),k) of coherent () -modules 4.

Remarks. (i} To introduce some of the ideas which play an
important role in these notes, we sketch a partial proof of (0.1)
(even thouéh this proof is somewhat different than the one we will
use, cf. Remark (i) following Theorem (0.2B) below).

One can reduce (a), (b} and (¢} of (0.1) to the projective case

via Chow's Lemma (for (b) this is messy!). For projective V, the
unigueness of follows from (a}, {(b), and Noether normalization
v

(Appendix A), which gives us a finite separable (=generically é&tale)
£f:v +-Pg = W. (Note that then £.0y00, ~ £,8, 1is a generic

isomorphism, so that the map in (b) labelled "natural® is surjective.)
As for existence, given a finite separable £ v *.Pg =W it is
well-known that there is a unique map t' : £.8,; Qw whose
composition with the natural map f*0v®9w + £,0,;, is 1 (ef. [KL,

p. 15, Satz 5.5], which uses the "eguality of Kidhler and Dedekind
differents”); so we can use 1' and the canonical isomorphism

W
£
to define J « which we denote temporarily by [ . The crux of the
v £ v
problem is to show that J does not depend on the choice of f; and
v

further, (a) and (b) being then straightforward, to prove (c).

11



This can be dcne, roughly, as follows.

For any closed point v € V we consider the composition

Jf
P
vy _» Hd(v,gv) vV .

£ . ,4
(0.1.1) res_ : HV(QV)

where Hg denotes cohomology supported at v and Oy is the

natural map. It follows from the results in §8 that if £ ig
étale at v {(so that V is smooth at v) then resi is the

classical residue map (reviewed in §7). So for any two finite
separable maps f,, f2 sV é-Pg, if v € V is a closed point where
both are étale, then

Ifl v, < sz Py ¢
-] - o ¢
v v v v

and since Py is surjective {(cf. (9.6)), we conclude that
£

fl f2
I = J , il.e. J does not depend on f. Thus we can set
v

v v

f :

I = J , resf = res_ .
v v v v

Furthermore if v is any closed point where V is smooth, then
there exists an f which is étale at v (cf. Appendix A), and so
res is still the classical residue map. Hence (c} can be proved by
picking a v around which V is smooth and g is an isomorphism,

N

(0.1.2) ‘ x

4 Y ///)ﬂ
HO(2,)

d
. H V.2,

and considering the resulting diagram

a $g (v) 5 x4
HY (v () > HC (W,0,)

¥

This kind of local-global interplay is one of our basic themes.

12



Now (d) of (0.1) follows, in the projective case, from the

well-known duality theorem for Pg and the fact that when V is

smooth the above map t' corresponds to an f*ov—isomorghism

(0.1.3) £,0y, > Hom Dw(f*ov,ﬂw)

(c£. (K1, Korollar 5.2 and Satz 2.2]). ') Ultimately we will prove
(d) (and everything else) for arbitrary proper smocth V by
reduction to the projective case; but there doesn't seem tc be any
relatively simple reduction as there was for (a), (b), (c).

(ii) Theorem (0.1} enables us to define, for every closed
peint v € V (smooth or not), a canonical residue map res
(cf. (0.1.1), ignoring "f"). By means of diagrams like (0.1.2}, it
is not hard to deduce from (0.1)(c) that res, depends only on the
local ring Ov’v (and not on V), c¢f. §11. In fact it then
follows from {a) and {(b) and the results in §8 that res, depends

~

only on the completion {Ov v) -

Such a definition of (local) residues proceeding from the
smooth case via a global theorem to the general case, is not very
appealina, A direct and much more general homological definition
can be found in [HL], [Hol. It can be shown that this definition is
eguivalent to the preceeding one, where applicable, but there is as
yet no published proof.

* Tk *

We will deduce Theorem (0.1l) from a stronger result, which we

now describe.

In [K3, p. 68), Kunz defines the sheaf Ev of regular
differential forms on V, as follows. Consider first an integral
domain C which is a finitely generated k-algebra. Then by Noether
normalization there exists a polynomial ring

B = k[Xl,"',Xd] < C

(1)1n turn, the existence of T' and the fact that (0.1.3} is an isomorphism can
be deduced directly from (0.1).

13



such that C is a finite B-module and the corresponding extension
of fraction fields k(B) c k{C} is separable (cf. [N1, p. 152,
{39.11)); or Appendix A). A trace map T for degree d Kihler
differential forms is then given by

d

trace® 1 d -
= k®I& 5y By k= Tk (B)/k

a _ a
T By oy k= KOS 5y Y py sk

3
The "generalized Dedekind complementary module” EC/B is defined as

~

- d 4
Wesg = {v e Qk(c)/k T{Cv) < QB/k}

For any d-dimensional k-variety V, Kunz shows (and this is the main
result in [Kl]):

THEOREM (0.2A). There exists a unique Ov-submodule ﬁv of
the constant sheaf Qi(V)/k of meromorphic d-forms on V such that

for any affine open subset

U = Spec(C) c VvV

and any B < C as above, we have

P(U,wv) = Ye/p

The Ov—module ﬁv is clearly coherent. In [K1,8§5] the
following statements are proved: (i) The image of the natural map

d s . . . i~ .
QV + Rk(v)/k of holomorphic into meromorphic forms lies in Wy r with
equality .at smooth points. (ii) Hence when V is normal, EV, being
reflexive, consists of those meromorphic forms which are holomorphic
in codimension one, i.e. B = (9d)**, where §* = Homo (£,0y) for any

i v

ov-module F. (iii) Also, when V is a curve EV is the sheaf of
regular differentials in the sense of Rosenlicht (cf. (8, p. 76]}).
(C£. (11.4) in §11 below for a higher-dimensional generalization of
(iii).)}

In case V is projective, it is not hard to see that Wy, is a
dualizing sheaf, i.e. there exists an isomorphism of functors of

coherent ov—modules hi

Homy (9.%y) ~==> Homy (H(v,9) k)

14



(cf. [Kl, Satz 2.2)). One of our main results is that for any V
proper over k, ﬁv is in a natural way dualizing, i.e. there is a
natural k-linear map

By BV,B) >k
such that the pair (ﬁv,gv) represents the functor Homk(Hd(v,g),k).

Thus we have a dualizing pair (mV'EV) which is canonical

{not just unique up to isomorphism).

Here, precisely, is what is meant by the "naturality" of EV'
A dualizing structure on % is a family of maps {gv} as above
(i.e.(ﬁv,ﬁv) represents Homk(Hd(V,ﬁ),k) for each proper
d-dimensional V) such that, for each biratieonal map £ : V =+ W of

proper d-dimensional k-varieties, the following diagram commutes:

B0, 2,5 — s 1% (w,3)

(0.2.1) canonical B

W
v
Hd(v,mv) - >k
6
v

where o is induced by the inclusion map £,8, < Ty, (cf. Lemma
(3.2)). (This description of “"dualizing structure" is eguivalent to
the one given in Definition (4.1)). The dualizing structure is
normalized if for project:i:ve space P =3Pg {@a = 0}, "éIP is_the
well~known canonical isomorphism

Qo o~ L d ~
H CPJUJP) = H (Pr%) —> k

{cf. e.g. Proposition (B.4)). Then our assertion is:

THEOREM (0.2B). There exists a unigque normalized duvalizing

structure {Evl on @ such that for any finite separable

(= generically é&tale) map £: V+ W of proper d-dimensional
k-varieties, the following diagram commutes:

156



)
Hd(W,f*'tb'v) £ > yd (:::,aw)
eW
v
14 (v, 5, >k
v [l
v
where %f : f*ﬁv ~ W, is_induced by the trace map 1 for

meromorphic forms (cf. example (2.1.2)).

Remarks. (i) Theorem (0.1) can be derived from (0.2B) as

follows: define J to be the composition
v
eV

Hd(v,gv) patural Hd(v,m —_ sk

v

and check ... .

{ii} Just as for (0.1}, unigueness in (0.2B) follows from
Noether normalization and Chow's lemma.  (Note that in (0.2.1), o is
surjective since f*ﬁv s EW is a generic isomorphism.)

As for existence, giving ¥, is equivalent to giving an Oy~

isomorphism Ev H ﬁv * wy where Wy is some dualizing sheaf on V
{(wvhose existence is guaranteed by Grothendieck's duality theory, or
also by the simplified duality theory of Kleiman [Km 2]). Xunz's
methods provide a ¢ over any quasi-projective open subset U of

V, but this ¢ is defined in terms of a choice of a Noether
normalization of a chosen projective compactification of U; the
basic difficulty is to show that these local %'s actually do not
depend on the choices involved, hence patch together to give a
global EV . In addition, of course, we must show that the
resulting family {ﬁv} does form a dualizing structure as in (0.2B).

We will prove (0.2A) and (0.2B) in an equivalent ~somewhat
technical— form, given below as (0.3a) and (0.3B). First we need
some definitions (whose length will be justified by their
convenience).

16



In 51, we review the notion of coherent f~module, which means
{c£.{1.3)) a family {f'} indexed by k-varieties V, with f a
coherent 0 -module for each V, together with a family {Bl} indexed
by open immersions 4i: U + U', such that for each i, Bi is an

ou—isomorghism

Py, S £y

Bj

and such that for each pair of open immersions U —i—> ' —— y»
we have the transitivity relation

- ; (1)
Bji = Bi ° 1*Bj

A canonical structure on a echerent f-module {wv} consists of
the data (a), (b) below, subject to conditions (1}, (2), (3)
(cf. 52 for an egquivalent - and more complete - treatment):

(a) For each smooth d-dimensional variety V an
av—isomorphism

{b) For each finite separable map f: V » W, an f*o -
isomorphism

Tf : f *0y ———> Homow(f*ov,ww).

(1) Yy is compatible (in an obvious sense, via B) with open

immersions into v,

(2) Tf is compatible (via B) with open immersions into W

(precise formulation left to the reader).

(3) If VvV and W are smooth, and f: V > W is finite and

€tale, then T corresponds to the trace map (cf. (0.1) (b))

£

T : £

sy = £.0,80, —> o,

. )We could also work with the étale topology, i.e. substitute étale maps for
open immersicns.
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" in the sense that the following diagram commutes:

f*ﬂv sd > f*mv
f*YV
Tf
T Hom(£,0q. o)
evaluate
at 1
Qw N > W
W

The @O-module U = {ﬁv} (where the sheaves ﬁv of regular
differentials are as before and the Bi are the obvious maps}) has a
natural canconical structure (cf. example (2.1.2)). Moreover (2.4)

says that for any coherent {-module u)={wv}, the canonical

structures on » are in one-one correspondence with f-module

isomorphisms A : w —=> %, the structure on o corresponding to A
being obtained by pullback from the natural one on W, Thus the
notion of canonical structure is simply a characterization of T, up
to isomorphism. BAnd the proof of (2.2) shows that statement (0.2A)
above is equivalent to:

THEOREM (0.2A'). There exists a canonical f-module (i.e. a
coherent ¢-module together with a canonical structure).

But what is the point of all this elaboration? It's that we

have isolated the properties needed to show how U relates to
existing duality theory, and to prove (0.2), as we shall now see.

We define a dualizing structure {ev} (V proper) on a coherent
O-module w in a manner similar to that used above for W - cf.
Pefinition (4.1) for a precise statement. Given (0.2B), Remark (4.8)
says that the dualizing structures on w are in one-one correspond-

ence with -module isomorphisms A : o —2-> 3,

Thus we have a one-one correspondence between dualizing
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structures and canonical structures. We can also describe this
correspondence by the following statements (0.3A) and (0.3B), which
are together equivalent to (0.2A'} and (0.2B).

THEOREM (0.3A) (cf.(4.2})). There exists a dualizing {-module
{(i.e. a coherent f-modunle together with a dualizing structure).

THEOREM (0.3B) (c¢f. §6). Every dualizing f-module ({wv}, {av})
has a unigue canonical structure ({Yv},{Tf}) such that

(a) for projective space ¥ =.Pg (d = 0), the compositien

3

1 ()

1w, q) > B )

> k

is the canonical isomorphism ; and

(b) for any finite separable map f : V + W of proper
d-dimensional k-varieties, if tf : faw

oW

v w 18 T followed by

"evaluation at 1", then the following diagram commutes:

a
H(t,)
£ Ll (Wr )

B (W, £ )

®u

ad
H (V,wv)

>k
%y

Remarks. (0.3.1) The passage from dualizing to canonical
structures described in (0.3B) respects {-isomorphisms, in
the following sense. If w, w' are two dualizing modules, and
{(v.T), (v',T") are the corresponding canonical structures giyen by
{0.3B), then the unigue fH-isomorphism A : w + w' given by (4.7)
coincides with the isomoxphism of (2.3), because by uniqueness in
{0.3B) we see that (Y',T') is the canonical structure obtained from
(¥,T) by "push forward" via X (cf.(2.4)). It follows that the two
foregoing correspondences between dualizing and canonical structures
(one via(0.2B) and isomorphisms X : w + %, the other as in (0.3B))
are the same.
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(0.3.2) The equivalence of (0.2) and (0.3} can be seen as
follows. Trivially (0.33) and (0.3B) imply (0.2A'), and (0.2A) and
(0.2B) imply (0.3A). Given (0.3A) and (0.3B), hence (0.23),
Corollary (2.3) provides an isomorphism of fi-modules X : w -Z=> 3
which is compatible with the respective canonical structures; and the
existence part of (0.2B) follows easily (use X to push the
dualizing structure on w forward to W), Similarly, using {4.7)
we see that existence in (0.2B) gives existence in (0.3B). The
corresponding implications for unigqueness can be proved in a like
manner with the help of (2.4) and (4.8). N

(0.3.3) We have already noted that (0.2) = (0.1}, On the other
hand, (0.2} can be deduced from (0.3A) and (0.1). For if w 1is a
dualizing f-module, then for each proper V, Wy is torsion-free of
rank one (cf.(4.4)}, and so v {(which one checks to be non-zero)
corresponds to an Ov-homomorphism QV vy which becomes an
isomorphism when tensored with the constant sheaf k(V) of rational
functicns. The inverse of this isomorphism takes Wy isomorphically
onto fn Ov-submodule ﬁv of the constant sheaf Qg(v)/k (d = dim V),
and ﬁv contains the image of the natural map

a
v~ Sk

VeV (cf. §4), and set

Q For an arbitrary variety V, choose a compactification

£
@l

E-3
v —w‘7|v.
Using (0.1} and the defining properties of a dualizing structure, one
can show in a straightforward -if somewhat tedious- way that this
o, does not depend on the choice of ¥, and satisfies (0.2A) and

A
(0.28). "

In summary, we have indicated the following implications:

[(0.38) + (0.2)] » [(0.2a) + (0.2B)] o [(0.3B) + (0.,3B)]

1
{ )For verifying {(0.2a), note that any finite map

£ : U= $pec(C)+Spec(B) = W

has a compactification fl U, W, o= Pﬁ (cf. (5.4)), which may be assumed to be
finite (replace U by SpeT(fy+ OUl)} .
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(0.3.4) Let w be a dualizing module. In [E, p.34, Théoréme]
ElZein defines a canonical map

the fundamental class of V. (The existence of such a map was
asserted by Grothendieck in [G2, p. 114]}. This map expresses the
basic relation of differential forms to duality theory. It appears
quite naturally in our setup, because as we have seen w is
canonically isomorphic to W and, as we have also seen, there is a

natural map

~ d .
f = Qk(V)/k

d
vk T Yy
Of course if V is proper, then Cy corresponds to J . For any
v, if V_ 1is the smooth part of V, then ¢y is the V unique
extension to V of Yy o where vy comes from the

o

canonical structure on w given by (0.3B). A more complete
discussion (including an explanation of the terminology "fundamental

class") is given in §3.

Statements (0.3A) and {(0.3B) are consequences (more or less) of
[RD, p. 383, Corollary 3.4]. However one of our main purposes in
this paper is to provide a proof of (0.3) for which loc. cit. is not

a prerequisite. (We use instead the simpler, though less flexible,
duality theory given by Kleiman in [Km 2].) The other main purpose
is to describe the connection between local and global duality, via
residues (c¢f. [RD, p. 386, Proposition 3.3]). 1In fact, what was
referred to in Remark (ii) following {0.2B) as the "hasic difficulty"
{which becomes for (0.3B) the problem of defining Yy for non-proper
smooth V)(l) will be resolved by means of this connection (cf. §9).

(])We might like to define Yy, . via [Km 2, p. 55, Prop. 3.3}; but as far as we
know, a smooth V¥V may not have a Cohen-Macaulay compactification, at least if k
has positive characteristic.
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More specifically, two principal ingredien;s of our preoof are
Theorem (9.1), which asserts roughly that local duality is induced
by global duwality, and the following primitive residue theorem,

proved in §57-8 by means of explicit constructions.

Let ?o be the collection of all d-dimensional regular local
k-algebras R whose residue field R/m, 4is finite over k (mp
maximal 1deal of R), and such that the universal finite dlfferentzal
module rR/k. exists (i.e. there is a k-derivation R - ﬂi/k which is
universal for k-derivations of R into finitely generated R-modules
ef. e.g. [ssl, §11). For R € ﬁg set '

R, = P (Q

R R/k

THEOREM (0.4) ("Primitive Residue Theorem"). With preceding
notation, there is a unigue family of k-linear maps

d
resp : H“%(RR) - k (R € ig)

{where Hi1 denotes local cohomology) such that:
R

() If R is the completion of R—sgo that f; is the
completion of QR [881, p. 141, Korollar 1.6) and

d
Hma (85) = (9 ) — then res_ = res-:
R R ﬂh i R

(k) ig R, R' € ﬁg . and R + R' is a k~homomorphism via
which R' becomes a finite étale R-algebra, whence QR' = QRQRR'

and
| a
Q = H_ (Q_)®_R' ,
Hm‘R'( R mR( r ®r
then

resp, = resRD(letrace).

(e) I x is & closed point of the projective space P =P

|
X
and R = QP + then the following diagram (with J the canonical
— 'x P
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isomorphism) commutes:

da _ d canonical d
amR(RR) = Hx(s‘ﬁP) — HP, )}
resp I
P

2

Remarks. It should be noted that while this result as stated
contains a {global) definition of the (local) maps resg (if P is
assumed known, since every complete R € ﬁg is étale over some
(qp,x)"). the proof itself begins (§7) with the standard purely local

description of resp. which is then used in (8.4) to define J .
P
The above mentioned Theorem (9.1) is proved by reduction to the case

of projective space, where, in view of (a) and (¢) of (0.4), it
amounts to the following explicit version of local duality (cf.
Theorem (7.4)):

If RE ﬂg is complete, then the pair (Qprresy) represents the
Hd

!

(G),k) of finitely generated R-modules G,

functor Homk(

The preceding facts are summarized in the following stronger

Residue Theorem, which is the central result of these notes.

(In $10 wé will give a more general "relative" residue theorem,
and in 512 some consequences of the form

¥ residue (something) = 0. )
vEV
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Let %d be the collection of all d-dimensional local domains
R which are localizations of finitely generated k-algebras and whose
residue field R/mR nnR = maximal ideal of R) is finite over k.

As before (cf. (0.2a)), we denote by % the f-module of regular
differential forms. For any R ¢ ﬂd, R = C, where C 1is an
integral domain finitely generated over k and & is a prime ideal
in €. We define ﬁR to be the localization (EC/B)b,where mc/B
is as in the remarks preceding (0.2A); then (0.2A) implies that the
R-mcdule ER depends only on R. If S o R is a domain which is a
finite R-module, with fraction field separable over that of R, then
we define

~ d

g /R = {v ¢ nk(S)/k | 1tsvw) c ﬁR}

(cf. definitica of BC/B)' and check that if Si(l < 1 < n} are the
localizations of S at its various maximal ideals {s¢ that Si € %d)
then o is the localization (ws/R)ebSi. Note that if m; =, o,

:

Si i

then the trace map Tt induces a map

(0.5) e

1® s
-+

1

We can now state the

RESIDUE THEOREM (0.6). There exists a unique family of k-linear
maps

~ - d L
resy : Hﬂh(mR} + k (R & ﬁd)

satisfying the following conditions (a) and (b} :

o~

(a) (Normalization). If Rg %d is reqular, then Tesy
of Theorem (0.4) (see also the

coincides with the map resp
remarks following that Theorem).

(b} (Trace property). For any R,Si as_above, the following
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diagram commutes:

Hg\. (@ ) cf. (0.5) > %1‘ )
i i R

ress resR

Furthermore:

(¢} (Local duality). 1If ~ denotes m-adic completion, so
that

d .~

: a &
1B @) =82 @)
MR "mOR

then the paix (%R,resg) represents the functor Homk(ng(G),k) of
finitely generated R-modules G. R

(d) (Globalization). There exists for each proper
d-dimensional k-variety V a unigue k-~linear map

T, Hd(V,'GSV) >k

such that for each clesed point v € V, the following diagram

commutes:

a .. canonical d ~
Hv(wV) — > H (V,wv)

resy B

Oy,v v
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(e) (Global duality). For each V as in (d), the pair
(mv,ﬁv) is dualizing, i.e. represents the functor Homk(Ha(V,f),k)

of coherent () ~modules 3.

Remarks. (0.6.1) One can readily derive (0.6) — except for
{c} — from (0.2B), using (0.6)(d) as a definition of regg, which
makes sense by straightforward considerations following,from the
commutativity of (0.2.1), cf. the proof of (9.1)(a). (For (0.6) (b)
note that finite maps have finite compactifications, cf. footnote in
" Remark (0.3.3): for (0.6)(a), use (0.6)(b) to reduce to the case
where R 1is the local ring of a closed point of JPg e .} Then

(0.6) {¢) is a restatement of (9.1)(b).

Conversely, in view of (9.6}, (a), (b), (4} and (e) of (0.6)
easily imply (0.2B).

