On blowing down projective spaces
in singular varieties

By Joseph Lipman*) at West Lafayette and Andrew John Sommese**) at Notre Dame

In this article we study some “contractible” projective spaces in singular varieties,
especially with regard to the singularities through which they can—or cannot—pass
(cf. Corollary (2.3)). While this may be interesting from the point of view of
singularity theory, our motivation was to remove the last obstacle to proving in its
natural generality a basic structure theorem connected with the projective classification
of varieties. We discuss this application at the end of the introduction.

Proposition (1. 1) describes the behavior of the dualizing sheaf of a hypersurface
under blowing up. Corollary (1. 2) shows under certain circumstances that blowing up
can make “normal bundles” (of codimension one subvarieties in singular hypersurfaces)
more positive. Theorem (1. 3) is a version of Hironaka’s resolution theorem in our
special case, with the positivity increasing property of (1. 2} built in.

These results are used in §2 in the proof of the main theorem of the paper:

Theorem (2. 1). Let V be a reduced irreducible algebraic variety of dimension
d 22 over an algebraically closed field, k, of characteristic zero. Assume that V is locally
a hypersurface. Let PSV be a codimension one subvariety which is isomorphic (as a k-
variety) to the projective space P{~' and which is not entirely contained in the singular
locus Sing(V); and ler o: P— A be the inclusion. Assume that P “blows down
birationally”, i.e. that there exists a birational map ¢:V* — A where V* is an open
neighborhood of P in V, and A'is an affine k-variety (whence @(P) is a single point).
Then the normal bundle vy =wp ® a*wy' (w = dualizing sheaf) is isomorphic to €p(m)
Jor some m<0. Moreover if m=—1 then P n Sing(V) is either empty or of pure
dimension d—2.

Corollary (2. 3) restates (2. 1) for threefolds, with somewhat different hypotheses,
It makes use of Theorem (0. 1), due to H. Laufer, which refines (2. 1) in the case d=2,
m=—1, with the “local hypersurface” hypothesis replaced by the assumption that V is
normal and Gorenstein: Theorem (0. 1) states then that P ~ Sing (V) consists of at most
one A,-type rational singularity.
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To appreciate the above, it helps to understand the main application 1t was
designed for. Let (V, S) be a pair consisting of a smooth ample divisor, S, on a smooth
connected projective threefold, V,—everything defined over C. In [So1], [So2] it was
shown that under very weak conditions on the pair, S is of general type and there is a
second pair (V', §') satisfying:

a} there is a map ¢: ¥V — V7 expressing ¥ as the blowup at a finite set of points
of a projective manifold V7,

b)Y S$' =¢(S) is a smooth ample divisor on ¥’ and ¢g: §— §' is the map of S
onto its minimal model.

The relation of (V, §) to (V°,"S’} is very close and has many nice properties. In
particular, it lets the highly developed theory of minimal models of  general type
surfaces be used directly to study ample divisors on threefolds; it leads to very precise
delicate results, e.g. [So03].

In [So4] a rather elaborate method based on a generalization of the Fano-Morin
three-dimensional adjunction process (see [So4], [F+So]) was developed to classify
where the main theorem of [So3] broke down. It turned out to be unnecessary to
publish [So4] because as N. Shepherd-Barron first pointed out to the second author,
the then new results of Mori [M] vielded an easy proof.

Recently versions of the above results of {So3], [So4] when V is singular have
become important, For example in the thesis of M. L. Fania [F], a problem about
extension of modifications from a smooth ample divisor on a smooth fourfold to the
fourfold led to the need for the results for a possibly singular divisor on the fourfold.
Mori’s work is restricted to smooth varieties but the methods of [So3] combined with
[So4] work on Gorenstein varieties. In [F +So] this was carried out, but besides the
methods being painfully more elaborate than [So4], the results were incomplete. The
pair (¥, §') existed but it could only be concluded that ¥’ was Cohen-Macaulay and
S’ was a Weil divisor. The difficulty came {rom the lack of Theorem (2.1) above.
Besides allowing the results on ample divisors to be proved in full generality, the use of
Theorem (2. 1) has meant that the proofs have to be only a little more complicated
than in the manifold case.

