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2 JOSEPH LIPMAN

§0. INTRODUCTION

The residue symbol introduced by Grothendieck [RD, pp. 185-198] has been found
usefu] in various contexts: duality theory of algebraic varieties, Gysin homomorphisms
of manifolds with vector fields having isolated zeros, integral representations in several
complex variables, just to mention a few (cf. for example [L], [AC], [AY], and their
bibliographies).

However, in spite of its broad interest, the theory of the residue symbol does not
seem to have been written down in a really satisfactory manner. One difficulty is that
~ Grothendieck’s approach depends on the global duality machinery developed in [RDJ;
and furthermore proofs are not given there. (A more detailed version is presented in
[Bv]; and for a complete treatment of the case of algebraic varieties, with a somewhat
different slant, ¢f. [L].) Grothendieck considers a smooth map f:X — Y of locally
noetherian schemes, with g-dimensional fibres, and a closed subscheme Z of X
defined by an ideal I which is locally generated‘ by q elements, and such that Z is
finite over Y. With i: Z —+ X the inclusion, and g=1{¢i:Z — Y, there is a restdue
isomorphism i = g!, or, more concretely, a sheaf isomorphism:

g, (Homg (AYI/I?), i*Q% ry)) = Homg (g, Oy. Oy)

(qu/y = relative differential g-forms) upon which the theory of the residue symbol is
built. '

But in fact the residue symbol can be viewed as a formal algebraic construet,
which can be defined and studied directly with only the elements of ring theory and
homological algebra. Indeed, while duality theory may provide the primary motivation
for residues,(l) eliminating it from their theoretical foundation resuits not onlv in
greater simplicity, but also in greater generality, and ultimately, one hopes, in more

{1} and that is why [Li appeared before this paper. (The relation of this paper to L. is
made explicit in Appendix A of §3 bel_ow.) My own interest in the subject was inspired
by p. 81 of |S], and by §810 and 15 of Z]. .
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interconnections with other areas (see the end of this Introduction). In any case, the
purpose of this paper is te provide an elementary development of the theory of residues .

The possibility of carrying out such a development of residues was known long ago
to Cartier. He proposed a local definition, which could, in principle, be used to estab-
lish the properties listed in [RD], just as an exercise. It turned out to be quite a long
exercise [L, p. 137]. In print, a beginning along these lines was made by Hopkins in
[H]. The definition in [H], somewhat simpler than Cartier’s, uses Koszul complexes,
Ext functors, ete. 1 personally was uncomfortable with this definition, because Koszul
complexes seem somehow too specialized; but 1 knew of no alternative, Then, around
1880, in an attempted proof of the “exterior differentiation” formula (R9) of [RD, p.
199] (given here in Appendix B of §3), the formalism of Hochschild homology began to
extrude itself. It quickly became clear that this formalism provided a very convenient
and surprisingly natural framework for the whole theory. Such, in brief, is the back-
ground of this paper.

The basic situation considered is the following: A is a commutative ring, R is an
A-algebra (not necessarily commutative), and there is given a representaiion of R, i.e.
an A-algebra homomorphism R — Hom(P, P), where P is a finitely generated pro-
jective A-module. For each q > 0, there is then a natural R°linear pairing
.(R® = center of R):

HYR, Hom, (P, P))® g Hq(R! R) — Hy(R, Hom, (P, P)) .

where H? and H; denote Hochschild cohomology and homology (reviewed at the
beginning of §1). The usual trace map Hom,(P,P) — A factors through

Hy(R, Hom (P, P}) = Hom,(P, P)/{commutators},
and composing with the preceding pairing we obtain the residue homomorphism (cf.
(L.5))
Res%: HYR, Hom, (P, P))® p H(R,R) — A
which is our basic object of study.

To get the residue symbol , we need to relate H? and H, to more concrete
objects. Suppose for simplicity that R is commutative. Assume further that P = R/I

for some ideal Tin R, and set

(1/1%)* = Homp(1/12, P).

There are then natural homomorphisms of graded R-algebras
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n 2vk n
(1.8.3) ne§9® [(1/12)*]) — neﬁoH (R, Hom (P, P))
n
(1.10.2) Q,r/a ~ @ HulR,R)

so that, via Res?%, we get a natural map

t%® I(I/IP)| @R O%/n — A
(equal, when q=0, to the trace map P —A) For re09y and

‘al, ceny 0 € (1/12)*, we set

, ‘
Res lftls cevy aq] =t{® - B ®v).

Finally, if I/I? is free over P, with basis, say, (fi + Phcicq (fi€1), and if

(egy+ «+ 5 @) is the dual basis of (I/I%)*, then we set

R g R g
Sty ey B =B oy, .., ol

Details are worked out in §1, which culminates with the “determinant formula”

(1.10.5) and its corollaries.
Sections 2, 3, and 4 are more or less independent of each other.

In section 2, we siudy the behavior of Res? when the data (A, R,P) vary. In
. particular we prove a “base-change” formula relative to a ring homomorphism

‘qb:A—*A':
'a | Qg ,[ @ aq]
€5 l;"'-, ! v €S Is e e ey

means “apply the functor ® 4 A’ to everything in sight”. (Cf. (2.4) for an

Where wirn

exact formulation.) We also show how the residues in this paper lead to the residues in
[H); and then deduce the *‘transition formula’ (2.8):

v R det(rij)t/
gl!"'!gq _-es fl!"‘!fq

for regular sequences g = (g, .. +» gq), f= (..., 1) in R, with

Res
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fi=§:rijgj ;€R, 1<i<yqg,
i=1 :

and such that R/gR and R/fR are finite and projective over A. (For this formula,

at least, Koszul complexes remain unavmda.ble )

At this point, we will have, among other things, reworked and extended most of
the material in [H].

The first “‘hard” result appears in §3 (Corollary (3.7)): it is a formula for residues
with respect to powers of the members of a quasi-regular sequence f=(f},..., {;)in
the A-algebra R, with R/fR finite and projective over A. Such a formula in the case.
of power series rings is well-known; and we relate our “formally Cohen-Macaulay”
situation to this case by embedding R into a power series ring in (f}, ..., fq), with
coefficients in the (usually) non-commutative finite projective  A-algebra
Hom,(R/fR,R/fR). As a corollary we obtain in (3.10) a relation between Jacobian
determinants, traces, and residues, which enables us, in particular, to derive the resi-
dues defined in [L] from those in this paper (cf. Appendix A). We also use (3.7) in
Appendix B, to obtain the “exterior differentiation” formula alludec?g;pglabove.

The second “hard" result is the trace formula (4.7.1), expressing a kind of adjoint-
ness relation between certain “trace’ and ‘‘cotrace’ maps in the Hochsehild formalism.
In terms of residue symbols, one consequence is the following.

We consider as above a commutative A-algebra R, and an ideal I C R such that
P.= R/I is finite and projective over. A. We consider further a finite projective com-
mutative R-algebra R/, and set I' =IR' (so that P’ =R'/I' is also finite and projec-
‘tive over A). Then, for any act€ Homp(l/l2, P) there exists a unique
o € Homp(I'/I?, P") (the “‘cotrace” of a ) making the following diagram (with horizon-
tal arrows representing obvious maps) commute:

I/ —> I/1?

P——> P/

Furthermore, under suitable hypotheses (e.g. R smooth over A, or R’ étale over R)
there is a ‘‘trace map”

7% A = Q%A
and we have, for any v € %/x:
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v Tq(y)
Res oy, ayf = Res Op ey g

The problem of deﬁnin'g a trace map 7, for differential forms is indicated in [RD,
p. 188]. Considerable work has been done on this problem, best documented in [K,§16].
A novel definition was discovered by Angéniol [A, pp. 108 fi]. His approach was com-
putational; but it turned out that the definition could best be understood via
Hochschild homology (ef. (4.6.5)). In fact, with R and R’ as above, and
H = Homg(R/, R’), there is 2 trace map on homology, defined to be the composition

natt;ral

(0.1) H(R,R) — HH, H)— H(R,R),
where the second arrow comes from ‘‘Morita equivalence''. (We give a different descrip-
tion in §4.5). D. Burghelea has informed me that this type of composition also arose
independently in work on Chern classes in cyclic homology. Diflerential forms are
brought into the picture through the natural map 0%, — H(R, R) (cf. {1.10.2)); but
since this map is not fully understood, several hard questions concerning conditions for
the existence of a trace map for differential forms remain (ef. §(4.6)). Anyway, once
residues and traces are both defined via Hochschild homology, the road to the *‘trace
formula” in (4.7) is open. '

The constructions in §4 suggest some tantalizing possibilities with respect to recent
developments in other areas. One connection with cyclic homology has been indicated
above (following (0.1)). Seéondly, there is a natural homotopy class of maps, C, defined
in (4.1), which underlies both the trace and the cotrace. A concrete -~ but highly non-
canonical — representative of this class is deseribed in (4.2). From this description, one
can see that the “‘intermediate fundamental classes” recently defined by Angéniol and
Lejeune-Jalabert [AL] could conveniently (i.e. with little or no computation) be formu-
lated in terms of homotopy classes like C.

Further connections with cvelic homology might come out of arguments in Appen-
dix B of §3; but I am unable to say more.

This Introduction began with the claim that there has not yet appeared a really
satisfactory exposition of residues, a situation which this paper is meant to remedy, at
least in part. The preceding remarks indicate that there might well be a more funda-
mental approach to the subject, encompassing a great deal more than we have dealt
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. with here. If this paper helps someone toward such a discovery, it will have served its

purpose,

Judy Snider typeset this manuscript via TROFF, with the unstinting helpfulness
of Brad Lucier. ] am glad for the opportunity to acknowledge their patience and skill.
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§1. THE RESIDUE HOMOMORPHISM

The general definition of residues, due basically to Cartier, has numerous formula-
tions in terms of homological products. In this section we give a concrete desecription,
more or less self-contained, of one such formulation (Definition (1.5.1)) via Hochschild
homology and cohomology of associative algebras. The reader may wish to begin with
(1.11), where the main results of §1 are summarized.

We begin with a quick review of some basic notions in the Hochschild theory (as
presented in [M, Chapter 10]).

Let A be a commutative ring, and let R be an A-algebra (associative, but not
pecessarily commutative), i.e. R is a ring together with 2 ring homomorphism
h: A — R such that h(A) C RS, the center of R. An R-R bimodule is by definition an
A-module M equipped with compatible left and right R-module structures both of
which induce (via h) the A-module structure; in other words there are given A-bilinear
“scalar multiplication” maps R x M — M (respectively M x R — M) satisfying the
usual conditions for left (respectively right) R-modules; and ‘‘compatibility’” means
that (with self-explanatory notation) (rm)’ = r(mr’)forall r, € R and m € M.

With R°P the opposite algebra of R (that is, the A-module R together with the
multiplication z:R x R — R given by pu(x, y) ==yx), and R®* the *‘enveloping alge-
bra” R® 4 R°?, an R-R bimodule M is essentially the same thing as a left R%
module, the scalar multiplications being related by

(r® rJm = rmr' (r,/ € R; m € M);
and also the same as a right R®-module, with scalar multiplication
m(r'® r) = rmr".