{0.6.2) The existence of the family resg of (0.6) will be
proved here in a roundabout and indirect manner, via global
considerations. A more satisfying local approach is given, under
restrictive hypotheses, by Kunz [K2]. He defines BS and the map

ress

=,Hgb(ﬁ5) + Xk

for any complete local Cohen-Macaulay k-algebra S with residue
field finite over k, Xk being assumed to have characteristic zero.
He has informed me that it is possible to eliminate the Cohen-
Macaulay hypothesis by the use of technigues such as are found in
[K1l, &4].

Of course even when (a), (b)), {(c) of (0.6) are worked out in a
purely lccal way, proving (d) and (e) is still difficult.

* * *

In §511-13, we give various complements to the Residue Theorem,
as described in their respective introductory remarks. Suffice it
here to mention that §13 gives an alternative approach to the
construction of o, via embeddings and the "fundamental local
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homomorphism" (Theorem (13.5)); and the essential local property of
residues for this purpose is given in Theorem (13.12). (In the
simpler approach described in this Intreduction, the corresponding
pPrinciple ingredients were Noether normalization, "evaluation at 1",
and the "trace formula" (0.4) (b) for residues.)

It should be noted that all the main results can be extended to
varieties over non-perfect fields, or indeed over regular local rings.
The main technical reguirement for such am extension is an adequate
noticn of the trace of a differential, with respect, say, to

inseparable extensions. Such a notion is available (cf. [K3), [&].
fLl1): and is treated in great detail in an unpublished manuscript
of Kunz.

Other topics which could have been dealt with are the behavior
of ® with respect to smooth morphisms, and the corresponding local
property of residues (cf. (R4) on p. 198 of [RP]); and an explicit
local description of the relative residue map p of Theorem (10.2)
{cf. {Ke]). I hope to return to these questions - in a more general
context - at a later time; but for now, enough is enough.
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I. CANONICAL MODULES

§1. Zariski sheaves -modules

(1.1) Let k be a perfect field, and let ¥ be the category
of k-varieties, i.e. non-empty reduced irreducible separated
k-schemes of finite type. For fixed V ¢ ¥, we will often consider
data defined in terms of various open immersions V -+ W, and so it
will be quite convenient to use the notion of Zariski sheaf on ¥,

which we now recall.

Let ?Zar be the subcategory of ¥ having the same objects as
¥ and having the open immersions in ¥ as its morphisms. Let
?:?Zar + (abelian groups) be a contravariant functor, and suppose
that for each V ¢ yZar' F(v) has an @V} = I(v,0,)-module
structure, and further that for each open immersion i:U = V the
corresponding map ¥ (V) + F{U) is a homomorphism of {(V)-modules
((U) being an (@(V)-module via the ring homomorphism O(V) + O(U)
.corresponding to i). For each V we denote by ?V the
restriction of ¥ to the subcategory of WZar whose objects are
the open subvarijeties of V and whose morphisms are inclusion naps.
Then ?& is a presheaf of Ov—modules; and we say that ¥ is a
Zariski sheaf of {) -modules - or, for brevity, that ¥ is an

{-module - if ?ﬁ is a sheaf in the usual sense for every V.

We say that ¥ is a quasi-coherent {resp. coherent) #H-module

if 7& is a quasi-coherent (resp. coherent} Ov-module for every V.

The notion of homomorphism of f-modules is defined in the

obviocus way.

Examples. (1.1.1) The functor ¢ such that, as above,
Otv) = T{v.0,) and Q(V) » 0(U) is the natural map for open
impersions U + V, is a coherent {~module. For each V, the
restriction Ov is identical with the usual structure sheaf.

(1.1.2) There is a guasi-coherent {-module % with
Z(V) = field of raticonal functions on V
{a field which we also denote by ki{V)).

(1.1.3) The tensor product ?‘ey,g of two f{-modules is defined
in the obvious way.
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(1.1.4) For each V let Q%/k be the usual sheaf of
. - : . e _ ,e 1
relative Kihler differentials; and for e = 0§ let QV/k = on(ﬂv/k),

the e-th exterior power. Set

Q) = T(Vfﬂdim v) ("dim" = "dimension™).

V/k
Then & 1is, in an obvious way, a coherent f-module. For each v,
we have
- Rdim v
b =89 -

(1.1.5) For each V, let &v be the sheaf of regular
differential forms on V, as described in the Introduction

(cf£. (0.2a)), Then there is a coherent f-module & such that, for
all v,

niv) = r(v,&v) .

{The definition of ¥(V) + &(U) for open immersions i:U + V is
left to the reader.) 1In this example, the two possible meanings of
the symbcl "mv" colincide.

(1.2) The main reason for introducing f-modules into this
exposition will not emerge until §4, where we deal with dualizing
f~-modules (cf. Definition (4.1)). As mentioned in the Introduction,
one of our principal results will be that the f-module o of
example (1.1.5) is dualizing.

{1.3) The category of O-modules is equivalent to the category
whose objects are: families of (sheaves of) Ov-modules ‘?ﬁ’vew

together with families of isomorphisms Bi:i*?ﬁ - fh (i:U0 > Vv an
open immersion) satisfying. the transitivity condition
= 1 xR,

vis-a-vis couples of open immersions U —i s v —3 .

More precisely (but with some details left to the reader):
If %' is an f-module, and i:U + Vv is an open immersion,
then there is an OU-isomorphism
VLinge ™ '
Bir-l ?v _-_}?U
corresponding by adjointness to the obvious map ?6 + i, %': and for

any pair of open immersions U —19 v -3 W the following diagram
commutes:
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i*j*?‘;, = (jl)*jv't"q
ixpt ]
i Bj B!,

vFy, g %

aAnd conversely:

Suppose given for each v ¢ ¥ an 0,~module ?V’ and for each
open immersion i:U - V an OU-isomorphism

Bi:i¥, — F

such that for any pair of open immersions U —ie v —ia W the
preceding diagram, with ¥,8 in place of ¥%, 8', commutes. Then

there is a functor F':¥ + (abelian groups) defined by

zZar
Frv)y =1 (V.5)

and (for open immersions i:U + V) by

TSN . P
#'L) .I‘(V,?V) canonical > 1“(u'l*‘fV) W F(U'?U)

I o
F1w) 51w

and this ¥' has an obvious f-module structure. In fact for each
Vv there is an Ov-isomorphism ’

T ~ *
ay iy — ?ﬁ
such that for any open subset U c V, with inclusion map i:U » V,

aV(U) is given by

ty W :TO,Fy) = Ty <= TUFy) = F7(0) = THO.55);

and moreover for any open immersion j:V - W, the following diagram

commutes:
#5
3 %
3*F — 7,
1%
7%y luv
T kY0 ~ ]
I Bﬁ > 7Y
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(1.4} Let ¥ be an f-module, and let R be a (commutative)
local demain with maximal ideal m, such that R is a localization
of a finitely generated k-algebra. We can then define an R-module
F.. the stalk of ¥ at R, as follows:

There exists a k-morphism

@:Spec(R) = V

where V ¢ ¥, such that the corresponding map

by, * R (v = om)

is an isomorphism. We order the collection of all such ¢ by
setting 9y = ¢, if there exists an open immersion ivy >V,
making the following diagram commute:

@ Vl
Spec{R} ,,3’/2 l i
%Vz

Such an i, if it exists, is uniquely determined by v and o,
[EGA 01, p.311,(6.6.1}(i)]. Furthermore [ibid, p.312,(6.6.2),(6.6.4))
shows that for any %1+ @, there exists a Py with 9y 2 9y
9y 2 p,. Now if o) 2 Pq then corresponding to i:Vl + V, we have
a map f(vz) - ?(vl); and thus we have a filtered inductive system.
We can then set
Fg = lim F(V)
ey
0]
The following assertions are easily checked. .
(i} Let K be the fraction field of R, and 4 the
transcendence degree of K over k. Then there are natural

isomorphisms
R —> O
o4 e
R/k R
{ii} ?k is in a natural way an OR-module, hence (by (i}) an
R-module.
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(iii) For any ¢ as above, with v = gp(m), there is a natural

isomorphism of R-modules

§2. Canonical f-modules

DEFINITION (2.1). A canonical (-module is a ¢guasi-coherent
f-module w together with the following data - which we call a

"canonical structure" on w:
(a) an isomorphism of functors
Y:Q|90 - wl?o

where ?0 is the full subcategory of ﬁZar whose cbjects are all

the smooth k-varieties, and Q is as in (1.1.4):

(b} for each finite surjective map f:V + W (in ¥) which is
separable (i.e. the corresponding function field extension
k(W) < k(V) is separable), an f,0,-isomorphism

Tetf w, ———> Hmnow(f* v W)
whose composition with "evaluation at 1" we denote by tf:f*wv > Wi

these data being subject to the following condition (which states,
roughly speaking, that tf is generically identical-via y-with the
trace map 1t for differential forms):

(2.1.1) Let £:V +W be as in (b)., Let v be the generic

point of V, set Kk(V} OV y (the function field of V), and
’

Qk(V) = Qv,v‘ Let V, €V be the open subvariety consisting of all

0
the smooth points of V, and set

Ty = Yo, v Tk 2 Yy,y
Similarly define (with w the generic point of W)
—_

Yo Uk (w) Wow

Then the following diagram commutes:
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kY @y = Svy Ty dy,y = (Haaydy,

T= trace ®1l t
= —_—
kW) @y 4y O () e tw) U, w

Remark. Of course the f,0,-isomorphism Ty and the
Ow-homomorphism tf determine each other; we can specify a
canonical f-module by (w,y,T) or by (w,y,t).

Example (2.1.2). The {-module & of regular differential forms
(cf.(1.1.5)) has a canonical structure. For V smooth we have
5V = QV (cf£. [Kl, Korollar 5.2), whose proof holds in the present
context} so that y may be taken to be the identity map. As for
tf, we have, by [K3, p.69, Korollar 3.7], with the sheaf of

mercmorphic forms 2= 2 @y 4 (cf.(1.1.2),(1.1.3),(1.1.4)), that

the image of f*&v < f*ﬁv under the trace map 'r:f*s-lV + ﬁw is
contained in &W, 80 that we can take t, = Tlf*(&v). To see that
the corresponding map Tf:f*av *fhmo (f, v,ﬁw) is an isomorphism is
a local problem, easily settled by cﬁoosing (locally) a Noether
normalization of W and applying [K3, p.56 Satz 2.2 and p.6l, Satz
2.12].

Remark (2.1.3). If o 4is a canonical (-module then w is
satisfies the Serre condition (Sz).

coherent, and for any V € ¥, w

v
(In particular, w, 1is a torsion-free Ov—module.)

Proof. The guesticn is local, so we may assume that there
exists a finite surjective separable map £:V + W = Spec(B), where
B = k[xl,...,xd] is a polynomial ring; then (a) and (b) in (2.1)
give an f,0,-isomorphism

Leuy — Hmzh(f*ov,ﬂw)

and we see easily that w, is coherent and that f,u, satisfies

(82), whence (EGA IV, (5.7.11)] Wy satisfies (52). Q.E.D.

We shall now see that any two canonical f-modules are
canonically isomorphic.
Let w be a canonical {~mecdule, and set
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w = w@o%
(ef. (1.1.2),(1.1.3)). Similarly set
R=0
®01(‘
(sheaf of highest order meromeorphic forms).

Clearly vy induces an isomorphismr
9|90 = wl¥,

which extends to an isomorphism

¥:0 oo
We have canonical maps 2 + §, w + ©. Moreover for any V,

- is injective because wu is torsion-free (2.1.3). We

Yy v
consider then the composed map
= -1
Aiw +» W -l—~—+ Q

v

which gives an isomorphism of w onto an f-submodule of §.

LEMMA (2.2). Let V = Spec(C) be an affine k-variety of
dimension d, and B = k[xl,...,xd] 4 polynomial k-subalgebra of C

such that ¢ is a finite B-module and the corresponding extension
of fraction fields k(B) < k{C) is separable. Then

- a a
{2.2.1) Aw){v) = {v ¢ Qk(c)/k"”c"’ = QB/k}

where 1. is defined by

a _ d trace @1 a _ od
k(e)/k TEO® 5y femy e T KBIGy 5y (my sk ™ Pk (B) /k

(2.2.2) 1:0
Remark. What this says is that Af{w) = & (ef. (2.1.2)).

However we avoid using & because we want to make clear that we do

not need here the main result of (K1) to the effect that the right

side of eguation (2.2.1) depends only on C. In fact the Lemma

shows that any proof of the existence of a canonical (-module implies

that result.

Proof. The proof is essentially a matter of unravelling
definitions., Let f:V » W = Spec(B) correspond to the inclusion
B = C. The right hand side of (2.2.1) is the C-module of global
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sections of the image of
Homo (f*DV,S)w) CHom?{ (f*iv,szw)
W W
undexr the isomorphism
Homirwff* V’ﬁw) — f*ﬁv

corresponding to Tt. So it suffices to show that the following
diagram {in which unlabelled maps are canonical) commutes:

f,w > Hom, {(£,0 ,u.)
*Vy T, O “*¥V'W
l l via Y
£y via T, > Hom%w(f* S Hdmow(f*ov,ﬂw)

-1
E*YV l ? via ?;11 k{///

) Hmm%h(f*ﬂ )

The only problem is with the subdiagram labelled ?; but this
is easily disposed of by means of condition (2.1.1).

COROLLARY (2.3). If (w,y,t), (w',y',t') are two canonical
{-modules, then there is a unigue f-iscomorphism A:w 2% @'

compatible with y and v', i.e. if V is smooth, then

Ay = YGOY; . Moreover this A is also compatible with &, t', i.e.
for each finite surjective separable £:V » W the following diagram
commutes:
e

f*wv > Uy

(2.3.1) f*Av lxw
¥ LY r
fauyg 3 7 Y

Proof. The first assertion follows from Lemma (2.2) and the
remarks preceding it. The commutativity of {2.3.1) can be checked
at the generic point of W (since wﬁ is torsion-free), where it
follows at once from (2.1.1).
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Remark (2.4). Let w' be a canonical f-module, and let w be
any {-module. It is easily checked that for any {~isomocrphism
Aiw —3 w' there is a unigue canonical structure on w such that
A is an isomorphism of canconical modules (as in (2.3)). Hence, and
by (2.3), the canonical structures on w correspond one-one to the

f-isomorphisms A:w — wu'.

§3. The fundamental c¢lass

Notation remains as in §2.

PROPOBITION {(3.1) (cf,(E,p.34]). If w 1is a canonical
{-module, then there exists a unique f-homomorphism

c=clw):@ »w

whose restriction to ”0 is y. Moreover c satisfies the
following trace property: if £:V » W is finite surjective and
separable, with W normal, then the following diagram commutes:

£,9,

canonical ‘ £

£ (0p) 0%y —rmomar™ O®% =%y o 7 W

Remark {3.1.1). If w' is another canonical (-module,
¢': + w' is the map given by (3.1), and A:w —=3 ' is the
canonical isomorphism of (2.3), then

c' = Aoc,

(8ince w' 1is torsion free, this need only be checked on ?0, where
it is c¢lear.)
Proof of (3.1). This is a straightforward consequence of

Lemma (2.2) and [Kl,p.15,Satz 5.5]. For completeness we give a
proof which is basically that of loc. cit., dressed up in the

terminology and notation of this paper.

We note first that since Wy satisfies (52), cf.(2.1.3}), we
have by [EGA 1V, (5.10.2) and (5.10.5)]:
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LEMMA (3.1.2). Let U be a non-empty open subset of V € ¥,
with inclusion map i:U + V. Then the canonical map prug > I,i%w,

is injective: and if V - U has codimension 2 2 in V then ¢

is bijective.

Now the Lemma gives an injection
n:Hom, (§,,0,) <— Hom, (&,,1i,i%*uw,)
0y iy iy 0y &y Yyl
= i * i* =
Homou(l Qv,l wv) Homou(ﬂu,mu)

from which we see (taking U to be any non-empty smooth open
subvariety of V) that there is at most one ¢ as in Proposition

{3.1).

To show that such a ¢ exists, suppose first that VvV is
normal and U <V is the open subset consisting of all the smooth
peints, so that V - U has codimension =z 2 in V. Then the above
n is bijective, so there exists a unique Ov-homomorphism

whose restriction te U is Yy If W is any open subset of V

then cvlw and c. both restrict to Yow o0 UnwW whence, as

W
above,

c, = C,|W .

W v

For arbitrary V, let miV + V be the normalization, and let

Cy be the composed map
1. s — = > S - .
(3.1.3) Sy 9V canonical Tr*'QV T.CH Tl t Wy

Let us show that for any smooth cpen U c Vv, Sy restricts on U to
Yy- As above, it will follow that for any open immersion i:W =+ V,
we have a natural identification i*cv = ¢, and then we can define
an f{-homomorphism c:9 + w restricting to Yy on ?0 by setting,
for each Vv ¢ ¥,

c{V) = I'lcy):T({V,Q,) ~ F(v,wv)
H] il

(v w{V)
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Let 1i:U + V be the inclusion. Apply i* to (3.1.3) to obtain
a factorization

i*c :i*Q . = i*M, 0 ——— i*T,ws —
i*cy,:i Qv ivm, 1*ﬂ*c§ kg —;;E;——é Wy
I
9U
So it must be shown that i*t“oi*n*cﬁ = Yy- Since Wy ’is torsion-

free (2.1.3), this need only be verified at the generic point of U,
where it follows easily from (2.1.1) because, ¥ being normal, we
have

colr by = v

v -1 :

It remains to prove the trace property. Again, since Wy is
torsion free, this need only be checked at the generic point of W,
where it is nothing but (2.1.1). Q.E.D.

LEMMA (3.2). Let (w,v,t) be a canonical {-module, and let
f:V.- W be a proper surjective map such that the corresponding
extension of function fields k(W) < k(V) 4ig finite and separable
{i.e. f is generically étale), Then there is a unigque map

tf:f*wv > Wy which localizes (modulo ¥} to trace ®1 at the generic

point of W (and hence is injective if f is birational).

Proof. There is a cartesian diagram

v s I

J )

W

with £' finite, i and j open immersions, and W - i(W') ‘of
codimension = 2. By {2.1.1) and (3.1.2), the map te extends to

the desired tg. Uniqueness and birational injectivity of tg hold

because w 1is torsion free. Q.E.D.
Remark (3.2.1). If f is finite then t: = tg.
The following variant of (3.1) is more general in appearance.
COROLLARY (3.3). With f£:V = ¥, (w,y,t}) as_in (3.2), there is

a unique map
Ce = cf(w):f*ﬂV * Wy
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. _
generically equal (module v} to trace 81, namely Cg = tfof*cv. In

particular, if W is smooth we have 2 unigue map f*ﬂv - Qw
generically equal to trace 1 (hence independent of wu, if w exists),

namely Y;1°cf-

Remarks (i). Of course the trace map T:f*ﬁv + ﬁw of §2 gives
rise to a map T':f*ﬂv + Qw; and (3.3) tells us in particular that
the image of 1' lies in f, if W is smooth. This is well-known
{e.g. [K3,p.69,Korollar 3.7] and [Kl, Korollar 5.2]), but not trivial,
(It depends classically on the "equality of Dedekind and Kihler
differents".) Here we have exhibited it as a consequence of the

existence of a canonical #-module.

(ii). (Not.used elsewhere). The map Sy is ¢alled the

fundamental class on V for the following reason. One of our main

results will be that there exists an (-module w which is both
caneonical and dualizing (cf. Introduction). Suppose then that V is
a closed subvariety of a smooth proper (over k) variety X. With

d =dim V, ¥ = dim X, it is well known that (w being dualizing)
there is an isomorphism

U.‘lv 0 (0
(cf. [H, p. 242}). Hence c gives rise to a canonical element via

N-a
Homov(ﬂv.fxtox 0y 0y))

N-d
Exto (er QX)

N- a o
EXtox Oy k80 '“x/k

¥

-d
Exto (Ov. x/k)

¥

where the arrows are canonical maps, and H|V| denctes cohomology
with supports in V. This way of associating a cohomology class to
Vv < X, was introduced by Grothendieck in [Gl]. It will play no
role in this paper:. but it is important e.g. in Angenicl's theory
of Chow schemes [A].
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II. DUALIZING MODULES

§4. Existence and uniqueness of dualizing Qamodules

DEFINITION (4.1). Let w be a guasi-coherent f-module, and for

each open immersion i:U -+ Vv let B.:i*wV = wyy be the natural
A dualizing structure on « is a family of k-linear

isomorphism.

maps
(d = dim V)

a
BV:H (V,mv) + k

one for each proper k-variety V, such that:

{1) for each such V the paix (/65,0
Homk(Hd(V,g),k) of guasi-coherent Ov-modules g; and

represents the functor

for each commutative diagram
)2

0 e
~

1

(ii)

with i, j open immersions and VvV, W proper over k, the following

diagram commutes:

i*(ef)
i*f*wV > i*ww
(4.1.1) cancnical Si
1% L
Iy B 7 Yy

where ef:f*wV > @, is the map (whose existence and uniqueness is
guaranteed by (i})) such that, with d = dim U = dim V = dim W,
a Hd(ef) a

H (W, f,0y) —————5 H W, 0,

(4.1.2) canonical W

d
BV, w,) — k

v

commutes.
A dualizing f-module is a quasi-coherent f-module together with

a dualizing structure.




We will see below (Remark (4.4)) that a dualizing {-module is
necessarily coherent.

THECREM (4.2}, There exists a dualizing f-module {essentially
unique, cf, (4.7)).

Proof. We define a guasi-coherent 0v~module wy; for each
VeV as follows:

- if VvV is proper over k, of dimension 4, choose an Uy which
represents the above functor Homk(Hd(v,g),k) [Km 2, p.43,Theorem 4j;

in particular comes equipped with a k-linear map

v
8, () :Hd(v,wv) > k;

- for arbitrary V, choose a compactification, i.e. an open

immersion e, :V ~ ¥ with V proper over k, ¢f. [N2] (choose

v

ey = identity if V 1is already proper), and set
Wy = erﬁ .(1)
In view of (1.3), it clearly suffices for proving (4.2) to find
isomorphisms
By ri*ug = Wy (i:U + Vv an open immersion)
such that

(4.2.1): for any couple of open immersions U —— V —2— W we have

Bji = BiOi*Bj H

and such that moreover

(4.2.2): condition (4.1){ii) is satisfied.