Our collaboration grew out of discussions at the United States-France Conference
on Singularities in Paris (June, 1983). (These discussions were fostered by the
organizers, through their wisdom in arranging for participants to take daily thirty
minute train rides between hotel and conference site!) We would both like to thank the
National Science Foundation for their support of this conference.

§ 0. Blowing down and A, singularifies

We give here an unpublished result of Henry Laufer, needed for Corollary (2. 3).

By a Gorenstein variety, X, we mean ‘a locally Cohen-Macaulay variety over an
alpebraically closed field, with an invertible dualizing sheaf wy. The restriction of wy to
the open set of smooth points of X is isomorphic to the sheaf of germs of differential
n-forms, where n=dim X. (For more details on dualizing sheaves cf. §1.} We abuse
notation by also using “w,” to denote any canocnical divisor, i.e. a Cartier divisor
associated to the dualizing sheaf.




‘Theorem (U, 1), Let V be a normal Gorenstein surface; and let YV be a smocth
projective rational curve such that

a) P is contractible, i.e. there is a birational map n: V — A onto a normal surface
A such that n(P) is a single point and n~'n(P)=P; and

b) the intersection number wy - P=—1, where wy is a canonical divisor on V.

Then P contains at most one singular point x of V, and such an x must be an A,
type rational singularity for some nz1.

Remarks, — When P contains no singularity of V, the condition ey - P=—1is
equivalent (by adjunction) to P-P=-—1,

— For an example where P contains an A, singularity of ¥, consider the map
7V A=C?=Spec(C[X, Y]
obtained by blowing up the ideal (X, ¥"*') in C[X, Y].

Proof of {0.1). Let 6: V' — ¥ be a minimal resolution of ¥ around P, in the
sense that if x,,. .., x, are the singularities of ¥ on P and E,,..., E, are the irreductble
components of =% {x,,..., x,} then:

1) ¢ is a proper birational map inducing an isomorphism
Vi—o6 x,.., 5, =V ={x,..., %, }.
ii) No E is a smooth rational curve satisfying E;- E;= —1.
Set w=ey, © =wy.. Since @ is invertible, we have
cfo=w'+4

for some divisor A=Y a,E, (a;e Z). We show first that 4=0.
i=1

Since o*w- E;=0 (1= i< n), the adjunction formula gives
(0.1.1) —A-E,-=a)'-E,-=2p,(Ei)-—2—E,--E,-gO

where the last inequality holds because E; - E;< 0 and p,(E;) 2 0 with equality only if E;
is a smooth rational curve, and because of the preceding condition ii). Hence either
A=0 or a;>0 for all i. (This is standard: write 4 =4, —4, where 4,, 4, are effective
divisors without common components; then (0. 1. 1) implies that

O2A-8,=4, Ay—A;- 4,2 ~ 454,20
and so 4,-4,=0, i.e. 4,=0 by negative definiteness; thus ;20 for ali i. Moreover if

some a,>0, and E; meets E;, then 4- E;= 0 implies o;> 0; using the connectedness of
{J E; we see then that all a;>0.)

Now, let P’ be the proper transform of P on V. Then
~1=c¢*a) - P=w' - P+d4-P=-2-FP P +4.-F

(the last equality by adjunction). Since no(P’) is a single point, therefore P'- P'<0;
and since 4-P'20, we conclude that P'- P'=—1, A- P'=0. Since P’ meets E; for
some i, therefore ;=0 and hence 4=0, as asserted.
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30 we nave equality in (U. 1. 1), and theretore every E; i1s a smooth rational curve
with E;- E; = ~2. Thus each x; is a rational double point; and to see that it is of type
A4,, we need to show that no E; meets three others. This is done below.