(Via the antiautomorphism of R® taking r@®@r to rF®r, every left R%module
becomes a right R%module and vice versa.)

(1.0) The “bimodule bar resolution” €: B.{h) — R:
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By ) &, ' ¢
*+ =B, =B, =-B;=R*—

is defined as follows [M, p.282]. For n >0, B, =By(h) is the left R%-module
R*® 4, TR2(R/A) where “R/A" denotes the cokernel of h, and

THR/A) = (R/A)® (R/A)® - - -®(R/A) (n factors; @ =@ ,).
With r* the natural image of r € R in R/A, we denote the element
M [r'® - @] €B,
by
rfry [ rp [ oo | ra)r.

(The notation suggests that we think of B, as an R-R bimodule.) Here we may omit
r if r =1, and similarly for . In particular we set

rff P=(r®r®1€R®ROA =R*=B,.
Then the R*-linear maps e:R* - R and 3,: B, = B,; (n > 1) are determined by
e(r] ) =17, '

Ou(rry [t | oo | or) = 1ry[ry | oo | mp]e

n-

+ 3 Uy | o | BTy | e |1l

i=1
+ (=1)%rfry | oo | Tpoq]rgr-

B.(h) is a positive complez of left R®-modules (i.e. 8,0,,;,=0 for n > 1, and we
take B, = (0) for m < 0), and €: B.(h) = R is a resolution of the left R*-module
R, R being cbnsidered as a left R®%-module (= R-R bimodule) in the obvious way. In
fact, with the right R-module homomorphisms

.S_l: R — RE = BO

s,: B, = By (@ > 0)
determined by

sy(f)=1®r=|[]’

(1l | e [ 22]6) = [0y | o )

we have
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es_; = identity
8,5¢ + s_;¢€ = identity

Op15p + Sp1 8, = identity (m>1)
in other words, the s; constitute a right R-module splitting (= contracting homotopy)
of the bimodule resolution e: B.(h) — R; and furthermore
SpSp-1 = 0 (»n>0)
(Our terminology is as in [M, pp. 41, 87].)

As indicated above, any R-R bimodule M can be considered as a left R°-module
and as a right R%-module. The Hochschild homology and cohomology A-modules of the
R-R bimodule M are defined then by

Hy(R, M) = Hy(M® pe B.(h))

H°(R, M) = H®(Homge (B.(h), M))(1),
[The notation H,(R, M), HY(R,M) is customary, though it would be more preciée to
write H_(h, M), H*(h, M)]. In particular
(1.0.1) Hy(R, M) = M® R = M/{rm - mr}

where {rm —mr} is the A-submodule of M consisting of all sums of elements of the
form rm-mr (r€R,m € M); and

(1.0.2) H%(R, M) = HompR, M) = {m € M | rm = mr forall r €R}.

If re HYR,R)=R® the center of R, then multiplication by r®1 is an R*
.endomorphism of the complex B.(h) (or of the R°*-module M); and hence H_(R, M)
and H®(R,M) are léft R°modules. Similarly multiplication by 1@ r gives rise to
right R%module structures. These left and right R®%module structures actually coincide
(i.e. rz=2r for all r €R® and z € Hy(R,M) or H*R.M)): for given r € R®, if
ty: By — By, is the unique R*-homomorphism satisfying

n .
tp(rfry | oo [ ralr™) = 35 CLFley [ I v [0 ] miy | oen | g

i=0

then we have (for n > 0, with t_; = O}

{1} As in [M, p.42] we use the following sign convention: the coboundary of an n-cochain
f € Homg«(B,, M) is the n+1-cochain (-1)**'f Bn41-
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Opiitn + ty-18, = multiplication by r®1-1Q®r,

so that ‘multiplication by r®1 in B.(h) is homotopic to multiplication by 1®r.
Thus we can just think of H*R, M) and Hy(R, M) as being R°modules."

* * *

A basic component of our definition of residues will be a natura] R®-linear map
(L1) ¥ HAR, M)® g HyR,R) » HyR, M) (¢ 0)
ldeﬁned as follows. For any x € B, let
¥T=109x €ER®R: By
and for any R®linear map f: B, —».M, let T be the A-linear map
T=1®@:R®pB; ~ ROz M = M® g R = Hy(R, M).
If f is a g-cocycle representing € € HY{R,M) and ¥ is a g-cycle representing
7€ Hq(R, R), then f(X) € H(R, M) depends only on £ and 5, as we see at once from
the relation &8g(¥) = +E(GY) where & (respectively 8) is the boundary map in the

complex Homge(B.(h), M) (respectively: in R® geB.(h)); furthermore (%) depends
RS bilinearly on € and 1n; so we can set

AlE® 1) =T(%).

Remark (1.1.1). The map (1.1) *‘varies functorially” with M. In particular when
R is commutative (R®=R), then setting M = Hy(R, M) we can put (1.1) into 2
commutative diagram

HYR, M)®@ g H(R,R) —> HyR,M)=M

! II

HYR, M)® g H(R,R) ——> Hy(R, M)

So when R is commutative, (1.1) is essentially determined by its restriction to the
category of R-modules, any R-module M* being considered as an R-R bimodule

with rm = mr for all r € R, m € M*.

Ezemple (1.2) (q=0). As above, HR,M)CM and HyR,M) is a
homomorphic image of M. Denoting by I the natural image of m€M in
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Hy(R, M), and by T the natural image of r € R in Hy(R,R), we find that

p(m®@T) = @F = .
If R is commutative then Hy(R, R) =R = RS,
HOR, M)® e Ho(R, R) = H(R, M)® g R = HR, M),
and (1.1) (with @ = 0) is just the natural composition
H'R,M) =M — HyR, M).

Ezample (1.3) (q=1). Let J=0,(B,) be the kernel of eR*—R
(e(ri®ry) = rry); and let J' be the kernel of ¢:R* =R ((r;®r;) = rzrl) We
have an obvious commutative diagram, with an exact column

RQ® pe B,

1@2
v
R® ,R/A = R®gB,

[T

13/33 R®p:J —> R@pR*=R*/J

l

0

2

from which we see that & maps
H,(R,R) = ker(1® 8,)/im(1® 8,) = §1JI' N J/IJ)/ker(6)
RC-isomorphically onto J () J/JJ (multiplication by r € R® in J' M J/J'J is induced
by left multiplication by r® l-orby1® r~in J (M J).
In particular if R 15 commutative then we have an R-isomorphism
HyR,R) = J/3% = Qg
where QR/A is the R-module of Kahler A-differentials, and moreover if 4:R — B, is
defined by #(r) = 1|r]1, then |
() =r[ N-1 r=r®1-18re€ ],
and under the usual identification R® geB;, = R® 4 (R/A), 1@ ¢{r) gets identified
with 1® r* (r* = image of r in R/A); thus the universal derivation d:R — J/J?
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given by
dr)=r®1-1®r (mod. J?)
(cf. [B, Chap. I, § 10.11, Prop. 18]) can be identified with the R-linear map
d: R — H,(R, R) defined by
d(r) = homology class of the 1-cycle 1@r* € R® 4(R/A).

Next, a 1-cocycle in Homgpe(B;, M) can be viewed either as an R*linear map
L:J—- M or as an A-derivation D:R—- M (ie. an A-linear map D satisflying
D(r;rp) = D(r;)rp + r;D(rg) for all r, rp €ER, and consequently D(A) = AD(1) = 0).
More precisely, for any L € HomR.(J; M), L-8; is a l-cocycle, and Lo 8,9 (see
‘above) is an A-derivation; and in this way we define A-isomorphisms

(1.3.1) HomgdJ, M) = {1-cocycles} = Der,(R, M)
(where Ders(R, M) is the A-module consisting of all A-derivations R — M). The first
of these isomorphisms identifies the 1-coboundaries with R®homomorphisms J = M

which extend toc R® O J; and the second isomorphism identifies the 1-coboundaries
with énner derivations , i.e. those of the form D_, where m € M and, for 2llr € R,

(1.3.2) Dp(r)=(r®1-1@r)m = rm - mr,
Thus we have the (well known) identification

(1.3.3) HY(R, M) = Der,(R, M)/{inner derivations}.

Now the point is that the following diagram commutes (check!), and therefore
"determines (1.1) when q = 1: '

Der, (R, M) = Hompd(J, M) —2atural — HomgJ{J/J' J,M/J'M)

restriction
v
(1.3.4) {surjective) Homg{J' M J/ T I, M/J'M)
{(isomorphism)
v v
HY{(R, M) (1.1)° —> Homp(H,(R, R), Hy(R, M)).

Here (1.1) corresponds naturally to (1.1), and the other maps are as indicated in the
preceding discussion.
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If R is commutative (R°=R) and M is an R-module (cf. remark (1.1.1)),
then all the maps in the above diagram are bijective; and so (1.1) gets identified with
the composition '

Dera(R, M) — HompdJ/J' J, M/J' M) = Hompg(Og/4, M)

which is just the usual map given by the universal property of JAs

Ezample (1.4) (g =1). Let I be a two-sided ideal in R, and set P =R/I. For
any left P-module N, there is a unique A-linear map

iyt Dera(R, Hom, (P, N)) — Homp(I/I%, N)
such that, for each D € Dery( ) and x € I, with natural image ¥ in 1/I%

[¥n(D)](E) = D))
The kernel of 4 consists of all inner derivations, and hence (cf. (1.3.3)) we
have an Rlinear injective map, varying functorially with N,
UnH'(R, Hom, (P, N)) — Homp(I/I?, N).
Indeed, it is easily checked that 4/ annihilates any inner derivation; and conversely,
if (D) =0, then the A-linear map ¢é:R — N given by '

¢(r) = D())(1) | (r €R)
vanishes on I, hence gives an A-linear map #:P — N, and one checks that for all
r € R,

D(r) = dr-18
ie. D is the inner derivation D g (ef. (1.3.2)).

If the natural map mR/I? — R/1 has an A-linear seciion (= right inverse) o (for
example if R/I is projective as an A-module), then 1y is surjective, and so ¥y is
bijective. For, if a:I/12 = N is any P-linear map, then a = ¢j(D,) where D, is
the derivation given by
(1.4.1) D,(r) = a- (ro - or).

Note here that forany p €P,
* 7|(ro - or)(p)] = r(no)(p) - wo(rp) =rp-rp =0
so that ro — or maps P into 1/I% andao(ra—ar) maps P into N.

In other words, when o exists, the functor HYR,Homjs(P,N)) of left P-

modules N is represented by I/I?, together with the element of H'(R, Hom(P, 1/1 )
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coming from the derivation D such that D(r) = ro — or (r € R), a derivation which is
independent, modulo inner derivations, of the choice of 0.]

Observing that the above derivation D, corresponds to the R®linear map
J -~ Hom, (P, N} taking j € J to a-jo, we deduce from (1.3) that:

The ﬁzap p == pyy (M = Hom,(P, N)) of (1.1) is uniguely determined by the fol-
lowing commulative diegram

Homp(I/12, N})® , (I M J) B’ —>  Hom,(P, N)

HY(R, Hom,(P, N))® pH,(R, R) 2 5 Hy(R, Hom,(P, N))

in which vertical arrows come from previously described surjective maps, and
He®j) = a-jo.
In perticular, if R s commutative, then p can be identified with the map
p"Homp(I/12, N)® g g /4 — Hy(R, Hom, (P, N))
such that

p"(a® dr) = natural image of a - (ro — or) € Hom,(P, N).