This will take up most of the rest of this section.

We need the following preliminary version of relative duality
which will be used in this section only in case f' = identity, but
which will also.form the basis for §5.

(l)It is possible to bypass Nagata's compactification theorem by first defining

Wy only for guasi-projective V (via a projective compactification), then
for arbitrary V cheoosing an affine covering {Va} , and with the following

results pasting the W, together to obtain Yyer Then one must verify...
o
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PROPOSITION (4.3) (Deligne). Given a commutative diagram

v [4 j

— v
w < T > W
1

where V and W are proper k-varieties, i and j are open
immersions, and f' is proper, surjective and with all its fibexrs
6f the same dimension, gay d, set r = dim W (so that

dim Vv = r + d4), let

4
PR L0y + wy

be the Ow-homomorphism corresponding by the defining property of W
to the composed k-lineaxr map

LU N > B9v,00) ——> &
v

canonical

(w, 6 as above, and cf. Remark (4.3.1) below), and for any guasi-
coherent Ov-module ¥ ilet

_ . d d
B = ®f,?.f*Hom0v(?'wV) —lm“;.u?i_l_) Hom ow (R f*?,R f*wv)

————— Hom (Rdf*?,w )

via Gf
be the induced f*Ov-homomorphism. Then, with ¥' = §*¥, we have
that ’

. d .
i*@:f, Homov‘ Friitey) - Homow' (ROE3F ' i%a)

I I

d
. .
l*f*Homov(f,wv) i Homow(R f*?,ww)

. . ; {1}
is an jisomorphism.

Remark (4.3.1). 8Since dim W = r, we have, for all ¢ = 0 and
any quasi-coherent {,-module ¥,

1
(l)i.e., with the notation of [Km 2,p.42], j*wv = f"i*ww.
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P w,r¥ 9 =0 (p > r)

and hence the Leray spectral seguence gives rise to a canonical map
i w,RYE,9 - 85UV, 9) . Moreover RYf,9 is supported in the
subvariety of W over which the fibers of f have dimension = g
{use {EGA IIX, (4.2.2)] and the fact that ¥§ is a direct limit of
coherent sheaves [EGA 01, p.320, (6.9.12)]), a subvariety which, if

q > d, has dimension at most r + & - ¢ - 1, so that

P, R, 9 =0 (if g>d and p+qgar + d);
and the spectral sequence shows then that the canonical map
Hr(w,Rdf*g) » 85w, 6 s surjective.

Proof of (4.3). Note that, £' being proper, 3j{(V') is open
and closed in - hence equal to - f-l(i(w')}. In particular
(rg1yo9% = 1%. (&3, ).

Mow the guestion is clearly local on W'; so it suffices to
show that i*@ induces an isomorphism on global sections over W',
i.e. that T(i*@} is an isomorphism. Also, we may assume, since 7
is a direct limit of coherent ov-modules, that 5 itself is coherent.

Let I be a coherent { -ideal defining the reduced closed
subscheme W - i(W') of W, so that IOV defines a {not necessarily
reduced) subscheme of V whose support is V - f-li(w') =V - j5(V').
Then for any n = 0 we have 3*(I"f) = ¥', and there is a natural
commutative diagram

r(a,)
Hom, (I"F ,0,) —8— Hom, (R, 1%, w,)

l l

Homv.(?",j*wv) — Homw,(Rdf;f',i*mw)

I'(i*e)
where @_ = 6 . For some n and all n =z n,, the image of the
n n-n n
natural map 'mn:Rdf*In? - Rdf*I 07 is 1 0Rdf*I 0F  (cf.

[RD,p.422]); and the kernel K, of P is supported cn W - W',

whence
HomW(Kn,wW) o Homk(Hd(W,Kn),k) = 0;

it follows that ¢, induces a bijection
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L Inof ) =3 H rRe, 1%, )
* sl —— omw( * i) .

HomW(I

In view of this, and of [EGA 01,p.323, (6.9.17)], we see that applying
lim (over n} to the above diagram makes the vertical arrows into
-+

isomorphisms. Furthermore the following natural diagram commutes:

Hom (I'F @0, ) =~ Homw(Rdf*In?',Rdf*wv) —5 Homw(nd_f*f‘?,ww)
1© | €l

r+d
Hom (4 1"F) 6w )y omy (17 (8%, 1) 1T (%2 0.)) > Hom (6 (%, 1), KT (1)

N f

5, |®@ Hom, (1" (22, 1) 17"V () @ oy
&
rom (579 (1) ,x) > non (1" (%, 1) k)

Here the top row is F(@n): (:)o(:) is an isomorphism by the
definition of Wy i and similarly (:)b(:) is an isomorphism. We
conclude: it suffices to show that the canonical map

{4.3.2) 1im Homk(H”d(I“?‘) ,k) + lim Homk(nr(adf*xn?) k)
- -
n n

is an isomorphism.

We remarked in (4.3.1) that the canonical map
AT (RAE, 1) wFH (107
is surjective: hence (4.3,2) is injective. Surjectivity of ({(4.3.2)
amounts to the following: if Kn is the kernel of hn' then for
some N > 0 the natural map Kn+N > Kn is the zero map. Again
using the Leray spectral sequence, we see that it suffices to show
that

R, 1"y o p9: 17
is the zero map for g >d and@ N large. As above, if n is
sufficiently large the image of this map is INqu*In? for any N;
and since qu;IQ? = 0 (the fibers of £' being of dimension 4,
cf. (4.3.1)), we have INqu*In? = 0 for large N. Q.E.D.



Remark (4.3.3). At the end of the preceding proof it would have
been enough to show that
oP (w, R, 17N7) - wP(w,r%E, 1)
is the zeromap for g>d, p+gzr +d -1, and N large; and
so it would suffice for such p, g, N that

uf w, 1r%, 17%) = o,

which is certainly so if for p < r - 1 the genefic fiber of £
over any p-dimensional subvariety of W' has dimension
<r+d-1-p (so that for g > d the support of qu;ln? has
dimension < r +d - 1 - gq). Hence we can Weaken the assumption in
(4.3) on the fibers of f' to the following assumption:

if E c V' is a closed subvariety of codimension one, then

f'(E) € W' also has codimension one (in other words, the subvariety

v e v'|aim (£'7L1y) > &}

has codimension > 2 in V'),

Remark (4.4). We can see that any dualizing module w is
¢oherent as follows: the guestion being local, we need only show
that Wy is coherent when V 1is projective, so that there exists a
fénite map f£:V > W = Pg (d = dim V): by the duality theorem on
Py ({H,p.240), [Kn2,p.55]1), we know that there is an isomorphism
Wy ) QW: and then by the simple case [d = 0, f = £' finite,

i = identity, j = identity, ¥ = Ov] of (4.3), we have an isomorphism

£ty ity Homow (£40y0 ) »

whence Wy is indeed coherent.

* * *

Next, to define Bi and prove (4.2.1) and {4.2.2) we need a
few remarks on compactifications. Given two compactifications
itV > X, j:V+ Y we say that j = i if there exists a map f:Y¥ + X
such that f£4 = i. Note that such an £, if it exists, is uniguely
determined by i and j, since j(V) is dense in Y and
OY - j*OV is injective. Finally any two compactifications 1i, j
have a least upper bound, namely the map eij:V + 2 where Z 1is
the closure of the image of the composed immersion

diagenal 5> VXV ixj > Xx ¥

v k > £y
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and eij is the obvious map.

Now given two compactifications i:Vv - X, j:V » Y, we define an
isomorphism
.k M- X )
Mijidtey = i*uy

‘as follows:
first, if j = i, then, applying Proposition (4.3), to the
commutative diagram

v-—d 5y
i £
V—-i—-'—}x
we set
= j = ji¥
{(4.5.1) “ij l*®f:0V i Bf

(notation as in (4.3));

second, for arbitrary i, j, let e = iy (see above) and set

(4.5.2) uij = uieo(uje) .

The definitions (4.5.1), (4.5.2) agree when 3j =2 i; in fact
in (4.5.2) we can take e to be any compactification such that

e =i and e z 3j, and this does not affect "ij' Indeed:

LEMMA 4.6. (i) For any three compactifications i:V -+ X, J:V - ¥,

h:V + 2, we have
Hijo¥sn T Mip

(i1) Given compactifications i:V + X, j:v ~ ¥ and an open
immersion £:U + V, we have

= *
Mig, g2 = *TMyg -
The (slightly tedious) proof is left to the reader. (The basic
point is that for a composition 'V —Eé WL X, with VvV, W, X all

proper and of dimension 4, we have 8 = egog*ef.)

gf
Finally we can define Bi for an open immersion i:U =+ Vv, Let
e, U » g, e,V > V be the compactifications chosen as.at the
beginning of this section, so that
Ry = ek =
wy = efug wy = efuy .

Then evi is a compactification of U, and we set
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. = Lt{e i)*um ———— efus
By ”eu,evl leyl)rug ejru

i*wv Wy .
(4.2.1) is now a direct conseguence of Lemma (4.6):

B.: = U s = U Y T .
Jji ey edi eyreyl’ eyl e 31

Bioi*ﬂj .

As for (4.2.2), it simply amounts to uij = B;loaj, which again
follows from {4.6) because V and W are now proper, so that ey

and e, are identity maps:

B eB. = M, U°“eU,j = Vij

This completes the proof of the existence of a dualizing {-module.

Finally, for unigqueness,we have the following analogs of (2.3)
and (2.4).

PROPOUSITION (4.7). Let (w,{ev}), (w',{84}) be two dualizing
f-modules. Then there is a unique {-isomorxphism JA:w —5 '
compatible with 6 and 6', i.e. such that for each proper V, the

following diagram commutes;

d
. H ()}
1YV, ug) v > 1 (v,0))
(4.7.1) MA A
k
proof. For each proper V let Av:mv ] w& be the unigue

Ov-isomorphism making (4.7.1) commute (Av exists because w and
w' represent the same functor). For arbitrary V, choose a
compactification i:¥+ ¥V and set Ay = i*Az: that this A, does
not depend on the choice of i follows in a straightforward way

from the definition of dualizing structure and the fact that any two
compactifications have a least upper bound. It is then simple to
verify that the family {Av} gives an {-isomorphism, as asserted.

Remark (4.8). Same as (2.4), with "canonical™ replaced by
"dualizing", and (2.3) by {(4.7).
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Exercise (4.9}. Generalize the results of this section by
using Kleiman's notion of dualizing pair [Km 2,pp.41-447.
(Caution: the proof of fibid, p.58, example (viii)) is globally,
but not locally, correct.)

§5 Relitive duality

As a first step toward the proof of Theorem (0.3B) of the
Introduction, we want to define, for a given dualizing module w and
a finite surjective map f£:V =+ W, a natural Ow-homomorphism

tf:f*wV g
such that the corresponding f*Ov—homomorphism
Tetfauy, Hog%;f*ov,ww)

is an isomorphism.

With a little extra effort, we can deal with arbitrary proper
surjective maps, and prove the following relative duality theorem.

THEOREM (5.1). Let (w,{8,}) be a dualizing f-module; and
for each open immersion i:U + Vv let Bi:i*wv —— Wy be the natural
isomorphism. It is then possible, in just one way, to assign to
each proper surjective map £:V + W of k-varieties an

Ow—homomorphism

d . ,
9f:R f*wV - Wy {d = dim Vv - dim W)

so that the following conditions (i) and (ii) hold:

(1) If W (hence V) 1is proper over X, then 6, is the
unigue map making the following diagram commute (r = dim W):

r d Hr(ef) r
H (W,R f*wv) 7 H (W;ww)
cf.{4.3.1) l lﬁw
B v, ay) . >k
v

(ii} For any commutative diagram of maps
v ed sy

fl lfl

TR
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with £, f1 both proper and surjective, and i, j both open

immersions (so that j(V) is open and closed in - hence equal to -
fIli(w), i.e. the diagram is cartesian), the following diagram
commutes (d = dim V - dim W):

s ypd
i*R7E, w — > i*w
1, Vi i Gf

canonical

R j*w B,

Furthermore, if all the fibers of f have the same dimension
d,(n then for any guasi-coherent ov-module ¥, the f*Ov—

homomorphism
d
®f:f*Hom0v (f,mv) - HOMOW(R f*}’—,ww)

induced by Bf is an isomorphism.

Remark (5.2). 1In case f:V~+ W is finite and surjective, we
set tf = ef, and then taking ¥ = GV in the last assertion of the
Theorem, we have that the f*Ov—homomorphism

faoy > Homow(f*Ov,wwx

corresponding to tf is indeed an isomorphism. So we have, for u,
condition {b) in Definition (2.1} (without any separability

assumption) .

Later on, in the procf of (9.1), we will use the following
trivial case of (5.1):

Exercise (5.3). Let f:V - W be an iscomorphism, so that we
have the canonical identification of functors £, = (f_l)*. Then

(l)cf. {4.3.3) for a weaker assumption.
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Proof of (5.1). The underlying idea is quite simple - we will

observe that any proper surjective £:V + W can be compactified,
i.e. embedded in a diagram as in (5.1} {ii) with Vl and Wl proper
over k. Then efl is uniquely specified by (5.1) (i), and hence
ef is determined by (5.1)(ii}; and the last assertion of (5.1) is
given by (4.3). The problem then is to show that:

(5.1.1): ef, as_just described, does not depend on the chosen
compactification of £.

So let us begin with some further remarks on compactifications.
A compactification of a map f:V + W is a commutative diagram

3
V—=sv,
(5.4) £ lfl
W ——-——,-—-; Wl

with Vy» W, proper over k and il,-jl open immersions. Such
compactifications always exist: for example we can first choose
compactifications ilzw > Wl’ j:v > V' of the varieties W, V; and
then we can take V1 to be the closure in V’xk wl of the graph

of the map ilof (j1 and fl being then the obvious maps ).

We say that a compactification

3
v 2
(5.5) fl
W

dominates (5.4) if there is a commutative diagram
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/ e

b

N

Note that for commutativity in (5.6), it suffices that gj2 = jl and
h12 = iy for then flg = hfz because jz(V) is dense in V2,
0V2 - 32*0V is injective, and f£,9j, = hf,3,.

Any two compactifications (5.4), (5.5) of f are dominated by
a third one: we first choose a compactification i3=w > W3 such

that there is a commutative diagram

(for example, as in §§ we can take W3 to be the closure of the

image of the composed immersion

n - ‘*“——-—-}
W diagonal W k W i,%d, Wl k 2)’

similarly, choose a commutative diagram

N

vV —mm V!
i3 3

Vi
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and finally take Vy to be the closure in Véka3 of the graph of
the map i3of {so that we have obvious maps V3 - W3, Vg V2,
V3 - Vl...).

We return now to (5.1.1).

We need to consider two compactifications (5.4) and (5.5) of £;
and since these are both dominated by a third compactification, we
may assume that (5.5) dominates (5.4). The problem becomes then to
show, with reference to (5.6}, that the following diagram commutes:

Rdf*jvaz —— R0, ——2s it

b

0
Rdf*wv " ® ige, ®) ite, ] @ T,
B- . Bi

Rdf*jiwvl — iy,

(]

—_—_— ik
1 lfefl 17wy

The commutativity of subdiagrams @ and @ is given by (4.1) (ii).
This leaves us with subdiagram @, which can be modified and
expanded to:

8
f
P+ | ; d 2 ;
LIRTE 0y, —————— iih,R £y atoy > ifh,uy
2 2 2
T @ canonical @ ) leh
é
a . a and e S
R f*jamvz —_— iiR (hfz)*wvz = liR (f]'g)*wvr2 Em— 1iwwl
e
1 canonical @ I f]_
a. . - o 3apd
R f*ji‘g*wv2 _— 1fR fl*g*mvz og > liR fl*le

The commutativity of @ and is left to the reader (wV2 can be
replaced by any Ov_-module). As for ©, after dropping the

2
initial ii‘s, applying the functor Hr(wl,-) (r = dim Wl) and
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chasing around the commutative diagrams which define eh,ef , and

Bhfz, we end up having to show the commutativity of the following
natural diagram (where, again, wvz can be replaced by any

ﬁvz—module Fy:
@ .

r d r d

H™ (W, h,R f2*wV2) > H (W,R fz*wvz)
r d , . r+d

H (erR (hfz)*wv ) > H (VZ’wV }

2 ® 7 2

This is a technical exercise, ‘! best carriedout with the language
of derived categories (cf. remark (5.8) below). Having forsworn

such a luxury, we ocutline the argument as follows:

For any complex of sheaves

n-1 n
R MU SN

and any integer e, let ¢ (C') bLe the complex
e

e—l) - Ce+l " Ce+2 ...

e o+ 0 + 0 » coker(§
For simplicity, write f for £,. Given an Ovz-module ¥, let I°
be an injective resolution. There is an obvious map of complexes
h,£,I' » h,o.f, I, and taking homology Hd, we get the canonical

°a %
map Rd(hf)*? > h*Rdf*?. Hence there is a commutative diagram of
complexes
(h, R, %) (-4 > haosf,(I')
* > *V gk
(5.7)
d .
{R™(hf) *?)["d] Cd Gdh*f*(I )

(where, for an object G, G{-d] is the complex which is G in
degree d and 0 elsewhere), Replacing each complex in (5.7) by
an injective complex with the same homology, we obtain a homotopy-

(l)only the simple case d = 0 1is used in subsequent sections,
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commutative diagram, from which, applying sections over Wy and

then homology Hr+d, we derive the commutative diagram

®

Hr(wl,h*Rdf*?‘) > H”d(vz,?)

o] |

i (Wl,Rd (hf) F)

> 17w, 5 :

@

It remains to show that (:) = (:)u(:). Por this, consider a
homotopy-commutative diagram

£, 171 [-a) = (&%¢,9) [-a] & > 0f,0°
B Y
J’ — K*

where o 1is the obvious map, J® and K' are injective complexes,
and B and Yy are guasi-isomorphisms (i.e. they induce isomorphisms
on homelegy). From this we derive a homotopy-commutative diagram

(h,8.%) [-q) _ —5 h,o0,f,I"
o~ A
L* —> N*
l “ ” h,y
M* — N
P N
h,J > h,K*

where L, M*, N* are injective complexes, and «k, i, p, v are
quasi~isomorphisms. (Note that, odf*(I') being flasque, h,y is
a2 quasi-isomorphism.) Finally, apply sections over W to the
inner square and then take homology Hr+d to obtain @ = @o@

This establishes the commutativity of the above subdiagram ().
Subdiagram () is treated similarly. Q.E.D.
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Remark (5.8). 1In the language of derived categories, the

basic point in the preceding proof of (2) = ®°@o® is the
commutativity of the following natural diagram:

(h,RIE,7) [-a] Rh, (R3€,%) [-d]

(8% (ht), ) (-a] ——> o FhREF ——> Rh,o0, REF

(to which one applies Hr+d.IR1"(W1,-) cel)s

§6. The canonical structure on a_dualizing module
We proceed with the proof of Theorem (0.3B) of the Introcduction.
So, given a dualizing module (w,{08,}), we want to construct
a canonical structure ({YV},{Tf}) satisfying conditions (a) and
(b) in (0.3B). The dualizing property of w gives the unigueness
of tf - or, egquivalently, of Tf ~ satisfyving (b): it must be the
t of Remark (5.2). What is needed then is an isomorphism

f
vial¥, = ]¥,

satisfying (2.1.1), and such that Yp is the canonical isomorphism
when P =ZP§ (d = 0). ({This canonical isomorphism over P is

well-known, from numerous points of view, e.g. [Gl,p.l49-13,
Théoréme 2], [K2,pp.186-1871, [RD,p.204, Corollary 10.2],

[Km2,p.55, Proposition 22); we will realize it via the residue map
at the vertex of the projecting cone over T, cf. (8.4) below.)

As mentioned before, Y c¢an be derived from the general duality
theory of Grothendieck, Hartshorne, Deligne and Verdier. But as we
want to avoid using this theory, and anyway wish to bring out
relations between the foregoing material and residues and local
duality, we will rely ultimately on local considerations to be
developed in Chapter III.
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We will now give a local description of ¥ which is forced by
the akove requirements (so that vy is unigque, if it exists globally):
and then in the remainder of this section reduce the existence
problem to a question of patching (Proposition (6.3)).

Let, then, V be a d-dimensional smooth variety, so that V is

covered by open sets va each of which admits an étale map h = hUl

into P =JP§ [EGA IV, (17.11.4)]. By zariski's main theorem there is

a commutative diagram

(6.1) ﬁ\\\x k(//1:=ha

where i is an open immersion and h is finite. 'Y We have an
qp-homomorphism

trace @ L:h,h*q, = h,0; 60, > Gposy, =

whence a composed h,0z-homomorphism
E*E*% —_— HOI’HQP (5*0‘—’,%)

-?;:» Hom%(h*O‘-,,uﬁp)

_— ey hw=
(me) -1
h
(with o the cancnical isomorphism). Correspondingly we have an
Oﬁ—homomorphism
h* -
(6.2) h %P + wV
and finally, restricting to Va:
Y, 10, = h*Q. = i*h*Q o iwy- 3 o 4
Va Va %P %P v Bi Va
(Bi being the natural isomorphism). This Yy is actually an
a . .

isomorphism, as can be seen for example by completing, i.e.

making the base change

(l)Such diagrams can also be obtained via Noether normalization, cf. Appendix A.
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Spec(ép’h(v)) -+ 1P, (v € Vu)

and using the fact that since § = 3V v is a finite étale algebra
!’
over R = QP,h(v)’ therefore the map § -+ HomR(S,R) corresponding

to the trace map S + R is an isomorphism.
In §9 {(following Corollary (9.2)} we will prove:
PROPOSITION (6.3). If V., Vg, h :v, -9, hg:¥g +2d are as
above, then the corresponding maps Yy and YVB agree on Va n VS'
o

This enables us to complete the proof of (0.3B}, as follows.
Given a smooth V = U Va as above, we can define YV:QV + by by
patching together the Va. If j:v' = VvV is an open immersion, then
Yyr = j*yv: to check this we may assume V = va and use the diagram
i =

VA l 7

v
hej \l/h
i

{cf. {6.1)) to define Yy - It follows that there exists a unique
0-isomorphism v, = mIWO whose restriction to each smooth V
is the above Yy {which coincides with the canonical iscmorphism
when V =1F).