As above, P’ is a smooth rational curve with self-intersection —1. Let gV =¥V
be the map blowing down P’, and set E;=3(E;). Then V" is smooth along |J E!, and
there is a birational map ¥ — 4 taking | E; to the point % (P). If g; is the multiplicity
of the point B(P') on E;, then

0>E - Ef=E E+p=—2+y

whence p;=0 or 1, and so E; is a smooth rational curve with E;-E/=-—2 or —1.
Furthermore, there is at least one i for which P’ meets E; (and hence y,=1), and for
this i, E{- E{ = —~1. We can then blow down E; and repeat the argument. Continue in

this way until there is nothing left to blow down, at which point there is a birational
map 7: V"D — 4 with F"*2 smooth and with ™! z(P) having dimension zero. Then
7 1s an isomorphism (by Zariski’s main theorem), and so n(P) is @ smooth point of A.

Finally, we note that P’ could not meet E, and E; for i+, since then E; and E;
would meet, and both have self-intersection —1, so that when we blow down E], the
image of E; would have self-intersection 20, whwh 1s not possible. Thus the number r
of singularities of Vor P is at most 1. Similarly, if Ef-E/=—1, then E; can meet no
more than one E; (j=1{), and blowing down E], we see again that this E can meet no
more than one E' (k#*1i, k+j). Continuing m thlS way we find that na E; can meet
more than two others. This completes the proof. [J

§ L. Canonical sheaves and blowing up

Let ¥ be an n-dimensional algebraic variety (reduced and irreducible) over a field
k, supposed for simplicity to be algebraically closed. Denote by £(F) the field of
rational functions on V. We assume throughout that V is locally a hypersurface, i.e. for
each closed point v € V if R is the local ring @y, of v on V, then R is k- -isomorphic to
S/fS, where S is a regular local ring of dimension n+ 1. (It is equivalent to say that
the maximal ideal of R can be generated by a sequence of n+1 elements.)

There is a canonical “dualizing sheaf” w,, which is a coherent ¢y-submodule of
the constant sheaf @, of meromorphic differential n-forms on V. This w, is implicit
in Grothendieck duality theory, and is explicitly described by Kunz in [K 1] and [K 2].
All we have to know about wy is that the stalk w,,, can be described as follows (cf. e.g.
[B], pp. 196—197).

With R=§/fS as above we choose a regular system of parameters
(X5, X1,..., X)) in S (i.e. a sequence of n+1 elements generating the maximal ideal
of S). Then the differentials dX,, dX,,..., dX, form a free basis of the Kihler differen-
tial module Q4. If fy (0= i< n)is deﬁned by the equation (in Qg,)

df = 3. frdX,




and if x; € R (respectively f,, € R) is the natural image of X; (respectively fy,), then the
n-dimensional k(V)-vector space ), is generated by (dx,, dx,,.. ., dx,) subject to
the single relation

T fede, =0.
i=0
Hence (dx,,...,dx;—y, dX;4y,...,dx,) forms a k(V)-basis of @y, if and only if
S+, =0; and then w, , satisfies
wy,,= R{dxy--dx;_dx; "'dxn/fxg) < Q;(V),'k'

Thus @, is an invertible Oy-module. In particular, if v is @ smooth point of V,
- then for some i, f,, is a unit in R, and consequently

Oy, = QR (R=0y ).
Our first result has to do with the behavior of @, under “permissible” blowups.

Proposition (1. 1). With V as above, let B<V be a smooth subvariety of
codimension ¢> 0, and such that every point of B has the same multiplicity e on V. Let
n: V' — V be the birational map obtained by blowing up B, so that if | is the Op-ideal of
JSunctions vanishing on B then 10, is invertible. Then the image of the natural map

@y — T Q= Rwp
is (10, ) " %ewy-.
Proof. The assertion is local, so consider what happens at a closed point v' e V"

If o' ¢ =~ ' (B) then = is an isomorphism around v’, 10;. ,,=0,. ., and the assertion is
obvious.

Assume then that v=n(v") & B. Set
Oy ,=R=S/fS

as before, For a suitable regular system of parameters (X3, X,,...,X,) in §, with
image {x4, X,..., X,) in R, we have that x,+0 and that the stalk [, is given by

[,=(xg, X5, .., X )R;
and furthermore, if
=X, when =0 or i>¢,
=X,/X, when 1Zi=c
then .

Oy, =R =8f'S’
where S’ is the localization ' .
S'=SY,. .., Ylwovi..tw

and where

f’=Y0_ef-




Then IR =x,R’, and we need to show that
R'wl’.v = xg_eml",v' .