(1.5). We come now to the definition of the residue homomorphism.

As before, A is a commutative ring and R is an A-algebra with center R Via
the “structure map” h:A — R° C R, any left R-module P becomes an A-module,
and Hom,(P,P) is then an R-R bimodule, with

("14’1'2)(P) = f1¢(fzp) (rprs € R, ¢ € Hom, (P, P), p € P).

Suppose further that P is, as en A-module, finitely generated and projective. Then we
have the canonical A-linear trace map Trp s, which is the composition

Trp/a:Hom, (P, P -'-'—.leomA VAR APS A
/A

where v is the isomorphism such that [(¢@® p)](p") = 4(p')p, and ev(é® p) = 4(p), cf.
[B, Chap. IL,§4.3]. Since Trp;s annihilates any element of the form r¢ - ¢r
" (r € R, ¢ € Hom,(P,P)) [ibid, Prop. 3], we get an induced map (which we continue to
denote by Trps): .
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Hy(R, Hom, (P, P)) = Hom,(P, P)/{ré - ¢r} — A1)

DEerFINITION (1.5.1). For eachk q > 0, the residue homomorphism Resd == Res%, pp

is the A-linear composition
Trr/a

HYR, Homy (P, P))® e Hy(R,R) — > Hy[R,Hom,(P,P)) —> A
where p = pYy (M = Hom,(P, P)), cf. (1.1).

Remark (1.5.2). By the definitions involved, if
f € HomgdBy, Hom, (P, P)) = Hom,(T A(R/A), Hom,(P, P))
is a g-cocycle representing £ € Hq(R,‘Hom A(P: P)), and x € B, is such that
1®xER®pBy
is a g-cycle representing n € Hy(R, R), then _
ResY€® 1) = Trp/(f(x).

More generally, if r € R® and rp € Homy(P,P) is the map “multiplication by r”,
then

ResY{r{® 7) = ResY¢{® rn)
= Trp/a(rp = {(x))

= Trp,a(f(x) < rp).

Ezample (1.6) (¢ = 0). We have
HO(R, Hom (P, P)) = {f € Hom(P, P) |tf = fr for all r € R} = Homg(P, P).
Thus {cf. example (1.2)) for { € Homp(P, P). r € R, we have
Res’(f®T) = Trp y(rf) = Trp /a(lT).

In particular, if R is commuiative, then Hy(R,R) =R = R", and

(1) Ope could consider, more generally, a perfect complez P* of A-modules, together
with an A-algebra homomorphism R — Exi®, (P , P*). Then one still has a trace map...
(cf. [SGA 8, Exposé I, §8]). In particular, instead of assuming the R-module P to be
finitely generated and projective over A, we could just assume that P is perfect over A,
j.e. that P has a finite resolution by finitely generated projective A-modules.
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Res®Homg(P, P) — A
is just the restriction of Trp/y to Homg(P,P) C Hom,(P, P).

Ezample (1.7) (@ ==1). As in (1.4), let. P=R/I (I a two-sided R-ideal); and
assume further that P is finitely generated and projective over A, so that the natural
map R/I?—= R/l has an A-linear section o. (It would suffice to assume only that
P is A-perfect, cf. (1.5), and that ¢ exists.) Putting N =P in (1.4), and setting

(I/I%)* = Homp(1/1%, P)
| (P and I/I? being considered as left P-modules) we get an R%isomorphism
(1.7.1} (I/I1H* = HI(R, Hom, (P, P)). |
From (1.3) and (1.4) we see then that
Resh{(I/I* @ (Y N J/II) = A
is given (for o € (I/1%)*, and j € J'M J, with natural image j in J (N J/JJ) by
(1.7.2) Res'(a®7) = Trpa(a - jo). |
When R is commutative,
Res:(I/I?)*@pg Qp/a — A
is given by

(1.7.3) Res'(a® dr) = Trps(a - (ro - or)).

(1.7.4) To illustrate (1.7.3), take R = A[X] (X an indeterminate), and I =FR
where

F=X"+a,X" 14438 (a; € A).
Then P = R/I is a free A-module, with basis (1,x,...,x®1) where x =X + I, the
coset of X; and I/I? is a free P-module with generator f=TF + I% Let
[1/F) € (I/1%)* be the P-linear map taking { to 1. Let G € A[X], and set
G+I=g="bg+bx+ - +b, x"1€P.
Then, making the obvious choice for ¢ (i.e. o(x)=X + 13 0 <i < n), we calcu-

late by (1.7.3):
(1.7.4.1) Res!([1/F]® GdF) = Trp/(g)

N
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(1.7.4.2) Res!([1/F]® GdX) = b,_,.
It follows, since dF == FydX, thatif =P — A is given by

oo + oy 4+ + 4 cup®) = ¢ - (g €A)
then, in the R-module HoﬁlA(P, A), we have the (well-known) relation

TrP/A = Fx‘l'. _

Ezercise (1.7.4.3). Replace A by AlY] (Y an indeterminate), R by R[Y] in
the above, but leave F € A[X] as it is (so that P gets replaced by P[Y]). Show, for
any G € A[X], with remainder G, when divided by F, that

Res! [[1/F]® a0 ER=FR) x| = Gy(v),

Using (1.7.4.1), relate this formula to “Lagrange Interpolation”.

Ezample (1.8). (The ‘‘residue symbol”). For any two R-R bimodules M, N, we
consider M@ g N to be an R-R bimodule via the left R-module structure on M and

the right R-module structure on N; in other words, scalar multiplication is specified
by

{n® ) = rm@® nr (rr€R; meM, neN).
We are going first to define a cohomology product, i.e. an R°Ilinear map
(1.8.1) HP(R, M)® g HYR, N} — HP*YR, M@y N).

Recall that H'(R,M) is the cohomology of a complex in which the group of p-
cochains is

Homge(Bp, M) = Hom (TP, M)

where TP is the p-th tensor power TP(R/A). For any p-cochain f:TP —+ M and any
g-cochain g:T%— N, let

@ gTPtiI=TP®, T M@ N
be the (p+q}cochain such that _
(®e)r®r) = (1)@ g(r) (re TP, r'€ TY).

Let & denote the coboundary map in the complex Homg{B.(h),M), or in
Homp«B.(h), N}, or in Homp{B.(h), M®pg N), as the case may be. Then,
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HI®g) = (18 ® g + [® (5g).

(The proof, which proceeds directly from definitions, is a straightforward computation,
somewhat tedious and mildly surprising; we leave it to the reader.) Hence if { and g
are cocyles then so is f® g; and if furthermore either f or g is a coboundary, then
sois f® g. This leads at once to the product (1.8.1).

Now suppose that we are given a homomorphism of bimodules pM®z M — M
such that the corresponding multiplication M x M — M is associalive. For example, if
E is any left R-module, and M = Hom,(E, E), then the usual composition of maps in
M gives rise to such 2 p. Then (1.8.1) combines with g to make the direct sum
@p>oH(R, M) into an associative graded R%-clgebra.

Notation (1.8.2). Assume that p:M®pgM — M as above exists. For derivations

Dy;Dygy ...y Dgof R into M, we let
IDil € H'(R, M) (1<i<q)
be the corresponding cohomology classes (cf. (1.3.3)), and set
[D1D2 e Dq] = [Dl][D2] e [Dq] € Hq{RrM)

where the product is as described above.

A g-cocycle f:T9— M representing [D;D, -+~ Dq] is given then by

f[rl I Ty I .o | rq] = Dl(rI)DQ(r‘Z) e Dq(rq)

where the product of the Dy(r;) € M is defined via p.

{(1.8.3) In particular, with P =R/I as in {1.7) we obtain, via the isomorphism
(1.7.1); and the universal property of tensor algebras, a homomorphism of graded R*
algebras

D0 ® "rel(l/12)*] = &, 0 HY(R, Hom, (P, P)).
[For n = 0, this map-associates to r € R® the map “multiplication by r ", which is
an element of Homp(P, P) = HY(R, Hom,(P, P)).]

In this case, for o, ..., & In (I/1%*, we denote the image of
o;®a,® -+ ® oq under the above map by [eay * * - o], ie.

[ogag - - aq] = [Dg,Dq, " " * Daq] € HYR, Homu(P, P))
(ef. (14.1)). If 0P — R/12 (1 €i< q)is an A-linear section of the natural map

R/I?—+R/I=P, then |o ") is represented by the g-cocycle
f:T9 — Hom,(P, P) given by
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flry [rg | wo [ 1] = @y 2 (1101 ~ o311 ) e @z ¢ (1905 = GpTy) o = = = o age (rgoq — Ogry)-

(1.8.4) For we€ H(R,R) we will sometimes follow custom and use the typo-
graphically inconvenient notation

w
[an ey aq] = [oy* * * 2 ]® w € HYR, Hom,(P, P))® g Hy(R, R).

Thus (cf. {1.5.1)) we have the residue symbol

q] = ResY([qa, * * * o] @w) € A.

R w
€s
al,-ol’ a

Ezample (1.9). With notation as in {1.8), suppose that the left P-module I/I? is
free, with basis T;,..., T, where f;€1I and T is the natural image of f; in I/P.
[This is the case, for example, if I=(f,,..., {)R, where f},..., f, are in the

center R® and furthermore the sequence f = {f), . f,) is regular, i.e.

<3 g
rfiE(fl,.--, fi_l]R=*r€(f1,..., fi—l)R (ISiSQ)

or, more generally, if H;(Kg(f)) = (0), where Kg(f) is the Koszul complex over R

determined by f |. Let &g ..., ay be the basis of (I/I2)* dual to the basis

.- ?q) of I/I’. Then we set

w w
Res fl""!fq = Res al,--.,aq'

Ezample (1.10). We begin by recalling 2 well-known connection between
differential forms and Hochschild homology (cf. (1.10.2)). This will lead us to a “deter-
minant formula’ for residues, with several direct consequences.

q

Assume that R is commutative (i.e. R® = R). Then we have a ‘“‘shuflle product”,
$:B.(h)® 4 B.(h) — B.(h)

which is the A-linear map given by
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S(rlry | .o | rpJT® Plrper | oo | TpagT )= Z('l)l# | I'r‘"[r,u(l) | Ty | oo | Tupeg)T T’

B

where:
- # runs through all permutations of {1,2,.., p+q} such that p*(i) < x71(j)
whenever i<j<p orp<i<}j and

- | ,u'| =0 or 1 according as the permutation u is even or odd.

The bimodule bar resolution B.(h) may be viewed as a complex of (R°® 4, R®)
modules (via the multiplication map ¢*R*® , R® — R®); and one checks that S is
the unique homomorphism of graded  (R®*® 4 R®}modules reducing to ¢ in degree
‘'zero, and satisfying (for p + q > 0)

S([ry | . | rp]® [rp+1 | . ] I'p+q])

= Sp-hq—ls(ap[rl [ [ 7o) @ [rpy | oo | Tp+gl + (‘1)]_)[1'1 [ e lrp]® 8q [rps1 1 | Tpaql)
(where s and &8 are as in the description of B.(h) at the beginning of this section).