It remains then to verify (2.1.1) for a finite surjective
separable map £:¥ + W. Using (5.1) (ii) (with d = 0) we may
replace W by any open subvariety, so we may assume that there exists
an etale map h:W + P =:P§ {(sc that W 1is smooth, of dimension &),
and that furthermore f is étale. Starting as with (6.1), we get

a commutative diagram

v J

H-

=
y

N
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where i is an open immersion, h is finite, W can be taken to be
normal, f is the normalization of W in the function field of W,
and j is an open immersion; and we can use this diagram to
calculate the maps Yyr Yo

A little reflection shows then that (2.1.1) (for f) is
equivalent to the commutativity of the diagram

— 6.2) -

£ E*hixq, ( Eoug
{6.4) trace;@l tf

h*qy %)) vy

which follows from the (readily proved)} commutativity of subdiagrams

@,@, and @ in

trace tﬂ'f
h,h *R.IP E*wﬁ
z//1£;ce C) Q?\\N
% o > “
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III. RESIDUES AND DUALITY

§7. Residues and local duality for power series rings

In this chapter III we develop some local theory - and its
relation to global duality - and use it to prove Proposition (6.3),
which is all that remains for the proof of (0.1), (0.2} and (0.3) of
the Introduction (cf. (0.3.3)).

The "primitive residue theorem" (0.4) is proved in §§7-8, The
connection between local and gleobal duality is then given in (9.1).
As pointed out in (0.6.1), the Residue Theorem (0.6) follows from
(0.2) and (9.1). Finally, in §10, we give a "relative" generalization
of (9.1), and hence of the Residue Theorem.

To begin with we need some notation for specifying elements of
local cohomology modules. Let R be any d-dimensional noetherian
local ring with maximal ideal m, and let U = Spec(R) - m. We
assume d = 1, leaving the trivial case d = 0 to the reader. For
any R-module M, let M be the corresponding quasi-coherent sheaf on
Spec(R). We have a canonical surjective map (bijective if 4 > 1)

(7.1) ¥, » .
Tf L= (tl,...,td) is a system of parameters in R, and
U; €U is the open set where ti does not vanish, then {Ui}lsisd

is an affine open covering e¢f U, giving a Cech complex which can be
used to compute HYl(u,f). we denote by

m/(tl,...,td) or m/t (m € M)

the image under the map (7.1) of the cohomology class of the Cech
{(d-1)-cocycle
0 =
m/tlt2°"td € H (Ul n U2 ﬂ...ﬂ.Ud,M) =M

t1t2"'td
Thus any element £ € H%(M) can be represented as a "generalized
fraction”, in which the denominator is a system of parameters (for

example the system ta = (ta,...,tg) for some a > 0 depending on
£). The map m & m/z is clearly R-linear, i.e. fractions with a

given denominator can be added and multiplied by elements of R in
the obvious way. To say more we need rules for determining when two
generalized fractions represent the same element of Hﬁ“M).
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LEMMA (7.2) Let R, £, M be as abkove. Then:

(a) m/t = m'/E (m,m' € M) if and only if for some n = 0
(n =0 if M has depth d) we have

n n+l _n+1 n+l = $n+l,
(t1t2...td) {m-m*) ¢ (tl 1ty ""'td M o= LR ¥
{b) if +t' = (t',té,...,té) is_a system of parameters in R,
with
e] = 5§=1 T4ty lsisa rer

then, denoting determinant by "det", we have

-— 1
m/E = det(rij)m/g .

Remark. To see whether p/E = q/z, where now p, g are any
elements of M and 4. ¥ are any two systems of parameters, choose
a system of parameters t such that tR c UR 1 VR, wuse (b) to
write p{g = m{E, q/v = m'(s, and then use (a). Similarly (b)
allows us to find the sum P/E + q/x, viz. (m-&m')/ﬁ.

Proof of (7.2). (C£.[S2} for an alternate treatment.) We first
recall the Koszul complex interpretation of local cohomology. Let

K,(E} be the Koszul complex determined over R by the sequence 5
(cf. e.g. [EGA ITI, §1.1])., &s a graded R-module, K. (t) is the
exterior algebra A(Rd); and if el,...,ed is the standard basis of
Rd, then the differential

§: AP (%) » aP~1 (g4, (0 < p < a)
is given by

iy .
ble; Ae, A...Ae, ) = f (-1)77%¢. e, A...AB., A...hAe.
.11 lz lp j=1 lj 1.1 lj lp

We let K'(E,M) be the complex
K*(t,M) = Homp (K, (), M)

and dencte the cohomelogy of K*{t,M} by

H* (t,M) = B (K" (t,M)).
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The map cp:Rd + g% given by

wley) = J5_) ryge (1s1isd)

extends to a map Alp) of exterior algebras
k.g) = Ay el s ae? - ko),

which is moreover a map of complexes. Hence we obtain a map of
complexes K'(E,M) - K'(t',M), and the corresponding cohomology map

wem = ude,m » u et x et

is induced by multiplicatioﬁ by det(rij) in M. In particular we
see that the R-modules

H (87, M) = M/ePM (n > 0)
form an inductive system, with maps

Vot M/EbM - M/t {a = b)

given by multiplication by (tltz...td)a'b. As in [G4,p.20,
Proposition 5) we have then a canonical isomorphism

(7.2.1) tim 22 > 13

- ~

n
under which m/E is the image of the cohomology class in Hd(E,M) of
the map in Kd(t,M) = HomR(Kd(g),M) which takes the generator

ey Ae, Avauney, of Kg(k) = Ad(Rd) toc m. In other words, after
naturally identifying Hd(E,M) with M/tM, we have that m/t is
the canonical image of (m+tM) € M/tM,

The assertion (a) of (7.2) should now be clear. (It is well-
known - and not hard to show - that wab is injective if the
sequence t is M-regular, i.e. if M has depth d.)

Now we prove (7.2)(b). In case d = 1, set t, = t, ti = t' = rt.

Then H°(U,M) is the module of fractions Mo =M, Hrln(m) is the

cokernel of the natural map j:M ~+ Mt’ and
W/t = W/t b 3 (M) € M/ = ).
So (7.2} (b) follows from the equation (in Mt)

m/t = rm/rt = rm/t'.

Suppose then that d > 1. We have to show that the diagram
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M/tM —_—~ sl (M)

(7.2.2) det(rij) l m(M) pard H (U M)
a}

M/t'M —— > Hd(t' M)

(with maps as described above) commutes. For this, we l;ok more
closely at the map a. Let £° be the Cech resolution of M|U
associated with the covering {U }. (cf. e.g9. [H,p.220, Lemma 4.2]).
If F' is an injective resolutlon of M]U, then there is a homotopy-
unique map of complexes ¥° + §°, whence the canonical isomorphism

H' ({0}, 0) = B (ru,g")) = w'(rw,d7)) = 8w,
Next let L' be the complex of guasi-coherent sheaves (on Spec(R)):

0 ——> Kl(_t_,M)“‘ _— Kz(E,M)N — e

|| I

(KI(E,M) as above). There is a canonical commutative diagram
(cf. EGA III,p.86})

L —s y — -

~ f
i !
\go —_ gl 5 ..

g .

and ¢ is the resulting cohomology map

g @ s e awg » BN w, s
I n

1% (g, m) 11y, M)

-

Replacing t, g*, ¥ by t' g, &', we get a similar description
of «a'.

As above, we have a map of complexes' X + %' . which is
multiplication by det(rij) in degree 4 - 1., Since EO
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therefore %'|U is a resolution of M|U, and so the diagram

|

AR

7y

Iz

is homotopy-commutative. The commutativity of (7.2.2) now follows.

Now we can move toward the definition of the k-linear residue
map

res._: H%(QR) + k

R

wvhere R 1s a complete regqular d-dimensional local k-algebra with

maximal ideal m such that the residue field R/m is finite over k,
o
.8pec(R), and RR = Qg/k is the d~th exterior power of the universal

denotes cohomology with supports in the clesed point m of

finite differential module ﬂé/k {(i.e. there is a k-derivation

1 f v s R R . R -
§:R =~ QR/k which is universal for k-derivations of R into finitely
generated R-modules).

This residue map was mentioned by Grethendieck in [G4,pp.59-60),
though it appears to have been aroundé in analytic garb for a long
time [GH,Chapter 5]}, and might have been khOWn in some algebraic form
to Macaulay {always with R regular). There exist various algebraic
treatments in the literature, for example [(RD,pp.195-199), ([V,p.400]
and, more explicitly, [B,§4] (R regular), [S$82] (R a complete
intersection), [K2,§2] (R Cohen-Macaulay), [HL] and [Ho]

(R arbitrary}; and, from an intriguingly different viewpoint, [L].

% * *
Since the residue field R/m is assumed finite over k, ané

X is perfect, therefore if X is the integral closure of k in R
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then K is a finite separable field extension of k, and if

E = (tl,...,td) is a regular parameter system in R (i.e. m = tR)
then R is the power series ring K[[tl""’td]]° Moreover the
universal finite differential module Q%/k is free over R, with basis
6t1,...,6td. We define a k-linear map

d .
res, : Hm(ﬁR) + k

as follows: as above any x ¢ Hi(QR) can be written as
x = v/t = (] atler) /el
~ I Lad ~

for some v € RR and some integer a > 0, where I = (il,...,id)
runs through d-tuples of non-negative integers, o7 € K,

1_ R i i
tT = tl t, ...td » and 4§t = 6t16t2...6td; and we set

rest{x] = traceK/k(aa—l,a-l,...,a-l)'

~

By (7.2) this definition does not depend on the choice of the
representation x = V/Eé {note that QR £ R has depth d). Moreover
we have, with v = EuItIGE as above,

a a
1 4a _
resE[v/(tl reenitg )] = tracex/k(aal_l’_.-'ad_l) {a; > 0)

LEMMA (7.3}, 1If t = (tl,...,td), u = (ul,...,ud) are regular
parameter systems in R, then res, = res .

Ld Ll

Proof. Since resk is k-linear, and since (7.2)(a) implies
that ' . '

v/£2 = a tlst/e?

where the sum E(a) is taken over those I = (il,...,id) such that
0= iA <a for aA=1,2,...,d4, therefore it is encugh to show, for

any o € K, that

7.3.1 ; =
( } ress[aﬁz/fl = traceK/k(u)
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and that for any d~tuple of positive integers (al,...,ad), at least
one of which is = 2, we have

] 23
(7.3.2) resglaé,g/(tl resedty Ml o= 0.

To prove {7.3.1) it is clearly enough to show that

(7.3.1)" s£/t = Su/u .

~

We can write

with elements rij € R such that det(rij) is a unit in R. Then

d a
. = - N 3
Su, Z‘j=1(¢5ru)t:| ijl x50ty
so that

65 - det(rij)GE € EQR

and hence, by (7.2),
det(rij)ﬁs/s = SE/E = det(rij)GE/E.

Since det(rij) is a unit, {(7.3.1)' follows.

For (7.3.2) we use the map
o+ Hp(@97) - mp @20 = Hqay)

induced by exterior differentiation considered as a map of sheaves of
abelian groups over Spec(R). Working over U = Spec(R) ~m, we find
that, for B € K,

b
4d

d

; A b
17.3.3) Bm[BGUl...Gui...ﬁud/(u 1....,u )i

: b b.+1 b
i
= (-1) biﬁtsul...aud/(ull,...,uil ""'udd )
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and it follows easily that

= d, .4a-1.
(7.3.4) resE[Bmy] = for all v € HnﬂﬁR/k) .

Replacing u by t in (7.3.3), we see with 0 ¢« p = characteristic
of K that if a; £ 1 {mod. p) for some i then for any o € X,
a a
11,...,tdd)
In particular this completes the proof when k has characteristic

H
udtl...étd/(t is 3yvy for some vy, so that (7.3.2) holds.

Zero.

Moreover, we have an induced map

=== . ud d . d-1, _=d.o .
rest : Hm(QR)/amHm(QR/k) = Hm(QR) k.

~

To treat the case a; £ 1 (mod. p) for all i (where now we may-
. . . n
assume p > 0} we consider the exterior algebra ' = ®nzDQR/k as a

complex via the exterior differentiation §, so that the homology

H = @ HYQY)
n=0

is a graded anticommutative 1Z-algebra, with 52 =0 for all E € Hl.
Since exterior differentiation is Rp-linear, we may consider H® to
be an R-algebra via the Frobenius map F : R -+ RP (F(r) = r¥ for all
r € R). Then there is an R-derivation y : R ~» ut given by

p~1

y{r) = homology class of r ér ,

whence a homomorphism of gtaded R-algebras (the "inverse Cartier

operator")

In particular we have an R-homomorphism

a-1
R/k

-1
c : QR - QR/aﬂ
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induecing
-1 .d d a-1, _ =d
m : Hm(ﬂR) > Hm(QR/BQR/k) = Hn,(QR) .

(For the last equality, use the fact that 8 is RP-linear, and that

+1 :
H% 1 vanishes on RP-modules.) One checks, for B € K and for
non-negative integers @perrer€yy that
el+1 ed+l e,ptl edp+l

(7.3.5)  cprissy/(at .o ) 2 Puat L u )

(mod. image of dgy)
and consequently that

(7.3.6) 786 (Cpilz]) = (res [21)P for all z € Hp(@y) -

o~ -

Now set
v, = sup{n|p"” divides ai—l}
and

v =min v,
lgixd
so that v < » if some a; > 1. If wv ='0, then some a; is 1
{mod p), and as above (7.3.2) holds. Then, using (7.3.5) with t in
place of wu, and (7.3.6), we see by induction that (7.3.2) holds for
any value of v
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It makes sense now to define
res -Hd(ﬂ )y »+ k
rRTM YR

by resR = resg

~

for any regular parameter system k.

We have then the following form of local duality:

THEOREM (7.4). Let R be a d-dimensional complete regular

local k-algebra, with maximal ideal m, such that [R/m:k] < = ;

= o .
and let QR = QR/k be as above. Then.the pair (QR,resR) represents
the functor

H'G) = Hom, (HH(G), k)

of finitely generated R-modules G@G.

Proof. Since H' is left exact, we have a natural functorial
isomorphism

H'(G) = HomR(G, H'{R))

(cf. [G4, p.44, Proposition 1.1]). In particular, corresponding to
res; € liWQR) we have an R-homomorphism

ol > HYR) ;

and by running through definitions we find that (7.4) simply asserts
that o is an isomorphism.

If t is any regular parameter system in R, then one checks
that o is the inverse limit (cf. (7.2.1)) of the naps

] n, n
Opi8p/t 0y + Hom (R/LVR, k) n 2 1)
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associated with the pairings
n n
pn.RR/E QR » R/E’ R +~ k

given by

n no. o _ n
pn(vts pr THE'R) = res, (rv/t").

~

Using the k-bases

a, a, ay
{tl £ty dtldtz...étd] 0= a; <n
b, b b
1,2 d
{tl ty %ty } 0<by <n

of QR/E?QR, R/EPR respectively, we see at once from the definition

of resx that the pairing o is non-degenerate, i.e. % is an

isomorphism. Q.E.D.
As a formal consequence of (7.4), we have a more general

appearing versicn of local duality:

COROLLARY (7.5). Let R be any d-dimensional complete local
k-algebra, with maximal ideal mwm, such that [R/m:k] < =. Let §
be a d-dimensicnal complete regular local k~subalgebra of R, with
maximal ideal n, such that R is a finite S-module. Let w = bp,S
be the R-module

w = HomS(R,QS]

and let e:w -+ RS be the S-homomorphism given by "evaluation at 1".
Let p = p be the composition
— R,S
ER) = 8wy —— 1@y ——s
m n Hd{e s’ resg )
n

Then the pair (w,p} represents the functor Homk(HgJG),k) of
finitely generated R-modules G.
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§8. The residue theorem for projective gpace

In this section we establish the "primitive residue theorem"
{0.4)}. For this, we will define the canonical isomorphism {for

projective space P = ]P;:)
a ~
LP= H CIP,QP) — k

using the residue map at the vertex of the projecting cone over P
{Proposition (8.4} below), and then the theorem will come out of
Lemma (8,6) which describes a caponical cohomology map via Eech
cocycles. 1In essence this proof is closely related to the one
sketched in (RD,p.200,Proposition 10.1]). Another proof, based on
the Cousin complex, can be found in [K2,pp.186-187].

Using res, as defined in §7 for lecal rings of the form
R= K[[t),...,t )] € ], and then (a) of (0.4) as a definition
of resp for non-complete R ¢ %g, we can reduce (b) of (0.4) to
the complete case, which is readily handled (details left to
the reader), because any étale K{{tl,...,td]}-algebra is of the form
K‘[[tl,...,td]] with K' finite and separable over K, and the

trace is transitive:

traceK./k(u) = traceK/k(traceK./k(a)) a e K'.

The rest of this section is devoted to a proof of (0.4)(c). We
begin by recalling scme explicit descriptions of differentials and
cohomology on d-dimensional projective space P = Pi (d = 1), leading

up to the definition of .

For any graded module M over the polynomial ring
kixX] = k{XO,Xl,...,xd], let M be the corresponding guasi-coherent
sheaf on 1P, In particular we . consider the module of Kidhler
differentialsg ni[X]/k' graded so that the free generators Dxi
(D = universal k-derivation, 0 < i =< n) have degree 1. There is
a canonical exact sequence of qp-modules [AK,p.11], [H,p.176]

1 ~]
(8.1) O % > kw2 b 0

where § comes from the derivation of QP = (k[X]1)™ into ﬁi[x]/k
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induced by the universal derivaticn D:k[X] -+ Qi[x}/k (which is

homogeneous, of degree zero); and n is induced by the "Euler
derivation” of k(X] into itself, i.e. the derivation taking any
homogeneous f of degree n +to nf. If ¥ € k{X] is a linear
form, anad AY = k[XO/Y,...,Xd/Y], then over Spec(AY), the comple-~
ment in I of the hyperplane Y = 0, we can describe (8.1) as
follows: we continue to denote by D the natural extension of D
to the ring of fractions k{X]Y, and let G:QP - %é/k be the
universal derivation; the module of sections

1 _ 1
Ty = I (spec(Ay) /1%y k)
consists of elements of degree zero in the graded k{xlyﬂmodule

1 1l

9] = Q
k[X]Y/k

- )@AY[‘;',Y”"L]DY,
AY[Y,Y

-1 1
= {(a,l¥,¥ “]g, Q
l]/k Y AY AY/k
and hence is the direct sum of the AY-module generated by
{D(xi/Y)}Osisd and the (free, rank cne) Ayumodule generated by
Y'lDY; and, over Ay, {8.1}) corresponds to the split exact segquence
of AY-modules

1

e N N
(8.2) 0—'—“‘99%/}{ TQ {Y) ny ,AY > 0
given by
£,(8F) = Df (£ € ay)
ﬁY(D(Xi/Y)) =0 (0 < i< d)
-1 _ (1)
nY(Y DY) =1 .
From (8.1} and (8.2) we cobtain a canonical isomorphism
_ 41 d.l ~, AG+1%1 _ ~d+l
(8.3) Vil = ATGReATR s > AT 1 e T k)

which is given over Ay by

1
¢ )The equivalence class of (8.1) in Exﬁé‘qk'“iyx’ = Hlap,q;/k} is the

cohomology class of qP(l) [H, p.367, Ex. 1.8].
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1

¢(6f16f2...6fd) =Y DYDlef2...Dfd (fi € AY)

Now let R be the localization of k[X] at the maximal ideal
m= (XO,Xl,...,Xd)k[X] and let m=MR be the maximal ideal of R.
For a graded k(X]-module M, let M* be the guasi-coherent sheaf
on A* = Spec(k({X]) - {M} corresponding to M. There exist
canonical surjective homomorphisms

®: o EP@,Hm)) — Hl,::]'(l‘{m) (p = 0)
nez

(bijective if p > 0}, arising as follows: any finite seguence

£ = (fo,fl,...,fm) of positive degree homogeneous elements in kiX]
such that k[X]/(fO,...,fm) is a finite-dimensional vector space
over Kk defines an affine open covering ¥* = (U*,...,U;) of BA*,
with

U;={x G&'ﬂfi(X)#U} (0 g i<m;
and an affine open covering ¥ = (UO,Ul,...,Um) of P, with
u; = {y e®[f, (y) # 0} {0 = ixm).

Then there is a natural identification of Cech complexes

€7 (%, &, Hin)) = €7 (@, %)

(cf. [EGA TIII,§2]). So we have an isomorphism

~

8l: ® H'(®,M(n)) > B (a*,M%),
~ NEZ
This 6% does not depend on the choice of £: for if
g = (gofél,...,gm.) is another such segquence, and
£9 = (5399 1 ciem, 159am"

is the product sequence (ordered in some way), then the coverings
of A* and P associated to Eg refine those associated
respactively to f and g, and the standard way of mapping the
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L8
Eech cohomology of a covering to the Cech c¢cchomology ¢f a refinement
{applied over both A* and ) gives

0L =82 = §' .

1
£ f3 ¢
Composing the isomorphism 6' with the natural surjective maps

+1
HP (a*, M%) - HE (M)

(bijective if p > 0) we obtain the above 0P

Ordinarily one would compute 6 by taking f to bea "system
of coordinates" on P, (i.e. the fi are linearly independent forms
of degree 1, and m = d). The point to note is that 8 1is then
independent of the cheoice of coordinates.