Choose i such that £, +0, but f, =0 for all j>i. Let y,e R’ (0=,/=n) be the
natural image of Y, e S’. Then simple calculations give

fr=x0°f,, if i=0ori>¢,
— e+l : :
=xg*tf, if 12iZec

So if

é =de"‘dxl-_.1dxi+l --~dx,,/f;i
and

§'=dyy--dy,_1dyy "'dJ"u/fy.-

are generators of wy , and w,. . respectively (see above) then, since
dy;=dx; if j=0or j>c¢
= x5 2(xodx;— x;dx,) if 1=5j=c
we find easily, when i>0, that
E=xg7e¢,

and the conclusion follows.
In case i=0, then f, %0 and £, =0 for j>0; and since
Y fidx,=0
j=0
therefore dx,=0, and we find again that ¢=x5"¢¢". O

Corollary (1.2). Let BcV,c,e, be as in (1.1), with ¢22 and e2 2. Let B P,
where P is a smooth codimension one subvariety of V; and let P'c V' be the proper
transform of P, so that the restriction np: P' — P of ©n can be identified with the blowup
of B& P. Let a: P— V be the inclusion, let wyp be the invertible Op-module oa*(wy),

and set
Vp=wp X (leP)- L
Define vp. similarly. Then
HO (P, vp. @ nf(vy ")) 0.

Proof. Let I be the @ -ideal defining B. Then, by (1.1),

w;} ® * (wV) ~ (I @V)c—- e
and similarly
wp! @ T* (wp) 2 (10,)¢ 701,

Hence
ve @ nE(F) 2 (10,)2 720,

and (1. 2) follows.




Proposition (1. 3). Assume that k has characteristic zero. Let P be a smooth
connected codimension one subvariety of V, containing at least one smooth point of V.
Then there exists a commutative diagram

VeV _ == V,cV
u U U u
B By Py=P
such that:
a) V, is an open neighborhood of P in V;

b) for 0= j<r, Vi, — ¥, is obtained by blowing up B;c P;, with B; smooth, and

J
all points of By having the same multiplicity 22 on V;; and P,,, is the proper transform

of P;
c) V¥ is smooth;

&) if op: P,— P is the composed map in the diagram, and vp, is defined as in
(1. 2), then
H(P,, vp, ® a¥ (v ")) % 0.

Proof. Everything but d) follows from Main Theorem I of [H], p. 174 (with
B=0). (Note that since P, & Sing(¥;), therefore ¥, smooth in a neighborhood of P, < ¥,
is normally flat along P,.) Then d) follows by induction from (1. 2).

Remark (1.4). (Not used elsewhere.) Let us say that ¥ is “strongly smooth in
codimension e” if there exists a desingularization p: ¥* — ¥ of V obtained as a
succession of blowups as in {1.1), where the blown up subvaricties always have
codimension >e. If, in addition, all points of ¥ have multiplicity <e+ 1, then it
follows from (1. 1) that the canonical inclusion

B Wy — WOy

is surjective. In characteristic zero, this means that the resolution p is “rational” [K],
p- 50.

For example, if e=1, and if all the singularities of ¥ are double points with
reduced Zariski tangent space, then it is not hard to check (at least if k has
characteristic + 2) that V' is strongly smooth in codimension 1 (i.e. “strongly normal”);
so if the characteristic is zero, then all the singularities of ¥ are rational. (Cf. [T] for
examples and references on rational singularities.)

§ 2. The main result

Let k& be an algebraically closed field of characteristic zero. We consider, as in
§1, a reduced irreducible algebraic k-variety V of dimension n =2, which is locally a
hypersurface; and a codimension one subvariety P which is not entirely contained in
the singular locus Sing (V). We assume further that P is isomorphic, as a k-variety, to
the projective space #;'. Then the “normal bundle” :

Vp=w, @ (mVlP)— !

(cf. (1. 2)) is isomorphic to @p(m) for some integer m.