It follows at once that § is a homomorphism of complexes. (S is the “canonical com-
parison” of [M, p.267, Theorem 6.2}.) '

- Now § together with the multiplicaton &R® 4 R — R induces a homomor-
phism of complexes

R®g:B.(L))® g (R® e B.(h)) = R@geB.(h);
and passing to homology we get maps
Hy(R, R)® g HyR,R) = H, (R, R)

which, as is easily checked, make the direct sum @,5oH,(R,R) into a graded,
anticommultative R-algebra, with ¢ = 0 for every £ € H,(R, R).

Now, as in (1.3), we have an isomorphism

Or/a = Hi[R, R).

By the preceding remarks, and the universal property of exterior algebras, this isomor-
phism extends to a unique homomorphism of graded R-algebras

(1.10.1) ARQR/A = B3 ot(R, R)
(here AR denotes “‘exterior algebra”; and recall that Hy(R, R) = R).

For an arbitrary (not necessarily commutative) A-algebra R, with center R, and
any integer n > 0, let Q" = Q" 4 be the exterior power
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0" = Ar{ge/a)
There are obvious naturg] maps
H,(R%, R°) — Hy(R, R),
which combined with (1.10.1) (with R® in place of R) yield:

(1.10.2) Tkere are unigue R%homomorphisms
0% — HyR, R) @2 0)

such that for any ry,rty ..., rg €ERS, G (dr; Adry A - . A dry) is the homology class
of the g-cycle

zf:(-mfl ® [rn)| T42) | o | toq)) ER® e By

where 1 runs through all permutations of {1,2,...,q} and |7| =0 or 1 dccording as 7
5 an even or an odd permutation.

CoroLLARY (1.10.3). With notation as in (1.8.2), and py} as in (1.1), we have, for
TisTgy s e sy rqERc:

AI(DD, * +* D @ bfdry Adry A =+ + Adrg)) = det(Dy(r;))
where, for any element m € M,
m- =m®1EM® g R = HyR, M),
and where the ‘‘determinant” det(Dy(r;)) € M is given by
D) = S1) 1 Dy(rPalraa) Do)

Remark. To appreciate the explicit formula in (1.10.3), the reader might try to
prove ab ovo the existence of a map

® %{Der,(R, M)/ {inner derivations})® g 29 — M/{rm - mr}

given by that formula.

Notation (1.10.4). Let 1 be a two-sided ideal in R such that P =R/l is
finitely generated and projective as an A-module ) For veE N9, and

]

() It suffices that P be perfeet (cf. (1.5)), and that R/I° = R/l have an A-linear sec-
tion.
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@y, Qg - -+ y 0g € (1/I?)* = Homp(I/I% P)

(left P-module homomorphisms) we set

v 0y(v)
Res Qpy ooy O = Res Qpy-eey O

From (1.10.3) and (1.5.2) we obtain:

ProposiTion (1.10.5). (“determinant formula for residues”). With the notation of
(1.10.4), let 1y, ..., rg € R Let mR/IF -+ R/l =P be the naiural map, and let
0; € Homy(P,R/1?) (1 <1< q) be such that no; = identity. Then

rdry * -« drg A
Res (o nt, ag| = Tresalre o det{e; < (ro; - oir)})

= TrP/A(det{ai ° (l'jai - o'irj)} ° rP)

where Trp s:Hom, (P, P) — P is the trace map; 1p € Homg(P, P) is “maultiplication by
t; and det{ } € Hom,(P, P) ¢s as ¢n (1.10.8).

CoroLLary (1.10.6). In (1.10.5), assume further that ry,rg, ..., rq € L. Let T be
the natural tmage of rj in I/ (j = 1,2,..., Q) ; end let ¥ be the natural image of r in P.
Suppose that ai(Fj) 15 in the center PC for all i,j. Then

rdry - - - drg
Res |, .., o | = Trem(det(e())

where det(a;(T;)) € P°, and for any p € P°, Trp/4(p) s the trace of “multiplication by
p”. In particular, if Ty, ..., T, form a free basis of the left P-module I/1%, then

rdry -« - drg
Res o Trp/A(r)-

rl,--n,

Proof. If 1, €1, then for all p € P, we have
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a; e (rio; - oir;)(p) = a(rioi(p)) = pay(F),
i.e. aje(rjo; - o;1;) € Hom,(P,P) is multiplication by «iF;). The conclusion follcws
j j VT .
directly from (1.10.5). ~ QED.

More generally, we have

CoroLLARY (1.10.7). With assumptions as in (1.10.6) let By, ..., B, € (1/I})* and
suppose there 15 a two sided R-ideal K such that

(rs. - rJRCKCI
and
B{K + I})/1) =0 (i),
Let
R'=R/K, I'=1R
so that P =R'[/I' and B; induces a P-linear map
Ayr/(U)? — P 1<igt).

Forany w€ Q"R/A, let uf be its natural image tn Q'gys. Let A(ar) be any element
of R whose natural tmage in P is det(e(Tj)). Then:

R N e
€s al,...,aq,ﬁl,...-’ﬂt_,esﬁ'l,-.-,ﬁ’t'

Proof. We may assume that w = pydp,dp, *- - dp;, Wwith p,€R® (0 <1i < t).
Let o:P — R/I> be an A-linear section of R/I° — P andlet &' be the composition

natural

&P — R/I? > R,

so that ¢’ is a section of R'/(F)2 — P. Then, as in (1.10.5)

a;  (rjo - or;) = multiplication by a;(T))

Bi- (rja - C’I'j) = multiplication i)y ﬁl(FJ) =0

and clearly, if p/; is the natural image of p; in R’ then
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Bi« (pjo - ap;) = £~ (¢0’ - Ip'}).

The rest is a simple exercise in determinants.

CoroLLARY (1.10.8). With notations as in (1.10.4), let §y, . .., & be derivations of
R/I? into'P, and let o; = & | (I/1), the restriction of § (1 <1< q). Then

rdry * - - drg
Res|o .., ay| = Tro/a(raet(4(5)

“where ' (resp. Tj) s the natural image of r in P (resp. of rj in R/1%); and for any
p € P, Trp/a(p) is the trace of “left multiplication by p".

Proof. The R*-linear map P — Hom,(P, P) taking p € P to “left multiplication
by p" induces a map

H!(R/12, P) — HY(R/I%, Hom,(P, P)) |
whose composition with the map +p of (1.4) takes the homology class of a derivation

6 to &|(I/1%). Hence in (1.10.5) we may replace a; - (r0; — ojr;) by “left multiplication
by &(F,)". Q.ED.

Summary (1.11). Let R be an associative A-algebra (A a commutative ring),
-and let R® be the center of R. Let I be a two-sided R-ideal such that the A-module
P =R/I is finitely generated and projective {or just perfect, cf. (1.5), and such that
R/I? = R/I has an A-linear section). Set

(1/1%)* = Homp(1/1%, P)
(I/I2 and P being considered as left P-modules) and for any n > 0,

0" = A"p{Orya) | {(Kzhler differentials).
We ha.ve defined in this section natural A-linear maps
(1.5.1) Res%HYR, Hom, (P, P))® g H(R,R) — A (g =>0)
and also R%linear maps
(1.8.3) ® L.{(1/1%)*] — HYR, Hom (P, P))
(1.10.2) 09 = Hy(R, R)

which combine to give A-linear maps
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1% ® R/ @ g N> A (q > 0).
For v€ QY and a;,..., g€ (I/1%)*, we set

v

Res
al’ . 8 & , a

] =t ® ‘o).
a

In particular, for r, ry,re, ..., rq € R, we have the explicit determinant formula
(cf. (1.10.5)):

rdry « - - drg _
Res | 4vnns ag| = Tre/alrp e det{oge (rio; - air)}).
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§2. FUNCTORIAL PROPERTIES

We consider in this section the behavior of the residue homomorphism
Res%HY(R, Hom,(P, P))® pe Hy(R, R} ~ A

{cf. (1.5)) when the data A, R, P vary. (Recall that these data constitute a represen-
tation: P is a finitely generated projective A-module, and there is given a homomor-
phism of A-algebras R ~ Hom,(P, P), i.e. an R-module structure on P...).

Principal results are given in (2.2) and its corollary (2.2.1), and in (2.3) and its
corollary (2.4). Also, in (2.6) and (2.7) we describe the connection between residues as
defined in this paper and as defined in [H]. In particular, we can then deduce the
“transition formula” (2.8) (whose connection with the determinant formula (1.10.5)
remains less direct than one would hope for). Finally, in (2.9), we state without proof
some possibly amusing technical elaborations of preceding arguments.

{2.1) Suppose then that we have a commutative diagram of ring homomorphisms

R N R’
hT Th '

LN r

A w L A-

where A and A’ are commutative, h(A) C R® (the center of R), and
h'(A) C (R'). Suppos;a further that we have a left R-module P (respectively: left R-
module P’) which is finitely generated and projective as a module - via h — over A
{respectively: — via h' — over A'), and a homomorphism of R-modules X:P — P’
(where P’ is an R-module via ¢).

Then ¢ and % induce an obvious (R® , R)}linear map of bimodule bar resolu-
tions {cf. (1.0)}
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B.(k) — B.(h"),

and hence (via X ) R%linear maps

(2.1.1) HYR',Hom(P',P")] — HYR,Hom(P',P')) — HYR,Hom,(P,P")) « HY(R,Hom,(P,P))
and

(2.1.2) t:Hq(R,.R) - H (R, R) (g = 0).

I ¢(R°) C (R)%, then t commutes with the map # of (1.10.2) in an obvious sense.

ProposrTioN (2.2). With assumptions as in (2.1), suppose further that P = P/, that
X:P — P' f{s the identity map (s0 thatv end w in (2.1.1) are identity maps), and that
Y:A — A’ makes A’ into a finitely generated projective A-module. Then for any
¢ € HYR', Homy(P', P')) and w € H (R, R) we have, with Tr and Res? as in (1.5):

Res g p(u(§)® w) = TrAu/A(Resq&Rf,p(E' ® t(w)).

Proof. Using (1.5.2) and the definition of u and t, we reduce easily to showing
that the following diagram commutes:

Tr '
Hom, (P, P) — A Al

J.nclus:tonl l‘l‘rA /A

Hom (P, P) > A

TI‘P /B

But commutativity clearly holds if P = A'; and it holds for P = P, @® P, if and only
if it holds for P =P, and for P = P,. Hence the diagram commutes for P = any
direct summand of 2 finitely generated free A“module, i.e. for P any finitely generated
projective A-module,

CoroLLARY (2.2.1). In the diagram (2.1), suppose that A’ s finstely generated and
projective as an A-module (via ¢). Assume that K, 1 are two-sided ideals tn R such
that K C 12, R' =R/K (with ¢:R — R/K the natural map), and such that

P=R/I=R/IR

is finitely generated and projective over A’ (hence over A). Let
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@y, gy . 0oy g € Homp(1/1%, P) = Homgp(I R'/(I R')?, P)

(left P-module homomorphisms). Then, with w and o' = t(w) as in (2.2), and with the
notation of (1.8.4), we have '

w w!
ResARP [ay, ..., ag| = Trasa[Resarp (o ..., af| )

Remark (2.2.2). Note in particular the case K = (0) (= o' = w) of (2.2.1), and
also the case {K = PLA=A o= identity}. These two cases together are equivalent
to (2.2.1). -

Proof of (2.2.1). To deduce (2.2.1) from (2.2) we need to show that u maps
[e * * + o] € BYR, Homy(P, P)) to [og ** - o] € HYR, Hom,(P, P)). But it is easily
checked that u is compatible with the cohomology product deseribed in (1.8), so we
are reduced to the case q = 1; and to settle this case, after choosing an A’linear see-
tion o of the natural map ‘

R/E=R'/IRP—-R/IRR=R/I=P
we need only note (in view of (1.4.1)) that for any r € R, with natural image r' in R/,

ro - or = r'o - or' € Hom, (P, I R'/(I R'}*) C Hom,(P, I/1%).