In particular (cf. (8.3)) there is a natural isomorphism

o Him,q,m) > H%*l(ngj}l:) (@2 1).

nez
Moreover, we have

4 ~d+1
H GP'Qk{x]/k(n))

1

mie,q, (n)

T

1@, 4% gy (-1 ) ()
= 1,0, (n-a-1))

which vanishes when n > 0, while for n =< 0, following through
definitions, and with notation as in §7, we find that

4d da+l  .d+1 : . : s s

H GP,%P(n)) < Hy (QR/k) is the k~vector space with basis consisting

of all elements of the form

a a

0 d
DX DX ...DXd/(X0 ,...,Xd )

0771

where a; > 0 (0 =1x<4d), and

a, =4d+ 1 - n,
o &

1~

i
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Now the completion (R/k is naturally isomorphic to the universal
finite differential module Qﬁ/k ¢+ SO that

d+1 d+l d+l d+1

Hm ~ (9 ) = Hg " (Q50)
and as in §7 we can set
_ N wdtl, A+l
resR = resR. Hm (QR/k) + k
From the definition of resp = res we conclude that:

(XO,Xl,...,Xd)

PROPOSITION (8. 4) With preceding notation, the residue map

resy annihilates H P, %P(n)) for n ¥ 0, and induces a canonical

isomorphism

~

d
tH™ (P, ) — k.
[iriw.g

Remarks. We do not of course actually need the residue map to
define ! { Wwe can simply say that LP is the unigque k-linear map

under which the generator

DXO...DXd/(Xo,...,Xd)

of the one-dimensional k-vector space HduP,%P) goes to 1 € k.

This description of LP is independent of the "coordinate
system (xo,...,xd)"; because if YO'Yl”"'Yd are linear forms
such that

k[Xo,...,xd] = k[Yo,..., d]
then (cf. (7.3.1)"):

(8.4.1) DXO...DXd/(XO,...,Xd) = DYO...DYd/(YO....,Yd).

By the way, the eguality (8.4.1) is equivalent to the following
statement, which is also a corollary of (0 2B): if f: P +P is a
k-automorphism, then the map H a®, @P) + H {, f*%P) induced by the
natural 1somorphlsm %P - f*%p ig inverse to the natural map
H ®, f*%P) + H ®, %P)

* &® *
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For any closed point x € P, H; will denote cohomology
supported at x, As at the end of §7, we define the k-linear map

a
res : HX(QP) + k

by passing to the completion of the local ring qP <+ Then part (c)
r
of the "primitive residue theorem" is:

PROPOSITION (8.5) (Residue theorem for ). For any closed
peint x € P, the following diagram commutes:

d canonical d
Hx(%P) H GP,QP)
res I
%
\ /P
k

Proof. We first reduce to the case where x is a k~-rational
point. ‘

Let K be the residue field of [4] ¢ SO that -K/k is a
r
finite field extension, of degree, say, e. Let K' 2 K be a finite
Galois extension of k, and let

d =‘de K* a'md

XK' Kk k-F

T:Ip' =
be the projection map. Then the fibre n_l(x) has e members
Xys-+-sXg, each of them K'~rational:; and for i =1,2,...,e, the

e

natural map of completions QP,x - qp"xi is etale.

Consider the following diagram, where j:k €— K' is the
inclusion, and the unlabelled arrows represent canonical maps.
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da d
Hd (a,) — we.g)
res g
b4
k - LP
B (9, w0,

Kl

The rectangles in this diagram are clearly commutative. Once (8.4)

is known for the K'-rational points X4+ then the lower triangle
commutes, and one can deduce (8.4) (details left to the reader)
from the following two statements:

(8.5.1y If ¢t = (tl,...,td) is a regular parameter system in
QP,x’ so that the image £ of t in qp"xi is alsc a regular

-~

parameter system, if a 1is_a positive integer, and if v € Qp has
X

image vy in SHP‘,x.( then
i

e
. a - . a R
jlres 1v/t"1) = Zl resxirvi/gi] ;
and:
(8.5.2) For any u € H'(P,Q,), with image u' in e,
we have

J Moo= j([ [TH RN
' P

Proof of (8.5.1). To find resx[v/ta], work in the completion
A ~
s = QP % and proceed as in §7: write
r
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v=7 aItIGt ,
I

so that resx[v/zé] is the coefficient of ti-l...tg-th in

= I
traces/kllt]}(v) = é traceK/k(aI)t st.

Now just note that "trace" = "sum of conjugates": more precisely,
using the fact that trace is compatible with base change, and that,
with §' = K'{[t]],

f1 6
8 §' = g K' = '
®kilt)) LS O T
with 0., x. & g§' for each i, one finds that
trace (v) = trace ' ; (vel)
s/kl[{t}]) (S@k[[t]]S 1/8
_ e
=l v

{where Rk[[t]]/k is naturally identified with a subgroup of Qs'/k)'
From these observations, (8.5.1} follows.

Proof of (8.5.2). Check that if u 1is the canonical generator
of HdGP,QP), then u' is the canonical generator of HdUP',%P,)...

It remains now to prove (8.5) when x is k-rational. The maps
involved do not depend on coordinates, so we may choose a coordinate
system (XO,...,Xd) on P such that x is the point (1,0,0,...,0}.
Let Ui (0 < i < d) be the complement of the hyperplane X, = 0.

i
Then ¥ = (v} is an open covering of P,

Dgi=zd

x} =P - U u;
i>0

and

g = {uy n Ul

is an open covering of U, - {x}. Bet £ = xi/xo, which is a
rational function on UO' An examination-of the definitions of
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res and J shows that it suffices to do the following : consider
P

in the_éech complex g'(a',gp) a (d-l)=-cocycle of the form

a a
- 1 4 ,
¢ = 5tl...6td/tl...td € I‘((Uoﬂul) N...N (UOnUd),SEP) (ai > 0);
the corresponding cohomology class in - {x}, qp) has a

canonical image in Hg(%P) and hence in H UP %P)' thén prove
that this last image is represented by the d-cocycle £ in 5'(%;%P)

given by

. a4 33
£ = atl...atd/tl seatyg - € I‘(U0 nYNn...n Ud,%P)

{which maps, under the canonical isomorphism (8.3), to the d-cocycle

d+l-a1-...—ad al a ~d+l

a
DX DX, .. .DX /X, g +-Xq € TU, N...Nn Uy, k[x]/k)

[0 I R
which is a coboundary if 4 + 1 - a) ~...-ay s 0, so that its
_cohomology class vanishes unless a; = a, =...= ay = 1, in which
case the cohomology class is the canconical generator of HdGP %P}).

Thus we need to explicate the canonical map H {+) » H P, )
in terms of Cech cohomology. This is carried out in a more general
context in the following discussion, whose principal conclusion
{Lemma (8.6)) provides a solution to the preceding problem.

Let U be any topological space, and let ¥ = {Ul}leI be an
open covering of U. . We assume without loss of generality that the
index set I is totally ordered, and has a least element 0. Set

Y=U- U U,
i>0

then Y c U0 is a closed subset of U, and

#' = vy nugl, o,

is an open covering of U0 - Y.

Let 7 be a sheaf of abelian groups on U, and consider the
alternating Cech complexes

8? g & g} =g, .?'IU0 -y
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s0 that for any p 2z 0 we have

g2y, F) = I1 Fu, nug N...n ;)
i0<il<...<ip 0 1 P

with the usual differential d:¢P - gP*1,

ARV ;F|U0 - ¥). Recall that for any complex C:

and similarly for

. : Cm—l d N P a N cm+l -

E[l] is the complex such that for all integers n

i = ™,

~

and whose differential d[l] is -d4. We define a homomorphism of
complexes

Q= @?—: g? —_— g?[l]
as follows:

For any £ € ﬁép, let

=gt e P - g8

be given (for i0 < il < e < ip € I} by

%, . .= £, . (€EFU.NU, N...nU, }) if i.=0
1011"'lp ll"'lp 0 i, 1P 0

= 0 if io > 0.
That ¢ is a homomorphism of complexes, i.e.
(ag)™ = -df

is easily checked. Passing to cohomolegy we deduce a homomorphism,
functorial in %:

B: W', Flu, - v = B » Wz = @9,

LEMMA (8.6). The following diagram -~ in which unlabelled arrows
represent ¢anonical maps, and Hé is cohomology with supports in y-

commutes:
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P
)
Hpr%',?luo - v) 2 > #P L 5)

| l

WU, -v,7) ——— wb*g) — Py g

Proof. Let

0 >F —E£spr =0 2 pl 8 . 2 >

~

LY

be a flasque resolutiocn of ¥. As in [Go,p.213]) we can describe a
p-cocycle E* in F(Uo-Y,FP) representing the canonical image of
the homology c¢lass of a p-cocycle £ € Z}P as follows:

et € g’g is the coboundary of some ¢P°1 ¢ g'ghl
F F

(_1)p-2a£p—1 € 8'{'1 is the coboundary of some £P—2 € ?'f‘z
F F

(_1)P-33£P~2 € g'g'z is the coboundary of some £F - ¢ 8'5'3
F F

1
" € 8'1 is the coboundary of some EO € 3'0

Fp-l Fp-l

0 ' .
88" is a O-coecyele in 4 g + hence the image of some E*r ¢ I‘(U0 -v,FP .
Pt

Operating similarly with E € 3g+1 . we find that we can
actually take

TP+l _ _ p-i p+l-i .
3 = -® ;& €867 , l=i=<p.
F F
To get £*, we still need EO € 80p . which we construct as follows:
F

let I ¢ Fp(UD) be such that

EIUO-Y=E*

(£ exists because FrP is flasque}; and define £V by
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(‘E)i:E 1 o=
=0 i>0
Then we check that aEi € glp is indeed the coboundary of EO.

F
Thus £E* € F(U,Fp+l) is such that

C13

E*IU0

]
o
[y

v
(=]

gxjuy

On the other hand, calculating the canonical map

v2: wPu_-v,7) - L) - P, 7
¥ 0 '
by applying the exact sequence of functors
0 — TY _— I‘(UO,') E— I‘(UO-Y,-)

to the flasque resolution F', we find directly that Wg takes the
cohomology class of £* to that of the above <£*.

This completes the proof of Lemma {(8.6), and hence of (8.3) and
the primitive residue theorem.

§9. Compatibility of local and global duality.

Phe main result of this section, Theorem (9.1), shows how a
dualizing f-module induces local duality. This result may be viewed
as a special case of [RD,p.386, Proposition 3.5}. The proof is by
reduction to the case of projective space, where the results of
§567-8 are immediately applicable. Theorem (9.1) enables us to give
in {9.3) a guick proof of Proposition (6.3), thereby completing the
proof of (0.32) (cf. §§4,6) hence of (0.2) {cf. (0.3.2)); and then
- as indicated in (0.6.1) - the Residue Theorem (0.6) follows.

As in (1.4), we consider a d-dimensional local k-algebra R
which is a localization of a k-algebra of finite type having no non-
zero zerodivisors. We assume furthermore that, m being the maximal
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ideal of R, the residue field R/m is a finite extension of k.
Let V be a proper k-variety, and let

¥: Spec(R) » Vv

be a k-morphism such that the corresponding map

(veom)
Oy,v * R
is an isomorphism (Spch V, ¢, with say V projective, clearly
exist.) Note that v is a closed point of V, since 0v v is

- r
residually finite over k. Let g = ({ww},{ew}) be a dualizing
{=module (cf., §4). Define Pr = pR(w) to be the composition

d U a v 4a eV
H (CUR) —_— Hv(wv) —> H (V,mv) —3> k
where U is defined via the isomorphisms Ov v —» R,

R® w —3 w induced by ® (ef. (1.4)(iii)), and v is the
ov v VoV R

natural map from local to global cohomology.

THEOREM (9.1) (a) The map
(not on ).

PR depends only on ®w and R

(b) If "~ denoctes m-adic completion, so that in particular
da . IO . -
Hm(mR) = Hﬁ(wR), then the pair (wR,pR) represents the functor

Homk(Hg(G).k) of finitely generated R-modules G.

Proof. (a) Suppose we have maps @, ¢ Spec(R) -+ Vi (i =1,2) as
above. By [EGA 01, pp.311-312], there exist open neighborhoods vi
of mi(m) in Vi' and an iscomorphism w:vi + Vé such that

wml = ¢2. Let V3 c VX V2 be the closure of the graph

[ ] ]
Ty €V % V3 €V x ¥,

of ¢(1). Then, as is easily seen, there is a commutative diagram

(1 ) . . . .
V3 is also the join of Vl and Vz. i.e. the closed image of the cancnical

map Spec(K) =+ Vl xk'Vz, where K is the fraction fiels of R.
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Spec(R) v

such that the map OV V. (m) —— R induced by CPB is an isomorphism.
Thus we may assume wi%ho t loss of generality that there exists a

map f:V2 - Vl such that ftp2 =%y For convenience we set V = V2,
W= Vl’ v o= CPZ (m), w= Cpl (m), so that f 1is a local isomorphism at
v and f(v} = v:l.l We have then the map 8.:f,w, = wy of (5.1), and
the assertion (8+8){a) results from the commutativity of the following

diagram (where the unlabelled maps are the cbvious ones):

d d
._..._..._......_..9
Hv(wv) H™(V,uy)

/ _ 1

-y
Hap () 1 B (0) s 0 ® S F

via Bf @ via Gf \I’ /”' -
=\ 4 d ~— &
Hw (ww) ——— H (W,ww) L

The commutativity of @ follows from (5.1) (i), and of @ from
_(5.1)(ii) and (5.3); the commutativity of @ and @ iz left to
the reader.

(b). We can choose p:Spec(R) + V as above, with V projective,
and then by Noether normalization choose a finite map f£:V = F = IPd.

k
Let x = f(v). Then we have the map #8.:f,u; > &, and the

isomorphism @ = ®f,0 0y, -+ Hom%(f*Ov,ub) of (4.3), and as in §6,
v

the isomorphism YJP:QIP - W corresponding to the canonical

isomorphism of (8.4):; and there is a commutative diagram

he
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; d
(9.1.1) ! Hy (£ ,w0,)

————

& H \

8 8
e f :1- N\

S om (£,0,,0p)) —5—> 13 ()

-1 -1

%;1 L3 Y J
. _ .

d d
Hy (Hom (£,04, %) —g—> HS (%)

where the maps labelled "e" are induced by evaluation at 1. With 8§

the completion Qﬁ y' We also have a commutative diagram
!

a -~ a -~ _ a -

i, ) ©, Hi@, ) = H(fe))
e uef (x)
—
(9.1.2) e
- —
- .

Boton (0] L& N o, om0 L& 3= 1ion (5,00 1)
v [ V,V'QP,x uEf-l(x) u s V,u'QP,x pY: SR P, %

where the broken arrows in (9.1.1) and (9.1.2) represent the same map.

In view of (8.5) we deduce from (9.1.1) and {(9.,1.2) the
following commutative diagram (where N is the maximal ideal of 8):

p

13 (bg) L "
l IresS
Hnomg (R, 95)) - > 1 (ag)
and "the conclusion follows from (7.5). Q.E.D.



COROLLARY (9.2). With notation as in (9.1), assume further that
R is regqular, so _that v has a neighborhood Va which admits an
e d . . -
étale map h to P, . If YVa is_the isomorphism of (6.3), then the
following diagram commutes: :

Proof. In (9.1.1) we can put V =¥, £ = h (cf. (6.1}). From
the definition of Yy ¢ and in view of (8.5), we obtain a
cornmutative diagram

a !
Ho (8) > Hv(mv)
t €E.(9.1.1) o
. Ov,v
d
H () res >

where t is induced by the trace map for differential forms. Since
ovlv is étale over qp'x , the inclusion QP,x(%‘_a OV’V can be
identified with the inclusion

k'[[Xl,...,Xd]] c k"[[xl,...,Xa]]

where k' < k" -are the residue fields at k% and Vv respectively.
It then follows easily from definitions that

res, = resxot .
and (9.2) results. Q.E.D.

Now, finally we can give:

(9.3) Proof of (6.3).

In (6.3), for any Vv € V_ NV, with R = &, , we see by (9.2}
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{(for a and B8 both) and by (9.1) (b) that the germs at v of

Y
Va
and

Yy have the same composition with the (injective)
completfon map  wp * GR; so v, and ¥

Vg agree in a neighborhood
of v, hence everywhere on VQ n VB' Q.E.D.

Remarks (9.4). We may now consider Theorems {0.1), (0.2), (0.3),
(0.4) "and - above all - (0.6) of the Introduction to be proved.

(9.5) We know now that & has a ratural dealizing structure
{Theorem {0.2)); and from Remark (0.6.1) we see that
respy = pR(w)

(notation as in (9.1)).

(9.6) Let v be a closed point on a proper d-dimensional
k-variety V, and let Y be a coherent Ov-module. Then the natural
map

129 + ud(v,9)

is surjective. This follows at once from (9.1), since the dual map

Hom, (%,w.) + Hom (5,8 )
OV v Ov,v vty
is clearly injective. {Cf. [G3,p.100,Theorem 6.9]; and also [Kml]
for a simpler proof which avoids duality theory.)

§10. A relative residue theorem
S=ssGL e fesSidue theorem

In this section we prove an eéxXpanded relative version (10.2) of
Theorem (9.1). 1In view of (9.5), this gives a generalization of the
Residue Theorem (0.6).

Let £ = U %d (cf. (0.6)) be the collection of all local

d=z0
domains R which are localizations of finitely generated k-algebras,

and whose residue field RAnR ﬂnR = maximal ideal of R) is finite
over k,

DEFINITION (10.1). wWe say that a k-homomorphism o:R -+ §
(R, S € %) is admissible if ¢ is injective and if for every height

one prime ideal p in 8 the localization R -1 gsatisfies the
v (b

Sexre condition (82).
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Examples. (i} If R itself satisfies (SZ) (in particular if

dim R = 1} then every injective ¢ 1is admissible.

(ii}) If dim R =z 2 and for every height cne » in S, m-l(n)

has height =<1 in R, then ¢ is admissible. In particular if
9 is flat then ¢ is admissible.

THEOREM (10.2), Let w = ({wv},{ev}) be a dualizing {~module.
There exists a unique family of R-linear maps

s
o (wg)

L H
s “% "R’
indexed by admissible maps ¢:R + 8, with R, 8 € ¥, r = dim R,
s = dim S, and satisfying the following conditions {a} and (b):

p tH
P

(a} If R=k and ¢ is the obvious map (which is admissible)
then - after naturally identifying Hmk(w with X - we have

Py = Pg {ef. (9.1)}).

(b} If o@:R + S, p:8 + T, and yYp are all admissible, then

pwm = p¢op¢
Furthermore:

{c} With ¢:R -+ S8, r, s as above, if = denotes completion,
so that

— s “~
(wS = HA (U-\S)t

ms Mg

. ~ s r
then the pair (ms,pw) represents the functor HomR(HﬁS(G),%nR(mR))

of finitely generated §—modules G.

{d} Let £:V + W be a proper map of k-varieties, s = dim V,
r = dim W, and suppose that f is "equidimensional in codimension 1",
i

.e¢. the subvariety

{v ¢ V|dimv(f-1f{v)) >85 - r}

of V has codimension = 2, Let w € W be a closed point. Then

for each closgsed point v € E = f—l(w), the map Py, V:OW -+ OV
r

W Vv
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induced by, f is admissible; and there is a unigue Ow w—linear map
,w ——qsal map

s T
B[f,w]:HE(wV) + Hw(ww)

such that for each such v the following diagram commutes:

s canonical N s
Hv(wv) > HE(wv)
g
prow,v [£,w]
r
Hw(mw)

{e) With assumptions as in (d), if G is the formal completion
of V along E, then the pair (av'elf w]) represents the functor
r

H*(§) = Homy  (HZ($),H] (u.))

ow,w

of coherent Oﬁ-modules F (cf. following explanation),

Explanation. We define H%(?) by
s ~ . S (p <N,
HE () = lJ;i.r(r; EXtO‘“, O5/m 05,5}

"~

where m_  is the maximal ideal of §) Then if % = ?'ffor some

W,w'
coherent Ov-module F, we find, using [EGA III, (4.5.1) and

{G3,p.30,Th.2.8] {= [G4,p.22,Th.6]) that

s,z . s n .S
HI(F) = 1lim Ext, (O./m0..F) = B>(%).
E 55 0, VY E
In particular we can consider the map
.S 3+ ug¥
e[f,WJ‘HE(mv) H (wg)
h
(&)

g
E

to be an element of H* (g
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Proof of (10.2). We consider a k-homomerphism ¢:R + S
{R,S € %}, which, for the moment, need not be admissible. Set

_ . n
I, = Eig Homk(R/mR,k) c Homk(R,k).
n>0

By local duality (cf. (9.1) (b)} the map

s - A4
ps.%“sfws) — Kk (s dim 8)

induces an isomorphism of functors of finitely generated §-modules G:

(10.2.1) Homg (G,8g) — > Homk(HE‘S(G) k)
- S
= HomR(Hﬁ%(G),Homk(R,k))

. S
= HomR(HﬁS(G)'IR)

where the last equality holds because each element of Ha (G} is
annihilated by some power of ﬁs . hence by some power ofs m.
(Note that ¢ l{mg) =m,, since S/mg is finite over k.) So
there is a unigue R-linear map
= B3 (Gg) —> I
S R

8
0¢.Hn%(ws) R

corresponding to the identity map of GS, i.e. such that the
composition (evaluation at 1) e cm is Py In particular, the
identity map R + R gives us an R-homomorphism

UR’“ﬁﬁtwR) - IR (r = dim R);

and then aj), b), and ¢) of (10.2) follow easily (details left to
the reader) from:

LEMMA (10.3). The preceding map op is surjective. Moreover
if @R + S is admissible and J is the kernel of op, then for
any finitely generated S-module G,

Hom_ (K% (G),J) = Ext;m,?,stcm) =0,
5



whence o induces an isomorphism of functors

8 xr ~ s
HomR(HﬁS(G),HmR(wR))‘——e HomR(HﬁS(G),IR).

The proof of (10.3) will be based on Corollary (10.5) below.