Theorem (2.1). With preceding notation, assume that P “blows down biration-
ally”, i.e. there exists a birational map ¢: V* — A where V* s an open neighborhood of
P in V, and A is an affine k-variety (whence @(P) is a single point). Then, with
vp=0p(m) as above, we have m<0; and if m= —1 then P n Sing(¥V) is either empty or
of pure dimension n—2,

Proof. We may assume that V=V* and choose a desingularization

g: V=V - V,cV
as in (1. 3), inducing
cp: P'=PF, — P.

Let pe P, and let h: 4 — & be any non-zero regular function such that A o ¢ vanishes
along some subvariety W<V with pe W¢ P. Let LcP=P;! be a line through p
such that L is not contained in the intersection of P with any other component of the
subvariety of ¥V where k - ¢ vanishes, and such that L is not contained in P n Sing(¥);
and let L' be the proper transform of L on P, i.e. L' is the closure of g7 (L — Sing(V)}.
Write the divisor of zeros of the function Ao¢@oo on V' as

t
(h)V'=aUP,+ z aiEi+H
i=1

where E,,..., E, are all the irreducible components of ¢~ !{P n Sing(V’)), and where
neither P’ nor any F, is a component of /4. Note that

because
(hogoa)(c™'P)=h{p(P))=0.

For any divisor D on V', denote by (D- L’) the degree (= Chern class} of the
invertible sheaf @,.(D) @ ¢,. on L. 1t is clear by the choice of L that L' meets H in at
most finitely many points, whence (H- L)z 0. If p ¢ Sing(V), then ¢ is an isomorph-
ism over a neighborhood of p, and by our choice of A, some component of H passes
through p, so that (H-L')>0. '

Similarly (E,- L')=0 for 1= i< Moreover if p is singular on ¥ then L’ must
certainly meet (JE, since peL=op(l) and o;'(p)cP n(UE) [because
o E;)=F n Sing(¥), and ¢ induces an isomorphism outside ) E;]; thus (£;- L)>0
for some i

In any case, we musi have
t
> a(E-LY+(H-L)>0.
i=1

As for (P'-L"), recall that w,.=Q}., wp=Qi', so that the “adjunction
formula” gives

Vpr = @V'(P') ® @Pr;




and since the restriction of vy @p(m) to L has degree m, therefore the restriction of
of (vp) to L’ also has degree m; so we conclude from (1. 3) d) that if L is in sufficiently
general position') then the restriction of v, to L’ has degree =m, i.c.

2.1.1 (P'-LYzm.

It follows now that

(2.1.2) 0=((h)y-L')=ao(P'- LY+ ¥ ay(E;- L) +(H - L)
i=1

>ay(P - LYz aym.

Thus m<0.

Suppose next that m= —1, and that p € P » Sing (V). As we saw above, there is
_an i such that (E;- L')> 0, so that {cf. (2.1.1), (2.1.2)):

Oéao(P'-L’)-l-a,; _"ao +a,
Le agZa;.

Now from Lemma (2. 2) below (as applled to the local ring R=0), p» the prime
ideal p < R corresponding to P, and the valuations v, v, corresponding respectively to
E; and P') it follows that iff P n Sing(V) has dlmenswn <n—2 near p, then also
;2 dy, 30 that a;=a,. This leads to a contradiction (whence P ~ Sing(V) must be
empty!), as follows. Choose a rational function p on ¥’ whose divisor of zeros has P',
but no E;, as a component. (The existence of such a p follows easily e.g. from [Bo],
p. 134, Cor. 2.) We can write

p=(hyopoc)(hyopoo)

where A, and %, are regular functions on 4, which we can assume (after multiplying
both by a suitable function) are non-constant and vanishing at ¢(P). Choose a line
L < P as above, with 4 replaced by the product A, h,. Then as before, there is an i such
that (E;- L')>0 and %, - ¢ o6 vanishes to the same order along P’ and E; as does
h, o @ o o. But this is impossible, since p vanishes everywhere on P’ but not everywhere
on E,.

To complete the proof, then, we need the following lemma.

Recall that for any integer s, the symbohc power p® of a prime ideal p in an
integral domain R is defined by

PP=p*'R,nR={xecR|3yeR, yép, xyep’).
Thus, when R, is a discrete valuation ring, with valuation v,, then

p¥={xeR|v{x)2s}.