ProposiTion (2.3). Suppose we have o commutative diagram

¢ >

R R!
1‘:[ /[h '

> Al

A v Al

as in (2.1). Let 1 C R, I' C R’ be two-sided ideals such that ¢(I) C T, set P =R/I,
P! = R'/l, and suppose that the natural map P® 5, A’ = P' induced by ¢ and ¥ s
bijective. Assume further that as an A-module (via h), P is finitely generated and pro-
jective. Let ay, ..., ag € Homp(1/I%,P) and oy,..., o/ € Homp(1'/1%, P') (all left
module homomorphisms) be such that for eachi = 1,2,..., q, the diagram
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¢
I/p —————> 11

{0

Pf

]
>
A 4

(with horizontal arrows induce by ¢) commutes. Let w € H(R,R) end let of = t(w)
{c¢] (2.1.2)). Then, with nolalion as in (1.8.4), we have :

wf

73
(2.3.1) RESA:'RJ,pl [0’11 e a’q] = ¢[R35A,R,P I:al, caey aq] ]

For the proof, we need:

Lemva (2.3.2). Witk the preceding assumptions, and the notetion of (2.1.1) and
(1.8.8), we have

vuled) « - ] = wlay o0t o]
Proof. We proceed by induction on q. For q=1, set a; = a, o/; = o/, and let
#:R/12 - R'/1?
XP=R/I- R/ =P

be the maps induced by ¢, so that Xa = a’¢ | (I/1?). Choose an A-linear section o
of the natural map mR/I? = P, and an Alinear section o' of #:R’/I” — P. Then
wla] is represented by the A-derivation D:R — Hom,(P, P’) given by

D(r) = X+ @« (1 - o7) = o'+ § o (0 - o7);
and vufo’] is represented by the derivation D"R — Hom,(P, P') given by
D'(r) = oo (rd’ - o) X
= o/ o (ro'X ~ o’Xr)
(where P’ and R’/I? are considered as R-modules via ¢). Hence
(D - D)) = o« {r[fio - X - [§o - XIr}
=rd - [§0 - I'X] - o/ < [$o - X]r

(apply 7 to see that #0 - o’X € Hom, (P, I'/T?).) Thus D - D'is an tnner derivation,
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and so w[a] = vu[d/].
To treat the case q > 1, note that )
| X € Homp(P, P) = HOR, Hom,(P, P))
(ef. (1.0.2)) and that, denoting the cohomology product of (1.8) by *, we have
w[al---aq]=x:l=[a1--°aq] '
= X*¥[ay - -+ Oty |*[exg) .
= wlay * - cql¥lag

== vu(o/ * * * o ]k[ay) (inductive assumption)

u[a’y e ar'q_l]*X*[aq]

ule/ - - dq-ﬂ*‘"[‘?q]

ufe/y - .- ok vuld ] -(case q=1)
= U[dl b a'q_I]*u[af'q]*X
= ule/} « - - kX

= vulo/y - - * o] Q.E.D.

Proof of (2.3). Asin (1.5.2), let  (resp. f’) be a g-cocycle representing [y * * -
(resp. [/} - --d]), and let 1®x be a q-cycle representing w. Let X' be the image
of x under the natural map of complexes B.(h) — B.(b'), so that 1®x' is a g-cycle

representing «’, We have to show then that
Trpadf{(x’)) = ¥Trp,a(f(x)).

Considering the image under the map
(1.1)
Hq(R! Hom, (P, P'))® Hq(R1 R) E— Hy(R, HomA(Pa P’))

of the element
vule, - - - a'q]®w = wlay * - aq]®w

(cf. (2.3.2)) we see that Xof(x)~{(x')eX lies in the kernel of the natural map
Homy (P, P') — Hy(R, Bomy (P, PY), ie. (cf. (1.0.1))
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Xo f(X) - f'(x'.) o X = zn: ri¢i — ¢iri

i=1

for suitable r; € R, ¢; € Hom,(P,P"). Recalling that P'=P® , A’, we can identify
Homy(P, P') with Hom,/(P’, P') and conclude (since Tr(r¢ - ¢r) = 0) that

Trpy () = Trpyp(X o 1)) = ¥Trp(1(x))

* where the second equality is given by the well-known (and easily proved) commuta-
tivity of “Trace” and ‘‘base change". Q.E.D.

Remark (2.3.3). Note in particular the case {A = A/, ¢ = identity}, which gen-
eralizes the case {A = A’, ¢ = identity} of {2.2.1).

CoroLLARY (2.4). (“Compatibility of residues and base change” ). Leth:A — R be
as usual, let 1 C R be a two-sided 1deal such that the A-module P = R/1 1s finitely
generated and projective, and let oy, ..., ag € Homp(I/I%, P). Let yrA — A’ be a ring
homomorphism with A’ commutative, let R’ be the A-algebra R® 4 A', and let T' be
the R-ideal IR’ = R'1 (i.e. the image of the obvious map :I@ , A' = R® , A'=R/).
Then the natural maps

P® s, A= R/T = (say) P’

I/P@ 4 A'— T/1?
are bijective, and (2.3.1) holds with o/, = ;@1 {1 <1 < q).

Proof. From the natural exact sequence

i
I®AA’—'R®AA'—+P®AA’—*O

we see that P® 4, A’ = R'/I', so that the hypotheses of (2.3) hold. Moreover since P
-is A-flat, therefore j is fnjective, so that ¥ == I® 4 A’, and I? is the image of the
obvious map I2® , A’ = I® 4 A, 2 map whose cokernel is I/I*® , A" Thus

I/F@AA' = I’/I’Q,
and we can indeed take o, = o;®1 in (2.3.1). Q.E.D.

* * X

(2.5) We show next how our maps Res? lead to the residue maps defined in [H].
The precise statement is given in {2.6) below, after the following preliminary remarks.
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Recall (with h:A — R as usual) that for any two left R-modules M, N, there is
an obvious R-R bimodule structure on Homy(M, N), and natural maps

(2.5.1) v = 4%M, N}:HYR, Hom,(M, N}) — Ext%(M, N) q=>0.
The maps ~? arise as follows: H'(R, Hom,(M, N)) is the homology of the complex
Homg{B.(h), Hom, (M, N)) = Homg(B.(h)® g M, N)
(ef. (1.0)) while Ext’g(M, N) is the homology of the complex
Hompg(X., N)

where X. — M is an R-projective resolution of M; but B.(h)®gM is a resolution
-of M (denoted by B(R,M) in [M, p.281, Thm. 2.1]), and so there is 2 homotopy
unique lifting of the identity map of M to a map of complexes X. — B.(h)® g M,
whence the maps ~9

(2.5.2) If both R and M are projective A-modules, then the maps ~% are all
bijective (since then the resolution B.(h)®@ g M of M is R-projective).

"ProposiTioN (2.8). There is a unigue family of A-linear maps .

Res*% g rExtR(R/L, R/)@ R Q%8 — A (a=0)

indezed by triples (AR,I) with R a commutative A-algebra and 1 an R-ideal such
that the A-module R/1 1s finitely generated and projective, and satisfying:

(i) for all (AR,), the diagram

(1.10.2)
HYR,Hom,(R/LR/))® Q%y  ——> HYR, Hom,(R/I, R/1))® g Hy(R, R)

T@ll ’ Jaesq

Ext%(R/I, R/)® g Q%A

v

A
Res*2

commautes; and
(i) & (ARLI), (AR,I') ere triples as above; if ¢:R = R' s an A-algebra

homomorphism such that ¢{I) CI' and the resulting mep #R/1 = R//T is bijective;
and if
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a:Ext%p(R'/I', R'/T) = ExtR(R’ /;’, R//l') = Ext%(R/I, R/])
and
B:l%/a — Q%R

are the nalural maps, then, for all
¢ € Ext%(R//T, R'/T), n € Q%A
we have
Res*9 p1(o(£) @ n) = Res*Yy g {¢'® B(n)).
In fact, with the notation of [H, p. 513 (and ¢f. [ibid, p. 512, Lemma 1.1]),

Res*d ¢s the composition

peot evaluation at 1

Ext(R/L R/)®g 0%, —> Homy(R/,A) ———> A.

Proof. Let ¢:R — R' be as in (ii) above, and let X. (respectively X'.) be an R-
projective {respectively R'-projective) resolution of R/I = R'/I". From

R/1 9 > R/

Cd

R/ S RYT

i

we derive a homotopy-commutative diagram of R-homomorphisms of complexes

X. > X

l l

B.(3)®p (R/) — 22 B (4. h)® g (R/T)

from which we deduce a commutative diagram (cf. (2.5))
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Ext%(R/L,R/I) < 2 Ext%(R/I', R\I')
(2.6.1) YT | T"
HYR, Hom,(R /L RM) €—F5— HYR', Hom,(R'/1, RYT)

If we confine ourselves to triples (AR,I) for which R is projective as an A-
module, then the corresponding maps ~ are bijective (2.5.2), so that Res*? is uniquely
determined by (i) above; and in view of the remark immediately following (2.1.2), and
of commutativity in (2.6.1), if R and R’ are both A-projective then (i) follows easily
from (2.2) (with A’ = A, P = P' =R/I).

Now for arbitrary R/, I with R/’ finite and projective over A, let
¢ € Ext%qQ(R'/I,R//T) 2nd 7€ 0%/a. Clearly there exists a polynomial ring
R = A[T,,..., T,] and an A-homomorphism ¢:R — R' such that the composition
R —¢> R'— RY/I' is surjective (so that if I = ¢7!(I') then &:R/I — R//T is bijective)
and such that furthermore #' = f(n) for some 5 € Q% /s. Since R is A-projective,

there is (as already noted) 2 unique map Res*3, g; making the diagram in (i) com-
mute. If (ii) is to be true, then we must have

Res*9) p({'® ) = Res*%y p1(a({) @ 7).

This proves uniqueness for Res*3, and indicates a proof for existence. Indeed, if
A[Ty ..., T =R, AU, ..., Uyl =R’ are A-algebra homomorphisms such as
we_have just considered, then both can be “dominated” by a third such flomomorphism
ATy ...y Ty Uy e ooy Ul =R, and it follows in a straightforward way that the

above procedure for determining Res*Y(§'® 1/) gives a result which does not depend

on the choice of the polynomial ring R. Thus we get a definition for Res*3, and the
rest of this existence proof may be left to the reader.