LEMMA (10.4). Let B be a norxmal noetherian domain with
fraction field K, let L 2K be a finite field extension, and let
C OB be a module-finite B-subalgebra of L. For any B-module M,
set M* = HomB(M,B).' Then, with C*, C** considered as C-modules
in the obvious way, we have a natural commutative diagram of

C-linear maps
C —— HomC(C*,C*)
a l I
Ck*% — HQmB (C*,B)

with o« injective, and for any prime ideal a in C, the
localization ¢, 1is an isomorphism if and only if the local ring

Ca satisfies (82).

Proof. Only the last assertion is not straightforward. First
of all, since B satisfies (Sz), so therefore does the B-module
C** = HomB(C*,B). Hence [EGA IV, (5.7.11)] so does the C-module
C**, as Hoes the Cn-module (C**% . 8o if O is an isomorphism,

then Cq satisfies (52).

Conversely, suppose that Cq satisfies (82}. Since C is a
torsion-free finitely-generated B-module, we may identify Cq with
a Cq-submodule of (C**)q S L. Since Ba'nB is a discrete
valuation ring for every height one prime ' ©«C, it follows
easily that (C**/Ch. = (0}, s0 that the annihilator I, of
(C**% /Ca is not contained in any height one prime of ¢ . Hence,
by (Sz), there is a Cy-regular sequence (x,y) contained in I -
So if ¢ € (C**h r then x£& € Cq r YE € Cq r and yxg € XCq »
whence x£f ¢ xCq and E € Cq. Thus (Cx*)y = Cq Q.E.D.

COROLLARY (10.5) (cf. [He), Proposition (4.1)). Let R € %,
and let R# = Hom(mR,wR). Then the natural injective map agiR > R#

20



localizes to an isomorphism precisely at those prime ideals g < R
such that R, satisfies (Sz).

Proof. From (4.4} and (1.4) we see that wp is isomorphic to
a localization of a C-module C* (for suitable B,C); so (10.5)
fellows immediately from (10.4}.

#

Proof of (10.3). With R as in (10.5), local duality (9.1) (b}

gives an isomorphism

=

~ ~ T
yr —_—— Homk(HmR(wR),k) .
We also have the natural isomorphisms

A ) n
R = }1m Homk(Homk(R/mk,k),k)

=

n

—~5 Hom, (1im Hom, (R/mp,k) k)
n

= I-lomk(IR,k) .

One checks modulo these isomorphisms that the map N of (10.5)
completes to the k-dual of Op:

()" = Hom, (op.k),

R

whence, (aR)A being injective, %n is surjective {as asserted in
(10.3)):; and there is a natural isomorphisms of R-modules

(R /R)" =~ Hom, (J,k) .

Clearly, then, for a € R, we have that

{a(R#/R) = ()] o [Hom (aJ,k) = (0)] = [ag = (0)].

Hence, by (10.5), the prime ideals @ < R containing the
annihilator of J are precisely theose for which Rq does not

satisfy (Sz).

We can therefore choose 0 # a€R annihilating J. For

convenience we will write “H®" for "Hﬁ%". If ¢ is admissible,

a



hence injective, then G/aG has support of dimension < s, and it
follows that multiplication by a in #%(G) is surjective, i.e.
we have an exact sequence

0 P — S E%6) —2 5 8% —— 0

Applying the functor HomR(-,J), and using. aJ = 0, we find that

Homy, (H® (G) ,J)

1
[=]

1l,.s ~
ExtR(H {G),J) = HomR(P,J) .

It remains then to show that HomR(P,J) =0, If Ga is the
kernel of multiplication by a in G, then from the exact seguence

0 > Ga

N
&
\

W
&
N

o

we obtain an exact sequence
B3 (G) ——> P ——>P' — 5 ¢

where P' is the kernel of the natural map Hs(aG)-¥ HS(G). Since,
as we have just seen, HomR(HS(Ga),J) = 0, therefore there is an
isomorphism

Hom, (P',J) = Hom (P,J) .

Since P' is a homomorphic image of Hs_l(G/aG), it will suffice
to prove that

Homg, (171 (G/aG) ,3) = o.

Arguing as above, we need only show that there is an element b € R
with bJ = 0 and such that 6G/{a,b)G has support of dimension

<& - 1. But this follows from the admissibility of ¢, which
implies that any height one prime ideal of § containing a8 has
an inverse image {(say ¢) in R such that Rq satisfies (82), so
that, as noted above, ¢ does not contain the annihilator of J; and
since a§ is contained in only finitely many height one primes,
there is a2 b ¢ R with bJ = 0 and such that {a,b)S8 is not
contained in any height one prime; this b is as desired.
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This completes the proof of (10.3}, and so of (a), (b} and (¢}
in (10.2). '

We proceed with the proof of (d). We have the map

s-r
6¢:R Eey = wy

of (5.1), whence a map

Y, S-r Lol
naH_ (R fewg) ~ B {wg) .
Now if p > r then HD(RIf,w;) = 0 for all q; and if g > s -x
then, as in (4.3.3), the support of qu*wv has dimension
<g§g=-1-9gq, whence for p+ q =z s - 1 we have again H&(qu*wv)=0.

Therefore the Leray spectral sequence gives a natural isomorphism

(10.2.2) v:Hi(Rs-rf

2y > Hg(ww);
and we set
e[f.w] = pov 1
As in (4.3.3), f takes codimension one closed subvarieties
of V to codimension one subvarieties of W, and therefore the maps

Py v in (d) are all admissible (cf. example (ii} following (10.1)).
F

in view of the preceding proof of (a), (b), (¢} (Lemma (10.3)
plus the unigueness of ¢ ), to complete the proof of (d) it will
suffice to show that for closed v € E the composed map

s s r
[N
Hv(wv) —_— HE(wV) Hw(ww) ——-———ap k

8
(£,w] .

is equal to Pp.
V.V
For this purpose, choose a compactification fl:v1 > Wl of £

(cf. (5.4)), and consider the diagram
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s s
—_— 5 —_— 3
Hv(wv) HE{w ) us (Vl,w

v

R 4 s-r
Epuy) ————— W) RS TTE uy

1\
Gwl

r x
————— .
Hw(ww) H (Wl wwl)

r

S-r
HW(R

where unlabelled arrows represent natural maps. Using (5.1}, we
see that this diagram commutes; and the desired conclusion then
results from the definition of p (cf. (9.1)).

The unigueness assertion in (d) follows from Proposition (10.6)
below.

As for (e), we recall from {(5.1) {(and (4.3.3)) that ef induces
- an isomerphism

= ~~ S~r
(10.2.3) £ Homp (Fug) ~= Homy (R fj,mw)
v W
for any quasi-coherent Ovnmodule ¥. We need a similar result after
making a base change to the completion R of R = Ow w ' i.e. after
~ ?
replacing W by W' = Spec(R), V by V' = waw', f by the
1 = t
v (resp. ww) by Wy w,@,V' (resp.

wwaww'); and this can be established in the same way as (i)

projection f£':V' - W', and w
w& =
in [Km 2, pp.44-45, Theorem (5)], once we note that

Hom Oy (R¥T£1 7,000

coherent 0V,-modules # (as follows readily from (3.1.2) and the
fact that for all ¥ the support of Rs_r+lf;% has codimension
22 in W' [EGA III,(4.2.2)]).

is a left-exact contravariant functor of guasi-

Suppose now that # is a ccherent Ov,-module. Completing
aleng E' = ExVV' and applying [EGA III, (4.5.3)] we deduce from

(10.2.3) (for f") isomorphisms
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: sz . ~, S=r., ~
110.2.4) Homoﬁ(f,mv) —=+ Homg (R f*?,(ww’w) )

~ r sS-r., Ir
— Hom_ {Hz (R f*?),Hw(ﬂw))

R Mg

jct. (10.2.1) and (10.3}, with S =R = § )

W,ew

~ S r
—> Homp (Hp, () JH ()

tvia v = for f' - ¢f. (10.2.2) noting that f' is also
egquidimensional in codimension 1 [EGA IV, (13.3.8)]). As in the
"explanation" following (10.2}, we have a natural identification

8,7 _ S ¢
Hé(f) = H_, (¥}

and via this, we can check that the composition of the isomorphisms

(10.2.4}) is equal to the composition

Z o~ S -8
Homaﬁ(!,wv) —_—— HomR(Hﬁ(!),Hﬁ(wv))

. s .5 r
—————— 5 Hom_{Hz(%),85 (w_})
T P ey

This proves (e} for % = ¥, and hence, by [EGA III,(5.1.6)],

for every coherent Y. Q.E.D.

PROPOSITION (10.6). Let V be an n~-dimensional separated
scheme (not necessarily reduced or irreducible} over a field k

(not necessarily perfect), and let E bke a locally closed subset
of V. fThen there exists a finite set E' € E consisting of

closed points and depending only on the pair of reduced schemes
such that for any quasi-ccherent Ov—module 4 we have

EcCcv

red’

n =
HE"E'(V"‘g) = 0 ’

i.e. the canonical map HE.(?) - H;{?) is surjective.
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Proof. This is basically a corollary of [Km 1l}. First of all
it is enough to consider coherent 0V-modu1es %, since every guasi-
coherent OV—module is the direct limit of its coherent submodules
[EGA 01,p.319,{6.9.9)), and cohomology with supports commutes with
direct limits (the proof of [H, P.209,Prop. 2.9) carries over).
Next, if Vi {1 < i s« m are the irreducible componernts of v,
considered as reduced k-schemes, Ei = E N Vi' and Ei c Ei is a
closed subset of V; such that Hgi_Eitﬁi) = 0 for every coherent
Ov_-module fi, then with E' = Lgll Ei we see, using Lemma 1 of

i
[Em 1], that HE_E.C§]= 0 for every coherent 0, -module ¥. (Note

n _ .n . L
that for any ?i, HE—E'(gi) = HEi-E'nEi(gi) is a homomorphic image

of Hg _E,(gi).) Thus we may assume that V is reduced and
i’7i

irreducible.
Now if dim E = dim V, then we can let E' be a finite set of

closed points, one from each component of E. Then

Hp_p, (V,9) = #"(e-E',$|E-E")

which vanishes [Km 1, Theorem ]. So assume dim E < dim Vv, and
induct on dim V, the case dim V =< 1 being trivial. Let U be
any affine open subset of V - E, with inclusion map 1i:U =+ v,
and set Y = V -~ U, Both the kernel § and the cokernel ¢ of
the natural map ¥ - i,i*§ are supported in Y. Therefore by
induction there exists E' © E (not depending on %) such that

Hg:é.(v,g) = 0. Also, we have
Hg_po (V,0) = 0
and

n . o D : -
Bo_ g (V,1,1i%9) = Hyn(g-g') (V3% = 0

since i is an affine morphism and U N E is empty. It follows
easily that Hp ., (%) = o. Q.E.D.
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IV. VARIATIONS

§11. Reformulation yia holomorphic differentials

In this section we first give a weaker version (11.2) of the
Residue Theorem (0.6), in terms of holomorphic differential forms.
The nice thing about this version is that it lends itself to
generalization, say to the "relative" situation of flat morphisms of
noetherian schemes, where & may not be definable.d Unlike (0.6},
it does not contain (0.3A7A) {(existence of a dualizing {-~module); but
together with (0.3a), it does imply (0.6), as we will see in (11.3).

We then give, in (11.4), some intrinsic local descriptions of

via holomorphic differentials and residues.

We keep the notation of (0.8}, and as before set

Y =A(n (Reid).

R R/k)

As in [K1l,p.15, Satz 5.5), if R is regular and S > R 1is a domain
which is a finite R-module, with fraction field separable over that
of R, then there is a unique R-homomorphism

Q

d
1. =
T 'Qs/k > QR/k =

R

whose localization at the prime ideal (0) of R is the trace map

<} X . _ \ .

QL/k + nK/k (L = fraction field of S, K = fraction field of R}.
Hence if S1 (1 £ i < n) are the localizations of § at its
maximal ideals, m, is the maximal ideal of Si‘ and mR of R, then
we have the map

n d via T
(11.1) ® Hy (82, ) (9 ) ——— (@)
i=1 i 53 “‘R S/k '"R R

THEOREM (11.2). There exists a unidue family of k-linear maps

- d ’
resR.HmR(QR) + k (R € T3}

satisfying the following conditions (a}' and (b)':

(a)' (Normalization}. If R € £; is regular then res, is as
in the "primitive residue theorem” (0.4).

(I)We will not deal with such generalizations here, but ¢f. [E).
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{b)' (Trace property). For any R, §; as above, with R
regular, the following diagram commutes:

H;Ilim‘Si) cf. (11.1) } Hﬂka)
I‘R ﬁa
k
FPurthermore:
(¢)' (Local duality}. If ~ denotes mR-adic completion, so

that
5| R <
H"h(QR) = HﬁR(QR) ’

and if R is reqular, then the pair (ﬁR,resR) represents the

functor Homk(H% (G);kK) of finitely generated R-modules G.
R

(d)' (Globalization). There exists for each proper d-dimensional

k-variety V a unique k-linear map

jv:ud(v,gv) + k

such that for each closed point v € V, the following diagram (with

res,_ * res }  commutes:
v [) e
V,v

a canonical !
HV(RV) > BV, 0,)

(e)' (Global duality}. For each smeoth V as in (d)', the
air (QV,J ) is dualizing, i.e. fgpresents the functox
V .

Homk(Hd(V,ﬁ),k) of ccherent OV-modules .

Remarks. (i). The unigueness statements are easy consequences
of Noether normalization and the fact that Hi(ﬂv) + Hd(v,nv} is
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surjective (¢f, {9.6)). In particular, if V 1is projective space

Pi, then is the canonical isomorphism.
v
{ii). Existence in (11.2) follows at once from {(0.6): Jjust let
resp be the composition
res’
Hg (QR) natural S Hd (GR) ______3___9 k

R MR

and let be the composition

ly

o

3]
Hd(v,ﬂv) natural > Hd (Vfﬁv’ _—v_> K.

Incidentally, since the kernel and cokernel of Q + o are
supported on the singular locus of V, therefore the corresponding
local or global cohomology maps in degree d = dim V are surjective,
and even bijective if VvV is smooth in codimension one,

{(iii). In the same way that [(0.6) without (c¢)] and (0.2B)
imply each other (cf. Remark (0.6.1)}, also [(11.2) without (c)'] and
(0.1} imply each other.

(iv). Analogues of (7.3.4) and (7.3.6) can be established for
any R € ﬁd' basically because 1' commutes with exterior
differentiation and with the inverse Cartier operator. Details are
left to the reader,

{11.3). Deduction of {(0.2A) and the Residue Theorem (0.6} from
(11.2) and (0.34).

First of all, let B c C be as in (0.23), let R =0Cp (b a
prime ideal in C), M =bCy, 4= BN B, and let Gpp be the

localization

~

(mC/B)D‘

~

Yr/B T

Then Gﬁ/B is an R-submodule of Qi/k (K = fraction field of R),
and (0.2A) is equivalent to the assertion - which we will now deduce
from (11.2) - that Gh/B depends only on R (not on C or B).

From (11.2) and the trace map for differential forms we obtain

a composed map
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~ gl R PO | .
resR/B.Hm(mR/B) _— HG(QB/k) —_—3> k

and, after completing, we deduce from (e)' of (11.2) that the paix
A ~ d s s
(wR/B,resR/B) ;epresents the functor Homk(Hﬁ(G),k) of finitely

generated R~modules G (cf. Corollary (7.5)). Moreover from (b)." we
see that
d natural d,~
{11.3.1) Hm(ﬁR) > Hm(mR/B)
resR resR/B
1
k

commutes. Hence if B, C are replaced by B', C', then there is a
unigue ﬁ-isomorphism

such that

).’ESR/B =

and the resulting natural diagram

“R/B > g,

commutes. But clearly

d
v/r € QK/k (v € flgr 0 # r € R)
lies in Wp/B if and only if the canonical image of v in “p /B
is divisible by r, i.e. (by faithful flatness of completion} if and
only if the canonical image of v in Gk/B is divisible by r; and
similarly with B' in place of B; whence
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2

R/B _ “R/B' (say)uwp

This proves (0.24).

Furthermore, since  + &, being bijective at smooth points, has
cokernel with support of dimension < 4, the natural map
H%(QR) - H%(GR) is surjective; so in the commutative diagram

d,~, _ 4,5

/ Hp(wp) = Hplwg) \
d
Hp(0p) lH {a)
\ FUPOR %
Hplwg) = Hplwg)
we have Hg(a) = identity, whence o = identity and
resp g = resR/B. = (say) resy .

This gives (a), (b) and (¢} of (0.6).

Now for the global statements (d) and (e) of (0.6), we let
{0,0} be a dualizing module (¢f. (0.3a)). Then we have the
composition

. 9
canonical

d
1 tay) > 1v,u) —L>k

whence, by the local dualizing property of &, an ~homomorphism

V,v

~

(11.3.2) Wy v ——-—}usvrv .

This map depends only on the local ring OV y (moton V). To see
r
this, note that we have a map of sheaves cv:Qv * wy corresponding
to the map of (d)', whence (c¢f. (11.3.1)) a commutative
v

diagram

~> H (V,Q

e l/

d N
Hv(wv) r e H v, Ll.l
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(Note that by the dualizing property of o, commutativity of (:) can
be checked after composing with res™.) It therefore suffices to

check tgat the cgkernel of 'dv : 4
then Ho () - H, (w,) is surjective, so the map  H_{w,) » HV(G§) is

has support of dimension < 4 (since

uniquely determined, and hence, by the dualizing property of &, so
is (11.3.2)). Now we remarked before that HS(QV) - HS(G&) is

surjective, and res”™ = res? ¥ 0 ({otherwise the pair (& sres’)
v OV,V [ V,v v

would represent the zero-functor, and Bv v
+

is not the zere map; but using (e)' we

would wvanish}, hence

J # 0 and therefore ¢
v ' v

see as in (4.4) that o is generically free, of rank one; and the

conclusion follows. Y
Next one shows that for each affine open U € V¥V there exists an

isomorphism Agtey —_ Eb inducing (11.3.2) for every closed peint

v in U. This can easily be done (details left to the reader) by

choosing a preojective closure 1O of U, and a finite separable

0 - P =.Pﬁ + and using the natural isomorphisms

T —= ”qup‘"*oa'%@’ (cf.(4.4) and (e)')
Tf*wﬁ % Hom% (F*Oﬁl%) (via trace}

Basically, this argument is just a variant of {(9.3).
Finally, by the uniqueness of (11.3.2), we can patch all the

-~

isomorphisms AU to obtain a natural global isomorphism l:wv 1 Gv-

Defining 8. to be the composition

v
a,. ~ A1 a by
H(v,dy) ———> 1 (Viwy) —> &k
we obtain (d}) and (e) of (0.6). Q.E.D.
Remark {(11.3.3). 1In the preceding argument, we needed (11.2}) ()"

only for V =1mP.

(11.4). Some descriptions of & via res.

From (0.6) (¢) we obtain, for R € ﬂd, an isomoxrphism

[}

~ a ~~ d,a _ d
we HomR(R,wR) —_— Homk(Hﬁ(R),k) = (say) Hp(R)',
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whose composition with @, - GR + Gﬁ is, in view of (11.3.1}, just

.the map

E:0p > HR(R)'
corresponding canonically to the bilinear form

res_:Q. @ Hd(R) — k
R*URPR "M

H3(0,) .
As in (11.3) (proof of (0.2a&}), we conclude that:
(11.4.1) Gy = lv/rlv ¢ Qpy 0.# r € R, and E(v) is

divisible by rl.

We can rephrase this description as follows: since multiplication
by r # ¢ in R has cokernel with support of dimension < d,
therefore the map

u, = {multiplication by r in H%(R)}

is surjective, whence X € H%(R)' is divisible by r if and only
if X wvanishes on the kernel of My Thus:

(11.4.2) Gﬁ = {v/r|v ¢ fpr 0 #1r € R, and for every

h € H%(R) such that 'rh = {, we have

resp[veohl = o} .
In particular (cf. (7.2(a)):

{11.4.3) If R is_Cohen-Macaulay, then

b = {v/r|v ¢ QR} 0 #r € R, and for every

system of parameters t o= (tl,...,td)
and every s € R such that
rs € tR, we have resR{sv/El = 0}.
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Finally, for any R € ﬁd:

PROPOSITION (11.4.4). With notation for local cohomology as in
§7, we have (for v € @, and 0 # r € R) that (v/r) € &, if and

R
only if, for every sequence Tyreeesly such that (r,rz,...,rd) is

a system of parameters in R and for all s € R:

resR[sv/(r,rz,...,rd)] =0

. o a ' 4
Proof. After canonically identifying H“JQRJ and QR®R Hp(R),

we have
sv/(r,rz,...,rd) = V@ {s/(r,rz,...,rd)] = {say) vgh.
But by (7.2)(a) rh = 0, so (11.4.2) shows that

vw/r € Gp = resRIsv/(r,rz,...,rd)] =0 .

For the converse, we may assume that r is a non-unit, and
choose ToreearTy such that (r,rz,...,rd) is a system of parameters.
Let h be as in (11.4.2). Then for some integer n > 0 and some
t € R, we have

n _n n
h = t/(r ,rz,...,rd) .

Since rh = 0, (7.2) allows us to assume (enlarging n if necessary)
that
rt € (r",rg,...,rg)R ’

say

Il

n d n
rt r+ 2 s,y (s, € R).

Then, (cf. {(7.2)):

n+l n

veh = rtv/{(r ,r2,...,r3)

+
MLl D)

_ n n
= (s;r + Zsiri)v/(r
= slv/(r,rg,...,rg).

Hence
. n n _
IESR[V(Eh] = resR[slv/(r,rz,...,rd)] = 0. Q.E.D.
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§12. BSums of residues; Koszul complexes of vector bundles.

The basic result ip this section is (12,2), which is just a
reformulation of (11.2)(4') {or (0.6){d)). Examples (12.3), (12.4)
and (12.5) are special cases of (12.2), giving some more familiar
statements which have gone by the name "residue theorem”. Example
{12.6) relates some recent results of Akyildiz and Carrell to the
formalism develoﬁed here.