') Let D be an effective divisor on P such that 0, (D)2 ve. ® 057 (v5); and choose I as before, but
also not contained in o, (), so that L'c D and (D L) =0.




Lemma (2.2). Let § be a regular local ring, f an irreducible non-unit in S, and
R=S/fS. Let p be a prime ideal in R such that the local ring R/p is regular and the
localization R, is a discrete valuation ring, and such that if q>p is a prime ideal with
dim R,=2 then the local ring R, is regular. Then for all 5>0 we have

pl=p°

Hence if v is any discrete rank one valuation of the fraction field of R such that v{h)=1
for all heyp, then for every such h we have

v(f) Zv,(h).
Proof. For the last assertion, note that if v,(h)=s, then A e p® =p°, whence
v{h) = s.

The equality p*) = p* means that if y ¢ p and xy € p°, then x € p®; in other words,
the natural image of y in R/p is not a zero-divisor in the graded ring

G=@ p'/p°".

sz0

So it will be more than enough to show that G is an integral domain.

Let B be the inverse image of p in §. Then we have a natural surjective
homomorphism of graded rings

=@ PP -G

520

Since S/P=R/p is regular, and dimR =1, it follows that B is generated by two
elements, and that I' is isomorphic to a polynomial ring in two variables over S/§:

r=(s/P) X, Y]

Since R, =Sq/fSy is regular, we see that fe B, ¢ B2; and the kernel of y is
generated by the image f of £ in B/PB2, which is an element of the form

F=aX+BY (x, Be S/P).

We need then to show that f is irreducible, i.e. that « and 8 are relatively prime in S/
(which, being regular, is a2 unique factorization domain).

Suppose that « and § are not relatively prime, so that both are contained in a
height one prime ideal of S/P. If L is the inverse image in § of this prime ideal, then
clearly fe Q% So if q=%Q/fS, a prime ideal in R containing p, then dim R,=2 and

R,=8a/fSg

15 not regular, contradicting our assumptions.




lhus o and p are relatively prime, and the prool 1s compiete.
The following is the main form in which we will make use of Theorem (2. 1).

Corollary (2.3). Let V be a three-dimensional irreducible normal Gorenstein
variety over an algebraically closed field, k, of characteristic zero. Let PSV be a
subvariety which is k-isomorphic to the projective plane P{, and which meets the singular
set Sing(¥) in at most finitely many points. Assume that vp=0p(—1), {c¢f. (2.1)) and
that there exists a map @:V*— A as in (2.1) such that furthermore @ induces an
isomorphism V* — P~ A— @(P). Assume also that there is an ample line bundle H on V
spanned by its global sections and such that Hlp=~0p(1). Then P n Sing(V) is empty.

Proof. By (2.1) it is enough to show that F is locally a hypersurface at any
xe P n Sing(V). ' :

Let ¥: ¥V — PY be the map defined by the linear system |H|. Then the restriction
of H to the fibre ¥ ~'¥(x) is both ample and trivial, whence ¥~ !¥(x) is a finite set, i.e.
the linear system |H — x| of divisors in H containing x has only a finite set of base
points (viz. ¥ ~'¥(x)). By Bertini, a generic D e |H — x| has only isolated singularities;
and moreover the Cartier divisor D is Gorenstein (since V is), and therefore normal.

Now D A Pis a line L containing x; and since vp = @p(— 1), therefore
Op(~1)=vp = wp), @ (W) ' =0, (=3) ® (wy)™!
whence wy, ~ 0, (~-2), and
wpy = (Wyyp)lL @ (H|p)lL % wy)L @ (Hlp)l,
20 (-2)@0,(1)=0,(-1).

By Theorem (0.1) {applied to L D and the map n induced by ¢ from D onto the
normalization of ¢ (D)), x is an A4, singularity of D, and so D is a hypersurface locally at x.
Since the divisor D is locally principal, therefore V is a hypersurface at x. []

Remark (2.4). It is possible (but tedious) to remove the characteristic zero
assumption in (2. 3) by explicitly constructing a resolution of singularities as in (1. 3),
starting with the fact that D has an A, singularity at x.
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