It remains to prove the last assertion in (2.6) (which then gives another more con-
structive proof that Res*d exists).

By a slight modification of [H, p.253, Prop. 2.4], we see that the map
Res*? = (evaluation at 1) y - 09
does satisfy (ii) of (2.8).

To prove that this Res*3 also satisfies (i), i.e. that the maps Res%¢(1.10.2) and

Res*3¢ (y® 1) coincide, it is enough to check that both maps have the same effect on
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elements of the form €£@drydry*--dr, with €€ HYR, Homs(R/I, R/I)), and
. TyyToy s = oy I'QER- '
We first determine the effect of Res%.(1.10.2) on £®dr, * -« dr,

We have the Koszul complez K.(;,®1- 1®r,) over R® 4 R determined by the
sequence (r;®1-1®@r)<icy 2nd with htA —+ R and B.(h) as usual, there is an
(R® 4 R}linear map of complexes

A.:K.(l"i® 1- 1® l'i) -— B-(h)

defined as follows. For each i, if Ky;) Is the complex

t|®1 -195
R® R > R®,R

(degree 1) "(degree 0)

then there is a unique (R® 4 R}-linear map of complexes
which is the identity map of R® 4 R in degree 0, and which in degree 1 takes
1 € R@AR to
[=19r°@1 e R®, (R/A)®@ 4R =B,
(ef. (1.0)). By tensoring these maps we obtain the map of complexes
AK(r® 1-1® n)=K;® -+ ® K(q) -~ B.(h)® - @B.(h) — B.(h)

where the last map is given by the ‘“‘shufile product™ of (1.10). Moreover it is easily
checked via definitions that if

1, € (K(r®1-18r1));=RO® 4R
is the identity element, then the homology class of the g-cycle
1@ A1) € R®ge By
is just
f(dry « - - drp) € Hy(R, R)
where §, is as in (1.10.2).
Now £ is represented by an (R® 4 R)linear map
f:B, — Hom,(R/I, R/])

or, equivalently, by an R-linear map
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*B.® g (R/I) — R/L

And, by (1.5.2), Res¥({® 6. (dr, - -+ dr) is the trace of the map f(A(1y), a map
satisfying (for T=r + 1 € R/I): '

262) [fAQID) = FA(L)®T) = F(\(1,®7))

where
A =A®pR/IK.(;®1.- 1®r)® g R/l — B.(L)® g R/I.
‘Note here-that (with T, =r; + I € R/I)
K.(ri®1-19rn)®z R/) = K.(;®1-1Q T),

the Koszul complex over

5 =R®, R/
determined by the sequence (;®1-18T)<i<q-

Next we determine the effect of Res*3:(y®1) on ¢(®dr, -« - dr,
Let X. — R/I be an R-projective resolution of R/I. Since R/I is A-projective,
therefore the above S is R-projective, so that K.(;®1-1®T,) is an R-projective

complex, mapping to R/I via the obvious (multiplication) map
(K.(®1-1®F))y = R® , R/I — R/L

‘Since B.(h)® g R/I) is 2 resolution of R/I (cf. (2.5.1)), it follows that we have a
homotopy-commutative diagram of R-homomorphisms of complexes

K. = K.(;®1-18®F) 2 > B.(b)®x R’/
(2.8.3) \ /
' ' X.

(A = A® g (R/I) as above). By definition of v (2.5.1), and of Res*? [H, pp.512-516],
we find then that Res*3{(y({)® dr; -« - dr,) is the trace of the map g given by

(2.6.2) gf) = MH(ve(1,® T))-
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In view of (2.6.2} and (2.6.2), to complete the proof we need to show that the map
¢R/I — R/l given by

o) = [« (0 - $6)](1,87)
satisfies
(2.6.4) Tr(R/I)/A(g) = Q.

Since (2.6.3) is homotopy-commutative, there exist R-linear maps

#:Kg = B 1 ® g (R/I)

V:Kq—l - Bq®R (R/I)
such that

§F) = [[* < (6p + v8)](1,®T)
where & (respectively &) is the boundary map in B.(h)® g (R/I} (respectively in
K.). But f* (which represents the homology class € ) is a q-cocycle in the complex
Hompg(B.(h)® g R/I, R/I), i.e. f*<8 = 0. Moreover, using the definition of §, and

the R-linearity of {*, v, and 6 we find that *v§1,®T) is a sum of elements of the
form

rf* (1@ Tk - U@ TT)K;) = Tig(T) - ¢(Tir)

where k; € K, ; does not depend on T, and where ¢:R/I — R/I is given by

60 = (1 ®T)k)-

Thus
= 231 (Tisi — &)y
and since
Trrmyalfis - sTi) =0
therefore (2.6.4) holds. QED.

(2.7). We retain the notation of (2.6), and assume further that the R-ideal I is
generated by a sequence (fy, ..., ;) such that the Koszul complex Kg(f;) = K(f)
over R determined by (fy, ..., I} is ezact except in degree zero.

Then K(f;) is an R-projective resolution of R/I. Using this resolution we see

that the natural map
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(2.7.1) Ext%®(R/I, R/)® g 0 — Ext%R(R/1, /1) (= 0%/a)

is an tsomorphism. For w € {1, we denote by

e, 1.} eBxsr, 0/10)

the cohomology class of the g-cocycle

€ € Homp((K(f;))g, 0/10)
determined by

£(1y) = w + I € 0/IQ

where 1, is the identity element of R = (K(f;)),. Via the identification (2.7.1), we
have then the element

which by (2.6) is the same as the element denoted in [H, pp. 516-517] by

W
Resoialt, ..., 1|

Agreement of Hopkins’ residue symbol with the one defined in (1.9} and (1.10) above is
then given by:

CoRroLLARY (2.7.2).. In the preceding situation we have, for all w € O = (%,

w " w .
Res|p, ..., 1| =Res {fl,..., fq}'

More generally, if
Gy vo ey ﬂfq € HOIHR/I(I/IQ, R/I)

and
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i=+Peyr 1<j<q

and if A(o,f) is any element in R whose natural image tn R/ is the determinant
det(ai(fj)), then B |

w

Res [ah v Ao, f)w }

—_— *
, aq]_Res q{fl,..., f

Proof. Set P =R/I. In view of ;2.6.1), we need only show that
toay  + - ag) € Ext9y(P, P)
is the cohomology class of the g-cocycle
¢E HomR(K(fi)q, P)
determined (with 1, as above) by
d1g) = det(os(F)).

For this, we use (cf. (2.5)) the explicit map of complexes

&:K(f;) - B.h)®rP
which is the composition
natural A
Kp(fi) — 2 Ks(i®1) =K([i®1-1® ) > B.(b)®R P

where S=R® 4 P, and ) is as in the proof of (2.6) (cf. (2.6.2) etc., replacing r; by
f;). One checks again via definitions that

(2.7.3) (1) =§(-1)|’| Q Iy® @ f1yH® T€B®RP
where 7 runs through all permutations of {1,2,...,q} and |7| =0 (resp.
| 7| =1) if the permutation 7 is even (resp. odd).

Now according to (2.5), all we have to do is to take a cocycle
¢"B, — Hom,(P, P)

representing [ajap * - * ], reinterpret it as an R-linear map
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g":Bq® rP —P,
and show that
(2.7.4) (8(1,)) = det(ay())-

Such a ¢ is described in (1.8.3). Since f; annihilates P, we see for any A-linear sec-

" tion o of the natural map R/IZ = R/I'=P “that the map T T T T e e

Qe (fla - O'f‘) € HOIDA(P, P)

is just multiplication by @;(T). In view of (2.7.8), the relation (2.7.4) follows at once.

CoroLLARY (2.8) (“Trensition formula”). Let £=(f;,..., {), g =1(g1, ..., &)
be sequences in R such that the Koszul complezes K(f;) and K(g;) are ezact except in
degree zero, and such that the A-modules R/TR, R/gR are finitely generated and pro-
Jective. Suppose also that fR C gR, say

fi= irijgj ,€ER, 15i<gq
=1

Then for any v € (1, we have

€s ST - I €s PP fq]”

Proof. In view of (2.7.2), this is just [H, p.522, Corollary 2.2] (slightly general-
ized).

(2.9) Ezercises (not used elsewhere).

1. Let R be a commutative A-algebra, I an ideal in R, P = R/I, and assume that
the P-modules I/I2, 12/ are free of ranks q, q(q+1)/2 respectively. Assume also
that the natural map R/I* - R/I =P has an A-linear section. Show that for every
¢ € H(R,Hom, (P, P)) we have & =0 (cf. (1.8)); 2nd deduce that then the residue

symbol

w
Res al,cnl, aq .
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(defined if P is perfect as an A-module) is an allernating A-multilinear function of
Qpy - v ey Qg (When I is generated by an R-regular sequence, this last assertion fol-
lows from the statement of (2.7.2).)

2. (a) Let R be a commutative A-algebra, let I be an ideal in R, let P =R/,
and set

A'p(I/P)* = @ Homp(A%(I/I), P),
.q=20

with its graded anticommutative P-algebra structure [B, Ch. IIl, §11.5]. Expanding
on the technique used in the proof of (2.7.2), define a natural homomorphism of graded
algebras (cf. (1.8))

©_HYR, Hom,(P, P)) — A'p(1/I)*
Q=

agreeing in degree 1 with the map ¢p of (1.4).

(b) With notation as in {a), show that the maps ~? of (2.5) give a homomorphism
of graded algebras

qezaqu(R, Hom, (P, P)) = e, Ext%(P, P)

where multiplication in the “Ext” algebra is given by Yoneda composition.

(¢) Show that the ‘‘fundamental local homomorphism” {cf. e.g. [L, p.111])
@ Ext%(P,P) — A'p(1/1})*®
Q2

is a homomorphism of graded algebras.
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(d) Show that the following diagram commutes:

@ HYR,Hom,(P,P)) —LL.3> & Ext%(P,P)
920 _ Q=0

(\ / c)

A/

43
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§3. QUASI-REGULAR SEQUENCES

In this section we generalize some familiar formulas, involving residues with
respect to a sequence of variables in a power series ring over a commutative ring A, to
quasi-regular sequences f= (f},..., f;) in 2 commutative A-algebra R. Roughly
speaking, the idea is first to map R into a power series ring in (f,..., fy) with
coefficients in the algebra of endomorphisms E = Hom,(R/fR,R/fR). The main
result, for which (3.1}-(3.5) are preparatory, is the somewhat téchnical Theorem (3.8),
of which the formulas in question are immediate consequences (cf. (3.7) and its corol-
laries (3.8) and (3.9)). Moreover we obtain from (3.6) a “trace formula 1 (3.10)Y),
from which we deduce in Appendix A how the residues defined in this paper give rise to
residues on algebraic varieties, as described in [L]. Finally, in Appendix B, we general-
- ize a well-known residue formula involving exterior differentiation; the proof is rather
straightforward in the power series case, but for arbitrary quasi-regular sequences it
appeérs to need a lot of machinery.