(12.1) As always, V is a d-dimensional variety over the
perfect field k. To avoid annoying trivialities, we assume 4 = 1.

Let
C:0 ~+ Cd - Cd-l F el C2 + Cl - 0V + 0

be a sequence of Ov-modules and let F cV be a finite set of
closed points such that the restriction C¢|{V-F)} is exact. Suppose
further that we are given an OV—F homomorphism

p:Cql(V-F) » 2, o .

Then the exact sequence C|(V~F) represents an element

d-1 _ n,a-1
[Clp € Bxty 20y peCaql (V-F)) = B " (V-F,Cq)

from which we obtain an element

d-1
w*[C]F € H (V-F,Qv)
Hd-l

by applying the map ¢, = (V-F,¥) induced by .

Note that when d = 1,
[Clp € Homy, {0y _r,C,|V-F)
is the inverse of the isomorphism CliV-F e OV—F given by C.

We denote by

d
[y/C]l € @& H_(Q,)
VeV vy

the image of tb*[C]F under the natural map

W v-r0,) —Sada) « o B,
vEV
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If we consider two pairs (wl,Fl), (wz,Fz) as above to be
eguivalent if ¥y and wz agree outside a finite set P3 = (Fl Uré),
then it is easily checked that [¥/C) depends only on the eguivalence
class of (y¢,F). : '

[The point is that if C is exact at v ¢ F, and if ¢ extends
across v, say to ¥, then the component [w/C]V € HS‘QV) vanishes
since y,[Cl, lifts back to the element ¥, I[Cl,_ € HI*L((v-F) U{vha,).]

We set
res_[y/C] = resv(lw/C]V)

where, again, [w/c]v € HS(QV) is the v-component of [¢/C], and

res. = res {cf. {11.2)).
v OV,V

PROPOS;TION (12.2). If V is proper over k then

: res [y/C] = 0.
VeV

Procf. The natural composition
. : a- d 3
(12.2:1) H l(V-F),QV) —2 Hp (9,) ~—B_ H"(v,nv)

is the zero map, whence (cf. (11.2) (d4"))

res_[y/C] = I Bay,[C)l. =0 .
vév v A * F

Remarks (12.2.2) Throughout, we can replace RV by Gv, res
by res™, and (11.2){d') by (06.6) (d}.

(12.2.3) cConversely, (11.2)(d') can be deduced from (12.2).
For, in view of {9.6), {(11.2)(d4') just says that for any & in the
kernel of the natural map vgb Hg(ﬂv) + Hd(v,gv) we have
Zv res {g,} = 0. But this map is the direct limit of maps B = 8
ag in (l2.2.1) (where the finite sets F form a directed system
under the order relation given by inclusion):; and since (12.2.1) is
exact, we need only see that every element n¢ Extd‘l(ov_Fyﬂv) is
of the form [C]F, where C is a seguence as before, with Cqg = &y
(and ¢ = identity). Now, with U=V - F, 7 corresponds to an
exact sequence of GU-modules ’

F

0= 8y > Cly > o >Ch>C»0; >0,

‘to which we can apply the functor i, (i:U + V being the inclusion},
then replace.
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I

by its compesition with the natural map
QV o i*QU

and replace
i,cp —4> 1.0} 1,0,

by

oA (9,0) 0 . o, ,
. l*C2 —— J-*Cl xi*ouav iy Ov

to get the desired € (which is, in fact, a complex).

Example (12.3). Let V be a proper curve (d=1), and let
v € ﬂi(V)/k be a non-zerc meromorphic differential. Let F Cc V be
the finite set consisting of zeros and poles of v, so that with
U=V ~ F there is an isomorphism 2 ALY OU taking v to 1. Let
i:U0 =+ V be the inclusion, and let Cv be the seguence

- i . prejection 3 .
0 > Cp = i,% xl,ouov Oy > 0
Straightforward checking verifies that
resv(v) = resv[l/c“]

is the good cld-fashioned residue of v at v; and (12.2) becomes
the classical residue theorem:

I res (v) =0.
VEV

Example (12.4). Let & be a locally free Ov—module of rank 4,
and let o0 be a global section of §, having igolated zeros. We

can identify ¢ with an Ov-homomorphism
1% = *wmav(E,OV) + Oy

which is surjective outside a zero-dimensionhal subset F of V, and
then build the Koszul complex

cg:0 » a9 a8 lgr s s aler =gt B0 5 0

where the maps ol:alg* > aAYTlg* are given locally by
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i
g (e1 Aez

i -1 R
A, Aei) = jél(-l) cr(ej)el Aveah ej Aeoh &)

(where e;,...,e; € £*, and "é." means "omit es"). Then each v €V
has a punctured neighborhood on which ¢ is surjective and Cg is
exact.

Now if €1:€,s...,8; 1is a basis of the stalk 5;, and we set
U(ei) = 0, then Ov,v/(al""'od) has dimension s 0, and from the

definitions in $7 we find that the natural image of

da-1 dex
[C,lp € H (V-F, A E™)
in HO(n%*)  is
e Ao ed/(ol,...,od)

(which we define to be 0 if (ol,...,od)Ov v = ov,v)’ Thus if we
have an {,-homomorphism

b:a9g* > g
and if, at v,
(12.4.1) w(eln... Aed) = hGUl...God € nv'v ;
then
(12.4.2) Iw/CG]V = hdol...GUd/(dl,...,od);

and (12.2) becomes the residue theorem for vector bundles [GH,p.731]

(with no assumption on the singularities of V).

Example (12.5). As a special case of (12.4), let Dl""’Dd be
effective divisors on V such that Dl n D2 Nesa i Dd is zero-
dimensional; let

& = 0y(D)) ©0,(D,) @...@ O,(Dy):

and let o:£% - 0V be the map whose restriction to Ov(—Di) < OV
{l<ix<d) is just the inclusion map. We have then

29g* = 0y{-D) =Dy =...=Dy)
and any
v € Hom, (ndé;*,:zv) = HD(V,QV(D1+ e +Dg))
v .

can be identified with a meromorphic differential d-form with poles
no worse than D1 +..u+Dd. With Cc the Koszul complex of (12.4),
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we cah set
(1)

{W/CUI = [‘J'J/(Dl,---de)]

and rewrite (12.2) as
¥ res_ [(¢/(Dy,...,D;)} = 0.
vev v 1 a
When & = 1, [¢/D;] depends only on ¢ (not on Dy), and we

have, again, the classical residue theorem for (possibly singular)
curves.

Example (12.6). This example is inspired by [AC], where a
particularly interesting application to Gysin homomorphisms is given.
Let &, o, ¥ be as in (12.4)}, so that for any closed point

v € V we have in Hg(ﬂv)
[WCG]v = w(el A...J\ed)/(ol,...,cd)

(ef. (12.4.1}, (12.4.2}), an element which is annihilated by
(°1"“'°d)0v,v (cf. (7.2)(a)). Thus for any X €& (coker o)v , the
element
d
l[w/colv € Hv(ﬂv)
is well-defined.
Now suppose we have a map f£:V =+ '/ with W smooth. Let

1
T:Qw/k + Ow

be an Ow-homomorphism which is surjective outside a finite set of
closed points (i.e. 1t is a vector field on W, with isolated zeros).

There is then a corresponding element

(1/c) € © HL(a) (r = dim W).
weEW
As before, if Xyt Xgreae Xy, is a regular system of parameters in

Ow'w, then

— r -
Il/CT]w = 6x1...6xr/(16x1,-..,rﬁxr) € Hw(ﬂw);

and for any M € (coker 'r)w , the element

x
u[l/CT]w € Hw(ﬂw)
is well-defined.
Assume further that there exists an Ov-homomorphism f*“ﬂbk)'+£*

such that y
(1} coming from the image in §9-1 g

V-Di},ﬁv) of the Cech cocycle ¥, of, §7.
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£ () —> &
f*(T)\\\N {A{
0‘1

commutes. Let w = f(v). Then { induces a k-algebra homomorphism
L

(coker 7) -+ (coker c)v: and for each X € (coker 9),r we have a

k-linear map

r : Coy
heifh eH (@) [ (téx)h=0,15igr} = By W/ (T8%y ey Téx )0 > K

given by
Huil/e 1) = res (uily/c ) (u € (coker 1) ).

From the proof of (7.4) (local duality), we now find easily that:

There exists a unique OW w-homomorghism
’ .
t: (coker u)v + (coker T)w

such that for each X € {coker G)v' we have

resw(t(A)Il/CT]) = resv(A[w/CU])

Remark (12.6.1). 1If the map o:0, w Ov y induced by £ is
r ’
admissible {(cf. (10.1)), and if p 4is the composition

HS () > B (@) — B (B, = HS (%)

natural

{with pcp as in (10.2)), then {¢f. (9.4) and (10.2})

resv = reswop

and conseqguently the above map t is the unique one for which

t(h)[l/CT] = p(ktw/col) (A € (coker o) ).

§13. Adijunction

A common strategy in studying duality on a k-variety V is to
relate V to a non-singular variety X, and then to deduce results
on V from corresponding results on X via this relation. (The
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main problem usually is to show that what is obtained in this way is
intrinsic to V.) Up to now we have used Noether normalization to
get such a relation. 1In this section we use instead a closed
immersion V + X. This is the approach used by Grothendieck in [Gl],
by El Zein in [E,part III], and by.Kunz in a recent preprint on
regular differentials.

We consider, then, an n-~dimensional variety X, a d-dimensional
closed subvariety V of X, and the (prime) 0x~ideal P of
functions vanishing on V. We assume throughout that V is not
entirely contained in the singular locus of X (i.e. X 4is smooth

almost everywhere along V).
The main result (Theorem (13.5)) connects Gk and Gb via the
fundamental local homomorphism ([Gl,p.149-05])

n"d ~ _ n-d 2 Ld
(13.1) o Exzox (O r By _>%v,x = Homov(f\ ?/9 1By /Py

which can be described locally as follows:

If Y = Spec(A) is an affine open subset of X, and P ¢ A is

the prime ideal corresponding to V N Y, then, with w = T(Y,wx)
have a natural map

wa

Ext;;_d (a/B,0) + Exth /P, w/Pw)

+ Hom, ,p, (Tor],_ 4 (A/B,A/P) ,w/Pu)

[the second arrow bheing given by the natural maps

2 7 dom, (R ,u/P0)) < 1 Y (som o (F. 6,A/P,0/Pu)) —> Hom

N N /(B (B @,R/P) w/Pw)

where F, is an A-projective resolution of A/P ...] which can be
combined with the natural map

823 p/p?) » mor®_(asp,a/p)

[arising from the canonical isomorphism P/P2 - Tor?(A/P,A/P) plus
the natural anticommutative graded A/P-algebra structure on

- . : 3
S Torm(A/P,A/P)] to give (13.1.) over Y.

We need to identify %V x (modulo torsion) with a module of
I
mercomorphic d-forms on V.

There is a natural exact sequence of Ov-modules

2 ¥ 1 1 1
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Over the open subset U of V where X is smooth, Qi/k/?ﬂi/k is
locally free of rank n and Bk/?ﬁk = Qx/?nx is invertible;
moreover on the open subset U0 of U where V too is smooth,
?/?2 is locally free of rank n-d and y is injective. It
follows that there is a natural map (over U}

. n=~dg ;52 = w
W-QU + Homoutﬂ PP .Qx/?ﬂx) = “v,x'U
such that, locally,

(13.2) (s xldvxz...évxd)[f' Af A...I\f' d]
=%H“Jﬁmﬁﬁr“%ﬁ+ﬂ&

where the x; are functions on X with respective restrictions Ei
to V, the £f. are functions vanishing en ¥V, with natural images

f! in P/?z, and &, (resp. 6 ) is the universal derivation. (y is
well-defined because, on the smooth part of X, if f € # then

6 ...8f _.8f € ?Qx;§+l + a8 can be seen by restricting further to
any open set whose intersection with VvV is UO.) It is easily seen
that ¢ is an isomorphism over UO' Hence there is an isomorphism

of constant sheaves
d ~
(13.2.1) gpk V) mk(V)/k —_— 5gv,x ®0vk (v)

via which the image (= %V x/torsion) of the natural map

’
%v,x > Ay,x ®Kk(V) gets identified with an Gv-submodule fb‘v'x of
(s}

vy /¢
- For example, at any v € V where X is smooth, the stalk
(%V,x)v can be described as follows:

We can choose (x,,X,,...,x.}) € R={ such that
1772 n 1 X, v
(6x1,6x2,...,6xn) is a basis of QR/k' the subscripts being
arranged so that 6x1,...,6xd form a basis of Qk(V)/k Let
£y,...4f, be generators of the stalk ? € R, and let J, be the
Ov -ideal generated by the restrictions to V of all the (n-d) x (n-q)

minors of the + x {n-d) matrix

(3£, /Bx JISlSt sd+l<izn

=]

{(where 3f/3x; 1is defined by the equation &f = J (3f/8x;}6x; in

1 i=1
nR/k)' Then
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(13.3) 5 by = JgteRy ... 6%,

e S = (1)
{Adxléxz...ﬁxdll € k(V),AJ < 0V,v}

In any case, we have the composed map

. -1
via "pk o) ~

-4 ~ . - 4
(13.4) Euﬁx (OV'“’X) (13.17 '%v.x {13.2.1) ’j“V.XCQk(V)/k '

THECREM (13.5). The image of the map (13.4) is contained in E&;
and moreover at any point where X is locally Cohen-Macaulay, (13.4)

maps Extgnqav,ﬁk) isomorphically onto .
X

Remark. The statement is essentially local. In fact it will be
transformed below into Theorem (13.12), which is a generalized local
version of the property (R3) of residues given in ({RD,p.197].
Lacking, however, a good local theory of residues (cf. remark (ii)
following {0.1.3)) we will argue, as in §6, in a roundabout way,
using a global statement (13.8) to reduce the proof of (13.12) to the
easily disposed of case of smooth points (the only case, by the way,
covered by (R3) of loc. cit.)

But first here are some corollaries of (13.5).

COROLLARY (13.6). If at v € V, X is smooth and V is locally
a complete intersection, ?v being generated by fl'fz""’fn-d'

~

then, with notation as in (13.3) we have that Uy o is invertible,
—_— r

generated by

éxl...Gxd/[affl,...,fn_d)/a(xd+l,...,xn]

(where the denominator is the restriction to V of a Jacobian

determinant).

Indeed, using the Koszul complex on (fl,...,fn_d) to calculate
Ext's and Tor's, one shows that (13.4) is an isomorphism at v,
whence by (13.5)

W1t foliows that [ )y depends only on Ov : in fact if A is any
commutative domain, with fraction field F, M 'any finitely generated A-module,
and €y,e5,...,84 & linearly independent sequence in M such that

M/ (Aey+...+Bey) is a torsion module, with O-th Fitting ideal J, then the

submodule J‘lelAezA...A ey of :‘LFd(M@AF) depends only on M (cf. (LS, p.211,
Proposition]}.
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Uy,v = Wy xly
and then (13.3) gives (13.6).

COROLLARY (13.7). Suppose that X is smooth everywhere along V.
Assume further that V 4is locally (82), and that moreover Vv is

locally a complete intersection ocutside a subvariety of codimension

two in V (these conditions hold for example if V is normal).

“Then
“’vz'%(;,x '—:zv,x ’

Proof of (13.7). &s in (2.1.3), we see that both ”v and %V %
satisfy (52) {in particular, %b ¥ is tors1on free, i.e,.
%v,x = %v,x" Thus (cf. (3.1.2)) in checking that “V = %;'x, -we
may remove from V any subvariety of codimension = 2, and so we

may assume that V 1is a local complete intersection and argue as in
{(13.5). Q.E.D.

The proof of (13.5) will occupy the rest of this section.

PROPOSITION (13.8). (a) There exists a unique Ov-homomorphism
n-d o~ ~
n:Exty (O, 0,) + B
GX vV X v

such that for each closed point v € V, the following diagram commutes

(whexre R = {0 ;' 8 =0 , and m is the maximal ideal of R):
——— X;V V'v —_—
-~ via n N e
o (Exz:o (Ov,wx)) > H, (B, ) res]

| "
/’?:%;/?

d
Hn(S) g Bty © (8,0y )~ HuBy )

(b} If OX v is Cohen-Macaulay, then n is an isomorphism at v,
L

Recall: Extg(S,G) is 4 universal é-functor of R-modﬁles G
(ef. [H,pp.205-206]), and the Yoneda pairings

d q d+
Hp(S) 8EXER(S,6) ~———> Hy'9(6) (q 2 0)
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can be defined by the following condition:

(13.9) For fixed u ¢ Hg(s), the family of maps

D, po g d+g
Y :Exto(8,6) > Hy 2(G)
given by
YE(A) = Yoneda (ugi)
is the unique homomorphism of 6-functors such that

0 d
Y0 = [Hp)) ()

{i.e. the image of u under the map H%(S)'4 H%(G) induced by
A E HomR(S,G)).

We will prove (13.8) below. Given (13.8), it is clear that
(13.5) follows from:

PROPOSITION (13.10). The following diagram commutes:

— n"d Fad (13-4) -
&= Btp, Oy By) ——==—5 17

n 1inc1usion

G L ~ nd
v inclusion “ Yk(Vy/k

If Proposition (13.10) is true at one point v € V, then it is
clearly true everywhere. If X is Cohen~Macaulay at v, so that
n, is an isomorphism (cf. (13.8) (b)), it follows then from defini-
tions that to prove (13.10) at v (hence everywhere) it suffices to
show that the following diagram - with x € X the generic point of

V (x smooth on X}, and ¢ the natural map - commutes:

c ~ v {13.1) . g
O, v > Wy Ly > &y — @y gy
natural inclusion natural
{13.10.1)
a n=d 2
U (v) /k 32,0 2 By (A7 7P /P00y /P00 )
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We proceed then as follows.

As before we denote by 3 the collection of all local domains
R which are localizations of finitely generated k-algebras at
maximal ideals (so that the residue field R/mR is finite over k).
We will prove below:

LEMMA (13.11). Let R €  be Cohen~Macaulay, of dimension n;
let P be a prime ideal in R such that Ry is regular, of
dimension n - d; and set § = R/P. Let g = (gl’gZ""’gn-d) be
an R-regular sequence of elements in P such that gRp = PR, (such
sequences exist - cf. e.g. [LS,p.213, Lemma (3.8)]). Set & = (g
Then there is an isomorphism

a:Extg-d(s,ﬁ) —> HomR(S,GVQﬁ) = (gW:P) /gy

such that, if for any v € giiitP € &§ we set

v, = a_ltv + gt ¢ Extg-d(s,ﬁ)

“then:

(a) with the “fundamental lecal homomorphism"

m:ExtE'd (5,8) » Hom, (An’dp/p2 L W/ PE)

as _in (13.1), and
g; = (g; + %) e pyp?
we have
P (v,) {51/\52 A...A&n_d} = v + P;
and

(b) for any seguence g = (sl;...,sd) in R whose image in
R/gR is a system of parameters, if

S; =8; + P € R/P = § (1 = i £ 4d)

then the Yoneda pairing

H(ExtD (s, %) = H(S) @gExth 0(5, &) + HNE)

(where m is the maximal ideal of R} satisfies
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]

Yoneda(v,/ (5 ,...,54)) Yoneda ([1/(8,,...,54)1&v,)

= “/(glr---:gn_dfsl....,sd)

(For notation cf. beginning of §7.)

Now supposing (13.11) to have been shown, look again at (13.10.1,
and set R = OE'V d
Let chnR + W, cS:QS + g, be the natural maps. For each
and choose

~

(assumed to be Cohen-Macaulay), & = Wps and S =0V v
r

d . ; . a _
v € nR/k let v be its natural image in Qs/k =
v' € g &:P such that

v,v’

-3 - _ '
n, cs(v) =] .

Then for (13.10.1) to commute it is, in view of (13.2) and {13.11) (a},
necessary and sufficient that for all v, v' as above

{(13.12.1) v' oz cR(Gglﬁgz...dgn_dfxv) {mod. Pﬁb nw .

Moreover, with "res" as in (11.2), and notation as in {(13.11) (b),
we must have, in view of (13.8):

resg[V/ (5,400 59)] = resgleg (V) /(5y,..:,84)]

resp(Yoneda([1/(8y,...,54)]ev})]

i.e.

(13.12.2)  xesg(V/(S),vuvsBg)] = YeSTIVI/(g)reeesGy_ 48y 00 iSg)]

In summary, (13.8), {(13.10) and (13.11l)} imply:

THEOREM (13.12). With notation and assumptions as in (13.11},
for any v € Qg/k there exists a v' € gl:P satisfying (13.12.1)
above. This v' is unigue modulo g% ; and it also satisfies
(13.12.2) (where Vv is the natural image of v in 8g, and
(sl,...,sd) is ag in (13.11) (b)).

Remarks. (i) The unigueness of v' (mod gB®) results from the
equality

~

(9@:P) n (PE, N &) = (g¥:P) n gf, = o&

which holds because the natural map
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(gB:P) /g% > p/gf, = [(gB:P)/gBlegk (V)

is injective, the source being isomorphic to Gé {cf. (13.11) and
{13.8) {b}) which is torsion free (cf. (2.1.3)).

(i1) Conversely, (13.8), (13.11) and (13.12) (for R = OX’V,

s = Ov v) imply that (13.10.1) commutes. For {13.12) (3) gives us an
1]
S=-homomorphism

B:ﬂs + {gl:P)/gw
(viz. B(V) = v' + g@), such that

-1
B ~ ~ O n~d, o~ (13.1) n-d_, 2 ~, -~
ﬂs ——> (guw:P) /gl Extp (5,u) -—-——HomR(A P/P° ,W0/PW)

| !