* * - *
(3.1). Let f=(f},..., f;) be asequence in a commutative ring R. For any

g-tuple M = (m,, ..., m) of non-negative integers we set

™M=y 0

Let R be the fR-adic -completion of R, and let
oR/fR = R/fR = R

be a section of the canonical map m:R — R/fR (i.e. ¢ is any map of sets such that
7 o o =identity). Assume for simplicity that (0) = 0. Then any element r of R can
be represented as a power series

(1) «¢race formula T1" is given in §4.7
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r = %O’(I‘M)fM (I‘M € R/fR)

where the summation is over all g-tuples M as above,. and where, by abuse of nota-
tion, the natural image of (f},..., f;)in R isstill denoted by (f}, ..., f,).

We recall that the sequence f= (f},..., f;) in R is said to be quasi-regular if,
with I = 1R, the R/I-algebra homomorphism

®R/DXy, ..., X] = snR =R/I® /PO I}/I*® - --
which sends the indeterminate X to ‘(fi +IHel/I2 (1 <1i<q) is bijective.

Lemva (3.1.1). Let f, R, and o:R/fR — R be as above. Then f is quasi-regular if
and only if for every

r= %I:a(rM)fM €ER (rm € R/IR)

the ry are-oll uniquely determined by r.
The proof is left to the reader.

Ezamples (3.2). (a) Any regulor sequence f in R is quasi-regular [EGA Opy,
(15.1.9)); and the converse holds if R is fR-adically complete. (Idea of proof : show,
Afor j < q,that any r € (f,..., fj)R has anexpansion r = Zo(ry )M where for each
M= (my,..., mg), g5 0 = m;5 0 for some i with 1 <i<j. Using (3.1.1),
conclude that |

(Co(r)™M)i €My .. R = To(y)™Me (), ..., fR)
It follows that e sequence f 1s quasi-regular in R if and only if its natural 1mage in the
fR-adic completion R is regular.

(b) A sequénce fin R is quasi-regular if and only if the image of f in the local-
ization Rj, is quasi-regular for all prime ideals (or all maximal ideals) p D fR. In case
R is noetherian, a sequence of non-units in Ry, is quasi-regular if and only if it is regu-
lar [EGA Ory (15.1.9)]; and hence f 45 guasi-regular in R if and only if the Koszul

compler over R determined by f 1s ezact except in degree zero.

(¢) If the sequence (f),..., fy) is quasi-regularin R, thensois ..., o9
for any g¢tuple (m;,..., mg) of positive integers. (Proof left to reader.)
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(3.3) Let h:A— R be a homomorphism of commutative rings, and let
f=(,..., f)) be 2 quasi-regular sequence in R. The fR-adic completion R is
then an A-algebra via the composition

h natural

hhA—=R - R,

and in fact an algebra over the formal power series ring A[[X]] in q indeterminates
X =(Xj,..., X), via the homomorphism

het A[[X]] = R
given by

hy (%aMXM) == %aMfM (= %{J Ban)f™) (2 € A)

(notation as in (3.1)). Moreover if
o:P=R/fR—R

is an A-linear section (= right inverse) of the natural map m:R — R/fR = P, then
we obtain, by extension of scalars, an A[[X]]-linear map

(3.3.1) o*:P® , Al[X]] —R.

LEmma (3.3.2). If the A-module P = R/fR is finitely presented, then the above map

o™ is bijective.

Proof {communicated in essence by M. Hochster). Lemma (3.1.1) gives us an
obvious identification of the A-module R with a direct product — indexed by the g-

tuples M - of copies of P. Then o* isidentified with the natural map

P®A(]I;IAM)'*II;I(P®AAM) (Ay = A).

Hence (3.3.2) is a special case of [B', Ch. I, §2, Exercise 9(a)].

Remark (3.3.3). Let
Allf]) = hy(A[IX])) C R,

so that A[[f]] consists of all power series in f}, ..., f; with coeflicients in h(A).
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The existence of an A-linear section o as above implies that A[[f]] is actually a for-
mal power series ring in (f},..., ;) over h(A) (ie. if Y oy™M =0 with
’ M

oy € h(A) for all M, then oy =0 for all M). This will be clear from (3.1.1) if we
can find a section oP — R such that h(A) C &/(P). Butif 7:R — P is the natural
map, then wo{l)==1, ie. o(1)€1+fR, so that o(1) is a unit in R; and
o’ = o{1)'o is an A-linear section with ¢’{1) = 1, whence for all a € A:

h(a) = h(a)o’(1) = o/(zh(a).1) C o(P),

as desired.

(34) Let h:A—R and f be as in (3.3), assume that the A-module
P = R/fR is finitely presented, and let o:P —R be an A-linear section of the
natural map R — R/fR = P, so that we have, by (3.3.2), an isomorphism of A[[X]}-
modules -

ot :P® 4 A[[X]] > R.
Let H be the A[[X]-algebra
H= HomA“x“(f{, R) = Hom,(o(P), R)
(where the last isomorphism is given by restriction of maps), and let
E = Hom,(P, P).
Forany ¢:0(P)— R in H, and p € P, we have
8(o(p)) = T o(du(p)™

M

where for each M, ¢y € E is well-defined because of (3.1.1). Thus we have a map
o* : H — E[[X]]

(where E[[X]] is the A[[X]]-algebra consisting of formal power series with coeflicients
in the A-algebra E ) given by

o¥(g) = 3 eX™ (¢ € H).
M

It is ea'sily seen that o is A[[X||-linear and bijective. Thus H is complete and
separated in its X-adic topology.

After embedding R in H by identifying r € R with “multiplication by r”, we
have that the natural image of X; in H is f; (1 <i < q); and so the X-adic topology
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on H coincides with the f-adic topology (defined by the powers of the two-sided ideal

Note further that, for ¥ € E C E[[X]], the map +# = (¢#) (%) is the unique ele-
ment of H such that for all p € P:

V¥ (o(p)) = o(¥(p))-
It follows at once that ¥ F¢* = (¥, ¥)* for any o, € E; i.e. (0#)! maps E iso-

morphically onto an A-subalgebra of H; and consequently o is an tsemorphism of
A[[X]]-algebras.

In other words, having thus identified E with an A-subalgebra of H (the
identification depending on o ) we have that each element ¢ of H s uniquely of the
form

¢=73 emt™ éu € E;
M
and if Y € H s given by
=3 YN Yy EE
N
then
pep =3 (byo )M

M,N

Thus we can think of H = E[[f]]" as being the ring of formal power series in

fl004, fg with coeflicients in E.
The natural map A[[X]] - H then takes ¥ 3, 0XM to ¥ 5yyf™ where T4 €E is
M M

“multiplication by ap in P".

And R is naturally embedded as an A[[X]]-subalgebra of H.

. (34.1) If P is finitely generated and projective over A, then
REP® 4 AlX]] (cf.(3.3.2))
is finitely generated and projective over A[[X]], and we have trace maps
Trp/atE — A

I elaim that then:
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(3.4.2) TrR/AHXJ] ( § ¢‘Mf § TrP/A ¢’M
Indeed, the map taking
| =3 ¢uMeH
M
to
)L:J) (Trp/a $0XM € A[[X]]

is A[[X]]}-linear, and therefore it suffices to verify (3.4.2) for ¢ € E (i.e. when ¢y =0
for all M % (0,0,..., 0)). But the above described embedding (6*)! of E into H
simply takes ¢ € E to '

¢* = $® 1 € Hompxj(P ® 4 A[X]], P® 4 A[[X]]) = Hompx (R, R) = H,

and so the assertion follows from the commutativity of *“Trace” with “base change”.

Remark. Note that for given ¢ =T éuf™M € H, the coeflicients ¢, depend on
the choice of o, but (3.4.2) shows that their traces do not.

(3.5) Before stating the central result (3.6) of this section, we need some more
preliminaries. We fix as above a homomorphism of commutative rings h:A — R and
a quasi-regular sequence f = (f,,..., fq) in R, and denote by R the fR-adic com-
pletion of R. Assume that the A-module P = R/fR 1is finitely generated and projec-
tive; and let 0:P = 2 be an A-linear section (= right inverse) of the natural map
‘R = R/fR = P. Asin (3.4), we set

E = Hom,(P, P)

H = HomA[[XH(ﬁ! f{.)
and identify H with a formal power series ring
H = E[[f]]
(an identification depehding on the choice of o). We have, as in (3.4.1), the trace map
factoring through Hy(R, H) (cf. (1.5)).

(3.5.1) Recall that for any positive integers m,,..., m, the sequence

q!
« I AT,
..., fqm“) is also quasi-regular, as is its natural image (f; ..., {; ¥) in the

fR-adic completion R (cf. (3.2)). Moreover if J is the ideal (..., fc;n IR, then
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from (3.1.1) one deduces that R/J = R/JR is again a finitely generated projective A-
module, isomorphic to a direct sum of copies of R/fR (one copy for each monomial ¥,
N = (n;,..., ng) such that 0 < n; < m; for all i). Hence for any w € HyR,R) and
€ Hq(fi, R) the residue symbols
w w
Res , Res

m

) Tyeney £ O £ e B

are defined (cf. (1.9)); and in fact by (2.3) (with A=A’ ,R’' =R, and ¢, ¢ the
obvious maps) if & happens to be the natural image of w, then '
: w w
Res = Res

m

fl 1,-.., fmq ’ fl ,---,fI ®

As before, we will write *f,” for “f.”" if no confusion results.

(3.5.2). We have E-derivations % (1<i<q) of H=E[f] into itself.
i

Denote by 0; the composed A-derivation

. a/a1
R—+R—=H — H;

and by [8] € H'(R,H), [8, ‘' 8, € HYR, H) the associated cohomology classes (cf.
(1.8.2), with p: H® g H — H given by composition of maps). One can (but need not,
for present purposes) show that changing o changes each &, by an {nner derivation,
.so that [8; * -+ 8] is actually independent of the choice of o (cf. (4.2.4) below).

TueOREM (8.6). With the notations and assumptions of (3.5), let
p = pff : HYR, H)® g H(R, R) — Hy(R, H)
be as in (1.1). Then for any w € Hy(R, R), we have, in A[[X]}:

(361)  Trgjap pllor - 8® w)= 3  Res Lm;w m]Xf”"l--- Xy o
me

m, ..., 1 aeeer fq g

where (my, .. ., my) runs through all g-tuples of positive integers.

Before proving (3.6), we state some consequences.
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CoroLLarY (3.7). For any r € R, let t* be its image under the natural composition
R — R — H = EJ[[f]]. For rl,..., rq €R, set

r#det(( )r #) = ):,; sf™ € E[[f]]

(“det” = “determinant”, cf. (1.10.3)), where M runs through all q-tuples of non-

negative integers. Then, for any positive integers m,, .. ., m,, we have

Res | 277778 | = Topalbm, ., mea)
fih..o., fg0
In particular, if
= T M
then
Res | 140777 | Trp/a (M, ., me):

m m
S d

Proof of (3.7). As in (1.10.3), we see that p([8, * - - 8|® 0 (rdry - - - dr ) is the
natural .image in Hy(R,H) of the map r#det((%)rj#) € H. In view of (3.4.2), the
: i
assertion follows from (3.6).