> Homy o tAn'dpkpfpznp.ﬁpfpﬁp)

Qd
k{v)/k (13,2.1)

commutes. (Note that Gé = QR since Rp is regular. Note also
that B is well-defined, since if v = 0, then we have (via (13.2.1))
that 6g;...69 . Ave Pﬁ% . whence - by the unigueness in (13.12) -
v' = 0.) So we need to show that o 18 = n;lcs. But, since the pair
(Gg,resg) is locally dualizing (cf. (0.6) (c}), therefore, by (13.8)
so is the pair (Extg"dts,ﬁ),resgeYoneda); and we can verify that
a-lB = n;lcs by first applying the functox Hy, and then

using (13.11)(b) and (13.12.2) to show that

~ d "‘l - - ~ d -l
resRoYoneda o Hpla B) = resy = resROYonedaon(nv cS)

where the last equality comes from (13.8).

(iii}. Now, given (13.8) and (13.11), we can prove (13.10) and
{13.12) as follows. First note that (13.12) is practically trivial
when both X and V are smooth at v, g is part of a regular
system of parameters (gl,...,gn) in R (so that gR = P), and for
some integer a ’

= a .
s; = (gn-d+i) (lsi<d).

(Just take y' = Ggl...dgn_d A v, and use the definition of res
given in §7). As in remark (ii), (13.10.1) then commutes at such a
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v, and hence (13.10) holds, and henc¢e, as we have seen, (13.12)
follows in full generality!

It remains to prove (13.8) and (13.11).

Proof of (13.8). The uniqueness of n follows easily from
local duality ((0.6)(c)).

For the existence of 1, we may replace X by a compactification
X and V by its closure in X; so we may assume that X and V
are proper over k.

Consider then the standard spectral sequence

Pg _ 4P q ~ p+g ~
EXY = H (x,Exrox(ov,wx)) = Extox (ov,mx).

gP4q

5 = 0 for p > d = dim VvV, we have edge homomorphisms

Since
d q ~ d+g .
H (X.Extox(Ov,wx)) + EXtox (OV,NX) (g =2 0)
which compose with the natural maps
d+q ~ d+q Y. LY. S
Extox (O eBy) Extox (0x,wx) = H (X, 0y)
to give maps

(13.8.1) Hd(v,Extg 0y, F)) = Hd(x,sxtg 0,8 * B, Ty (q20).
X X

X being proper, of dimension 1, we can take ¢ = n - d and obtain

a composed map ~
L)

#Hv, Exe @ (0,,5,)) > BN LT —E k.
A

Since Gﬁl is dualizing, we have then a corresponding map

n:Extg;d(Ov,ﬁx) - dy,

Now for any closed point v € X consider the cube
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HS (et (Ov,w N — > 1, Ext g e ))

n o
Yoneda (13.8.1)

133, > 18 (v, )

vV Py
W res™ A4 'é'
no,e ~
Hy (@) > HN(X, D)
~ §
res

v v
k k

with horizbntal-arrows representing natural maps. It is clear that
the four faces which do not have "Yoneda" as an edge commute, The
assertion in (13.8)(a) is that the face on the left side commutes;
to prove this it will be enough to show that the rear face commutes.

For this purpose, in the construction of n replace the functor
I'(X,*) by its subfunctor FV(') {sections supported at v € X) to
get a composed map '

d n-d ~ n ~
B:HV(EXZOX (ovfwx)) -+ Extv(Oerx)

» Bxt? (GX,wX =" (wx)

(where Extﬁ is the derived functor of 'rvome). Clearly the rear
face will commute if "Yoneda" is replaced by "B". So we need only
show that

(13.8.2) 8 = Yoneda .
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The question is local, so we replace X by R = Gx v and Vv
r

by 8§ = Ov'v. Also, in the construction of £, we can replace Cﬁ

by an arbitrary R-module G, and we get G-functorial maps
8 (q) :an(Extg(s,G))_ + 53*4g) (q = 0)

(where m is the maximal ideal of R). We can then prove {(13.8.2)
by showing that the conditions in (13.92) hold with "g£" in place of
IIY" .
First of all, then, we have to show that
8%(6) :HG (Homy (5,6)) + B(G)
is the map induced by the natural inclusion {i.e. "evaluation at 1")

e:HomR(S,G) — G.

(Note that the diagram

H?H(S)@ HomR(S,G)

takes U@ ) to [Hp(A)) (W)

(8,G))

d . 5,4
Hm(HomR via inclusion * Em(G)
commutes.) For this we let' I' be an R-injective resclution of G,

then extend the natural (inclusion) map of complexes

Hom (8,1") —— nomR(R,I') =1

to a map of Cartan-Eilenberg resolutions (double complexes) C = = D,
and congider the resulting map

Tm(C™") > Iyy(d""),

which induces a natural homomorphism of spectral sequences; in
particular we obtain the commutative diagram
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Ego(c") = H%{HomR(S,G)) — Extg(S,G)

I
via el
dao

ES (D) = migiom  (R,6)) = Extd(®,0) = mdq)

which gives us the desired result. X
Second, we have to show that B8 is §-functorial, i.e. if

(13.8.,3) 0+G"+G+a@" +0

is an exact sequence of R-modules, then the resulting diagram

Hi(Extg(S,G“)) ——  Ext3*s,6n) — 18+ gn)

® ©)

Hu(Ext T s,61)) s mxedi (g0 gdtatlgy,

commutes for all g z 0. This is easily checked for the subdiagram
C). As for (), we choose an exact sequence of injective
resolutions.

0 —>I'" —3I" —3 I"" — 3 ¢

over (13.8.3):; and then, with J'°® = Hom, (8,I'") etc., we have an
exact sequence

0 —> g Mgt gt — 50 .

The horizontal arrows in (:) come from the standard spectral sequences
for the hypercohomologies JH%(J"'),Iﬁh(J") respectively. There is
however a natural map from the mapping cone K* of u [H,p.26] to

J"" which induces homology isomorphisms; so we may replace Mp(J"°)
by :HnJK'). But then the vertical arrows in (:) are those associated
to the natural projection K°® + J"[1] , where [1l] denotes "shifting
one place left" (¢f. remarks preceding (8.6)). The commutativity
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of (1) results, and that finishes the proof of (13.8) (a).

Now we prove (13.8)(b). With R and S as above, (R now
being assumed Cohen-Macaulay), to show that n is an isomorphism we
may pass to completions; so we keep the same notations as before, but
assume that R and 8 are complete.
It suffices then to show that the pair consisting of
E = Extg-d(S,GR) together with the map
res.

d ., Yoneda n,~ R
(13.8.4) Hy(E) ————— Hm(wR) —_ 3 k

represents the functor Homk(H%(E),k) of S-modules E. In other
words, we need to show that the compeosition (13.8.4) enatural in the

following diagram is an isomorphism.

n-a ~ o ~
——— T,
EXFR (E,wR) > HomS(E,E)
via | Yoneda natural

{13.8.5)

Homp (He(E) By (8)) ¢—gomege—  Homg (HY(E) , HE(E))

res; {L3.8.4)
Hom (Hd(E) k)
km !

Here o c¢orresponds to the natural pairing

(13.8.6)  Extp U(B, & )eE = Exth %(E,B )0 Homy(S,B) > Exth O(s,dy) = E.

But the diagram {13.8.5) commutes: for the lower triangle, thig is
clear, and for the sqgquare it is equivalent to the commutativity of
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n-d,. -~ d via(13.8.8) n-d,, - d
ExtR (E,wR) ?E®Hm(s) Extp (S.wR) @ Hp(S)
Yoneda
n-d e d . n,~
EXtR (E'wR) ® Hp (E) Yoneda Hm(wR)

which is readily checked (for example by replacing » by a wvariable

R
R-module G and using (13.9)). It will suffice, therefore to show:

{13.8.7) (Full Local Duality). For any R-module &, the
composition

~

Xes

Ext!” via Yoneda HOMR(Hg(G)'Hg(aﬁ)) —F Homk(H%(G).k)

is an isomorphism;

and, in addition, that:

(13.8.8) for any S-module E, the map ¢ in (13.8.5) is an
iscmorphism.

By ((0.6)(c)) we have a natural isomorphism of functors of
R-modules G:

~ ~ n
Homp (G,u6p) ——> Homy (Hp(G), k),
which then extends uniquely to a homomorphism of é&-functors

i ~ n-i s
(13.8.9) ExtR(G,wR) — Homk(Hm (G) , k) (1 = 0).

Replacing d by n - i in (13.8.7), and Yoneda by (—l)iYoneda, we
get a homomorphism of &~functors, which coincides with {13.8.9) for
i =0, and hence for all i. So (13.8.7) asserts that (13.8.9) is

an_isomorphism for all i. But this follews from the fact that, R
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being Cohen-Macaulay, we have H;(F) = 0 for any free R-module F
and any integer i ¥ n = dim R [G3,p.13,Prop. 1.12 and p.47, Cor.
3.10), so that the target in (13.8.9) is the derived functor of
Hom (Hp(G) k).

In particular, if E is an S-module, then

d+1

n-gd-1 ~~ ~ -
) T Hom, (Hy " (E),k) = 0

ExtR (E,mR

and sc the functor Ext;_d(E,Bk) of S-modules E is left exact.
From this (13.8.8) follows (cf. [G3,p.49,Prop. 4.2]; the case where
E is finitely generated would suffice for our purposes, but anyway

the general case reduces to this one via direct limits).

This completes the proof of (13.8).

Proof of (13.11). Consider the diagram

(13.11.1) HomR(S,Ext:_d(R/gR,ﬁf))

(:) evaluate at 1

)'Ext:—d(n/gR,ﬂﬁ

\ (13.1)

\ ¥

" Homg (5, 8/g3) —~=5>  Homg (8, Hom, (A" %gr/ (R %, /g0 ) (13.1)

v

v

aomkmn'dp/pz.ﬁ/pm > Bom, (A" %gr/ (gr) 2, B/g®)

®

Here the map C) corresponds to the natural map R/gR + §; and the
map (:) is the unique one making the upper triangle commute. &s in
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the proof of (13.8.8) just above, since the functor ExtE-d(E,ﬁ) of
R/gR-modules E 1is left exact, therefore (:) is an isomorphism.

The maps labelled {13.1) are fundamental local homomorphisms;
and they are isomorphisms as can be seen by using the Koszul complex
KR(g) determined by the regular sequence g as a projective
resolution of R/g to calculate {13.1) explicitly.

The map C) corresponds to the isomerphism § —" An-ng/(gR)z

taking 1 to the natural image of 93 A9y n...ngn_d

Thus the map o given by

o= Q@ tasn.@

is an isomorphism.

The asgertion (13.11)(a) then follows from the commutativity of
the diagram (13.11.1), which we leave to the reader to check. (&
variant of all this is given in [LS,p.218, Lemma (&.2)}1).

aAs for (13.11) (b), we first note that there is a commutative
diagram

©)

Ext;"d(s,ﬁ) — Ext;_d(R/gR, &)

Homy (3 (8) , HIL(B) ) > Homp, (H(R/gR) , D (D) )

where the horizontal arrows are induced by the natural map R/gR + S
{so that C) is the same as in (13.11.1)), and the vertical arrows
by Yoneda. &As before, if we use the Koszul complex KR(g) to
calculate Extg-d(R/gR,G), we find that (:) takes v, to the
cohomology class of the (n-d)-cocycle

V € gOtP < il = HomR(R,w) = HomR(KR(g)n_d.w) .

We see then, after a little thought, that it will suffice to prove

126



the following statement:

(13.11) (b)" The Yoneda product of

= = a = N
[1/($yse0.184] € Hy(R/GR) (s; = (s; + gR) € R/9R)
with the equivalence class (Kp(g)) in Extg_dtn/gR,R) of the exact
sequence consisting of KR(g) together with its natural augmentation
KR(QJO = R + R/gR, is :

n
[l/(gl""’gn-d'sl'°"'sd)] € Hp(R) .
Now we have a natural map of é-functors (of R-modules G)
i T i .
Ext™ (R/(g,8)R,G) —> Hp(G) {t =20

[which may be thought of as the Yoneda product with 1 € HgﬂR/(s,g)R)],
and, hence a commutative diagram
ExtS (R/ (g,8) R, R/gR) @ ExtD 4 (R/gr,R) 2L w3 (R/gR) @ Ext) ¢ (R/GR,R)

Yoneda Yoneda

Extp(R/(g,8)R,R) —————> Hp(R) .

On the other hand, according to the definitions in §7, we find (with
i=4d, G = R/gR) that

[1/(8y,c.0s8q)] = r(KR/gR(ﬁ)) .
Similarly (with i = n, G = R},

[1/(g1,---,gn_d,sl.---,sd)] = T(KR(g,S)) .
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So (13.11}(b)*' follows from:

(13.11)(b)": The ¥Yoneda product of

= da
(KR/gR(s)} € ExtR(R/(g,S)R +R/GR)

and

(Kg(9)) € Extp 4 (R/gR,R)

(Kg(g,s)) € Extp(RAQ,SIR,R) .

As in (13.9), we can characterize the Yoneda pairing (for
R-modules E, F, G)

4a q d+gq
Extp (E,F) @p Ext3(F,6) —> Extp - (E,G)

as follows: for fixed E, F and fixed u ¢ Extg(E,F), the family of
maps

d, q d+q
Y :Extp(F,G) —-3 Exty °(E,G)

given by

yﬁm = Yoneda(y @A)

is the unigue homomorphism of é-functors such that

YS(A) = image of u under the map Extg(E,F) -+ Extg(E,G}
induced by i € HomR(F,G).

It follows that this pairing is given by pasting {(composition) of
exact sequences (cf. [M, Ch.III, §9]).

This being so, it is clear that (13.11) (b)" follows from

{13.11) (b)". Let R be any commutative ring, and let h = (hyseeaihy)
be an R-regular seguence. Then, in ExtE(R/hR,R), the equivalence
class (Kp(h)) 4is the same as the class of the composition

0105440y oOf the following exact seguences:
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h
1 . N
(Gl) 4] R —=>R > R/th ¥ 0

h
N 2 5
(02) o » R/h)R R/h,R —> R/ (h, b )R —_—3 0

h
I
{c.) 0o —> R/(hl,...,hn_l)R —_— R/(hl,...,hn_l)R _— R/(hl"”'hn)R —> 0

Proof of (13.11) (b)™. We need only find a map V¥ of complexes
KR(h) > 010,...0, over the identity map of R/hR, which is the

identity map of R in degree n.

Let (el,ez,...,en) be the standard basis of Rn, and define

p in degree j by

pdph - '
byl (RY) > R/ (hy,..ouhp 5 g)R (0 =3 =n)

(the target is R for j n-1 or j=n) where

w.(ei Ae, A...Aei') 1 if (11,12,...,1j) =(n-3+1,n—j+2,...,p)

J 1 2 i

n

0 otherwise.

This ¢ has the required properties.
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APPENDIX A
Projective Noether normalization.
In this Appendix we prove:

PROPOSITION (A.l). Let V be a d-dimensional projective variety
over a field k, and let v € V be a smooth point. Then there exists

a finite map £:V - P =1P§ which is étale at wv.

Remark. Geometrically (i.e. when %k is infinite and v is a

k-rational point) (A.1) is clear: project V <P from a linear
J o= = .

Ph d-1 <l which meets neither V nor the tangent gpace to V

at v.
The main difficulty arises when k is finite.

Proof of (A.l). Recall that V is smooth precisely where the
differential sheaf Ré/k is free of rank d, and that a map
£:V + P is étale precisely where the relative differential sheaf
Q%AP = 0. So the closure of v contains points which are both
smooth and closed, and we may assume that v itself is closed. Then
if m is the maximal ideal of OV’V, Ov,v/m is finite and separable
over k, and f is étale at v if and only if m is generated by
the maximal ideal of QP,f(v)' S0 it will ke encugh to find a
seguence (gb,gi,...,gé) of forms (= homogeneous elements) in the
homogeneous coordinate ring k([V]) (defined with respect to some
embedding V<L1P )¢ all of the same degree, such that go(v) ¥ 0,
gl /go {1l 1iz<d) generate m, and k[v1/(go,gl,...,gd) is finite-
dimensional over k. (Then we can take f to be the map associated

to the inclusion klgl,...,gitl < k[V].)
0 d

The case d = 0 is trivial, so assume that d > 0. Pick an
element gl/h in m- m2, where 9; and h are forms in k[V] of
the same degree, with h{v) ¥ 0. Assume inductively that a segquence
(gl,gz,---,gj) (1l = 3j <d) of forms has been found such that:

(2a) for each 1 s j, there is a form 2i having the same
degree as gy with 2.(v) # 0, and such that g./z. € m;

(b) if m, is the ideal m’ + (91/210+++495/25) _in 0,
(zi as in (a}), then the (Ov v/m)-vector space m /n@ has

dimension 3j;

a4

(c) every prime ideal in k[V] containing gl"“'gj has
height = j,
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Let M < k(V] be the prime ideal corresponding to v, let
Yy £ M be a form of degree 1, and let Mj < M be the homcgeneous
ideal whose elements of degree e > 0 are the forms g such that
g/v° e m; (of. (b) above). Then M #M; (since mgm,, j being
< d); and if hl""'bs are prime ideals which are minimal among
the ones containing (gl,...,gj), then M & Di, because M has

height 4 > j = height b, . I claim then that:

(A.1.1) there is a form

Tyyp €M - My U B U By U...U D).

Once (A.l.1) is proved, we can continue in the same way, to build
up & segquence (gl,...,gd) of forms such that the above conditions
(a), {(b), (¢) are satisfied for j = d. We can also choose a form dg
not lying in any of the minimal primes of the ideal (gl,...,gd)k[V]
(cf. (2S5, p.286)). So (go,gl,...,gd) has all the required
properties, except that the g; may have different degrees. We will
return to this problem below, but first let us prove (A.1l.1).

As in [Z8, p.286}, there is a form

Yo €M~ (bl Ueou hs)

and we may assume that Yo € Mj (otherwise take 9j+1 = YO). A
similar argument yields the following Lemma, which we need to complete

the proof:

LEMMA (A.1.2}. Let Qureess @ be homogeneous ideals in k([V]
such that k[v]/ai has Krull dimension > 0 for 1 g i < t. Then
there is an integer n, such that for every n = Ny, there exists
a form g € k[V] of degree n with

t
g g Ua; .
i=1

Proof. The assertion is clear when t = 1 (consider the
Hilbert polynomial of k[v}/ul). Assume then that t > 1, AaAfter
replacing ﬂi by a suitable prime ideal containing it, we may assume
that Oi is prime. We may also assume that a - Qj if i # 3.
For each pair i # j choose a form a.. in &, - aj, and set

ij i
a, = (II a

L)Y et 4 - oA, .
R e igj *

J
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Let éj be the degree of aj, and let & = maxlsjst(ﬁj). Let §°!
be an_integer such that for any j with 1 < 3 < t and for any

n' = é' there is a form bj,n' of degree n' not contained in Gj
(cf. the above case t = 1). Then, for any n = 6 + §', the form

2% ajbj,n-éj has degree n and lies in no cj. Q.E.D.

Returning now to (A.l.1), we proceed by induction on s, the
case 8 = 0 being trivial. We may assume, by the inductive
hypothesis, that for each i = 1,2,...,8, there exists a form

Y5 EM - (Mj U bl U...U bi U...y DS)

{where “ﬁi" means, as usual, "omit Di"). If Y £ hi for some i,
then we can take gj+1 =Y. S assume ¥ € bi for all i. Choose
n, as in (2.1.2), and let m be an integer large enough that

s
n = m(degree YO) - (degree 71) + X

i=2(degree Yi) = n,

(where, as above, Yo € Mj - (bl U...u bs)) so that there is a form

g of degree n not lying in M U bl U U b, - Then consider the
form
I,
941 T IV * YVaY3eeevg -

Since In £ M and Yy £ Mj' we find that gvYy £ Mj. Also, for
i>2, 9¢g ”i and Y1 £ b; so 9Y; £ ni. Moreover 9Y, € hl and

n .
YoYgeo Yg € (Mj N v, N...n bs) -5 .

The assertion (A.1.1) follows.

We consider now the sequence (go,...,gd) found above. We will
construct a sequence of forms (hﬂ'hl”"’hd) such that

(1) hytv) # 0 (0 = i< d);
(ii) all the forms h;g9; (0 =i =< d) have the same degree; and

(iii) k{V]/(hogO,hlgl,...,hdgd) is finite~dimensional over k.
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Then the seguence (gi) = (higi) has all the properties needed -
as previously explained - for the procf of {A.1).

We choose h0 to be any form not contained in any of the
minimal primes of (gl,...,gd)k[V]. Assume that we have found forms
ho’hl""'hj (j < d) such that hi(v) # 0 (0 <1< j}), such that
all the forms higi (0 £ i = j) have the same degree, say 4, and
such that

k[V]/(hOgO'hlgl"" ,hjgj.qjﬂ, cere9y)

is finite-dimensional. Lemma {A.l.2) gives us an n, such that for
n = n, there exists a form h¢,) of degree n, not lying in any of
the minimal primes of the ideal

g

(hogo,hlgl,...,hJ j

J'gj+2! .. -;gd)k[V] [

and such that hhﬂ(V) #0. Let r; = degree h, {0 s i= 3j) and let
r be any common multiple of the r, such that

n,=zxr+ §- degree(qj+l) z ng.

Then replacing hi by h&f/ri)+l,

have the same conditions as above with J replaced by J + 1.

and setting hj+l = h(nr)' we

Continuing in this way, we complete the construction.
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RESUME

Il s’agit d'un exposé plutdt concret et detaillé du rdle des
formes différentielles dans la théorie de dualité des variétés
propres (hon necéssairement lisses) surs un corps parfait. On
décrit {(d'aprds Kunz) un faisceau » de formes méromorphes de degré
maximal qui est un faisceau dualisant canonigue. Le morphisme trace
correspondant induit en chagque point un morphisme résidu, qu'on
caractérise localement; et qui, avec W, est localement dualisant
(compatibilité de Qualité globale et locale). On donne aussi des
compléments divers, y compris wne interprétation de l'adjonction,
(i.e. réalisation du faisceau canonigue d'une sous-variété d'une
variété localement de Cohen-Macaulay) en termes de résidus.
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