Remark (3.7.1). Proposition 2.11 in [H, p. 529] is not always valid. But it is if
the A-linear section o preserves multiplication (so that R is actually a formal power
series ring over P), since then, if r€R and f =L a(cM)fM is its image in R, we
have for any p € P that

fo(p) = Y, a(ch)fM

so that in (3.7), =y is just “‘multiplication by ¢y "', and
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CoROLLARY (3.8) (cf. also (1.10.5)).
rdf; « + - df, :
Res [fl,l. . e, qu] = Trp/A(l")
where 1’ is the natural image of r€R inP = R/L

CoroLLARY (3.9). If any of the integers m; s > 1, then

<o df
Res :fl .qm = 0.
f, ',...,fq“

CoroLLARY (3.10) (*“Trace formula I"). Let K be the total ring of fractions of
Al[X]], and let

T=R® ypiK,
8o that (R = P® 4A[[X]] being A[[X]}-projective} we have
R C T C T' = total ring of fractions of R,(!)
and there is a K—Iineﬁr trace map
Trrx:R—=K
whose restriction to R is TrR/A[[X]]' Suppose that T 1s an unramified (hence etale)
K-algebra, so that the derivations aix, of A[X]| estend to derivations DT — T
.(I.Sis q). Then forall ryry, ..., réeft:.

dr, <+ d
Trrx(rdetDir)) =}, Res rn q

m m
my, ..., Mg fll,.--,fq

lerl e quq‘l € A[[X]]

where m,, ..., m, runs through all g-tuples of positive integers.

q

Proof. We may assume that R = fi; and then by (3.6) we need to show that
(3.10.1) Trpsk(r.det(Dr;)) = Trg /A p[0) * * + 34 ® frdr, - -+ dr))

with 4, asin (1.10.2).

(1) In fact T = T’ because {x is regular in T} ={ norm x is regular in K} (as can be seen
e.g. by localizing and using [Amer. J. Math. 87 (1965), p. 888, Prop. 6.1]) ={x is & unit in
T} (since x divides its norm).
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We work with the situation depicted by

2k
K > T

)

AlX]]

I > H=H® AlIX)] K = Homg(T, T)

> H 5 8/81,

v
o

¢ being the natural map.

The derivations §: R — H extend uniquely to derivations 5,-: T — ITI; and it is
easily checked that

(3-10.2) TrR/A[[x]] p([al e aq]® aq(rdr]_ R drq))

= Tro 7([8) -+ + 3)® Fylrdr; -+« dr,))

= TrT/K(r.det(-(’s,-rj)) (ef.(1.10.3)
where
7 HYT, B)® 1 HyT, T) — Hy(T, )
is as in (1.1), and
8: Q%5 — HYT, T)
as in (1.10.2). Thus we will be done if the_‘derivations pueD; and & differ by an
inner derivation. (For, we can then replace 8; in (3.10.2) by u-D;, to get (3.10.1).)

Since the restrictions of D, and 5i to I coincide, we need only note now
that any K-derivation of T into H is inner, i.e. that

H!k(T, Homy(T, T)) = 0
(where the cohomology is calculated with T regarded as a K-algebra, not as an A-
algebra). In fact, since T is a projective (T®yk T)-module (because T is
unramified over K, cf. [EGA IV, (18.3.1)]) therefore T is an allowable projective
resolution of itself, so that by [M, p.261, Thm. 4.3], B.(T)— T is a homotopy
equivalence (over T® g T), and hence for any (T® i T)-module M and any ¢ > 0

we have

HY(T, M) = 0.
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We return now to the proof of Theorem (3.6).
Fix a g-tuple M == (mj, ..., m,) of positive integers, and set

m

J=(fy % ey 0y

IR,

Every element in R/J (respectively R/J?) has a unigue representation as a sum of
monomials of the form ofe)f, where e € P and where L =(f,,..., f,) runs
through those finitely many gq-tuples such that f“ ¢ J (resp. f ¢ J%). (Here we abuse
notation by identifying f; with its image in R/J or in R/J% and the product ofe)f
in R/J is defined via the natural R-algebra structure of R/J, and similarly for
R/J2) We define an A-linear section 7:R/J —R/J> of the natural map
R/.]'2 —+R/J by

() o (eL)f = ), olep )

L<M L<M
where L < M means §; <m; forall i=12,..., q.
We also define (R/J)-linear maps o;: J/J? = R/J by letting (o, ... ,. o) be
the dual basis of the basis (f; %, ..., fg 9 of J/JZ

Recalling (1.5.2), (1.8.3), and (3.4.2), we see that it will be enough to show the fol-
lowing:

If rgrpy iy 1g€R, andyf
ro8y(ry)0(rg) - « aq(rq) = %’YNfN €E[[f]] =H
th;:n
(3.6.2)  Trp/a(hmyt, ..., me1) = Trgyy/alroon(ri7 = my)ag(rar — my) <+« agfrgr — mmg))-
Let us verify (3.6.2). Let r;* be the natural image of r; in H, say

i =3 ANt 0<i<aq
N .

Then we have

Ny+..4+N~A1,1,.., 1
Toal(rl)32(r2) LEE IS ] aq(rq) = N E n11n22 PRI nqq P’ONQW].N} PR pquq fNU+ 1+ q_( )

where
=(nlj7'--!nc]i) 0<j<q

runs through all g-tuples of non-negative integers. Thus
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. 1.2... e
(3.6.3) Yol ..., mel = > DyBg C DgYoN, T YN
ND+N1+...+NQ=M

Next, one checks, for e €P and L =(0,,..., ¢{) <M, that
o(rir - 7 1))(o(e)l) = 2(‘) G 0) PEEERY Sl R s

where 30) means “sum over those N = (ny, ..., n,) such that
N

0<n+0-m<m;
and
pj+ {; < m; G#£1).
With this in mind, one finds that
roey(ry7 — 71 )ag(rgr — 719) ¢ ¢ ¢ aq(rq'r -7 rq)[a[e)fL)

=N 2* . 0(70N071N1 .. ,Tqu(e))fNo-’rNﬁ-...+ Nq+Ir—M
oo Ny

where Y}* means ‘sum over those qtuples (N, ..., Ng) such that, with
N; = (nf, ..., nqj) (0 < j < q), we have:

0y <mg<nd+/0,

qu_l + Qq—l < mq—l S qu_l + qu:ll + aq—l

(3.6.4)

.

nd+ o4 4+nf+0;, <m; <nf+nfl++nf+nl 4+ 0,
and such that
o+ Ny 4ok Ng+ L-M < M

Now the A-module R/J is the direct sum of its submodules
= {o(e)f"} (L < M).

Py is clearly A-isomorphic to P, and we see from the foregoing that the contribution
of Py to ‘the right hand side of (8.6.2) is the trace of the A-endomorphism ~ of
Py, =P given by
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(36:5) e) = YF NN, e
No+ Ny ++ No=M

Comparing (3.6.5} and (3.6.3), we see that all that remains to be noted is the easily
checked fact that for given No, Ny, . .., Ny with Ny + Nyj+...+ Ny =M, the number
of distinct L < M for which the conditions (3.6.4) are satisfied is nl'nd ++ - nd.

This éompletes the proof.
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APPENDIX A. RESIDUES ON ALGEBRAIC VARIETIES

(A.1). Suppose that A is a perfect field, and that R is a ¢-dimensional local
domain which is a localization of a finitely generated A-algebra, and whose residue field
R/m (m = maximal ideal of R) is finite over A. In other words, R is A-isomorphic
to the local ring of a closed point on a q-dimensional algebraic variety over A. In [L,
p.97, Theorem 11.2], there is specified a family of A-linear maps, for A fixed and Kk
(as above) variable:

resp .'H,% (QR) — A

where Hz denotes local cohomology and (g = Q%/4. According to loc. cit., the
family resg is uniquely determined by two properties, which can be formulated as fol-
lows:

(i) If the local ring R is regular, and f=(f,,..., f;) generates m, so that
any element £ of H3({lg) can be represented as a “‘generalized fraction”
E=rdfy - - dfg/(fy .. n s 159

for suitable r € R and positive integers my, ..., mq (cf. [L, §7]), 2nd if the natural
image f of r in the completion R =P[[f;,..., f]] (P =R/m) is given by

P=13 cpf™ (cp € P)
M

then
resg(€) = TrP/A(cm,-lv ) mq-l)'

In view of (3.7.1), this equation can be rewritten as:

rdfy -+ -+ df
(1Y resp(rdf, - - - d-fq/(flmli ey fqmq)) = Res = ! r?nq
1 2021 ’q

(ii) If R and m = fR are as in (i), and S D R is a g-dimensional localization
of a finite R-algebra (so that f is a system of parameters in S), with 5 a domain



58 JOSEPH LIPMAN

whose fraction field T 1is separable over the fraction field K of R, then, for all
S,51,-+., Sq in 5, and all g-tuples (my, ..., mg):

resg(sds; * - dsq/(flm‘, N fqm“)) = resR(TrT/K{s det(Djs;)}df, - - - dfq/(flm‘, vy fc;n“))

where D; is the unique extension to T of the derivation -aa—f- of K, K is the frac-
: i
tion field of f{, T = T® gk K is the total ring of fractions of g, Try. R is the trace

map (so that, as is well-known, Trs4 /K(S det(D;S;)) € R) and
resp = resg : Hl(Qg) = HI(OQr® g R) — A.

In view of (i), we can deduce from (3.10) that if S is Cohen-Macaulay, so that the
sequence T 1s regular in S, then the preceding equation is equivalent to

ds, + - - ds
(i) resg(sds; - * * dsq/(flm', ceey fqm")) = Res 151 3.
' fl l, v ey fq 9

What is indicated here is that the residues defined tn this paper may be used to
give another proof of the existence of the family of maps resg. This is what the.present
Appendix is about. '

The point is that this proof will be entirely “intrinsic”, not to mention more gen-
erally applicable. In contrast [L] uses the following procedure (which makes sense in
the context of [L], where emphasis is placed on the connections between local and glo-
bal duality, but which is otherwise outlandish): R is realized as the local ring of a point
v on some proper g-dimensional A-variety V; and then resy is defined to be the
‘composition )

| natural via ¢ ]

Ha(Qg) =H}QY,) — H(V,0¥) - H(V,wy) - A
where
- wy is a dualizing sheaf on V,
- @ is the canonical map, and

el 2wy is a certain canonical sheaf map (the ‘‘fundamental class” of V).

Then one must show that resyp is independent of all choices made, and that (i) and (ii)
hold...(!

* * ' *

1) ¢f. also the remarks on pages 13, 26, and 63 of [L].
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The definition we have in mind is based on the following Lemma, valid for any
algebra R over any commutative ring A.

Lemma (A.2). Let 1 C T be left ideals in R such that P =R/l and P' =R/l

are both finstely generated projective A-modules. Then the following diagram, induced
A #
by the natural maps R — P — P!, commutes (the abbreviations H%( )= HYR, *),

Hq( ‘)= Hq(R| *), ® =Q@pge, are used; and Res? 1s as in (1.5.1)).

HY(Hom (P, R))® Hy(R) = HY(Hom,(P', R))® Hy(R) — HYHom, (P, R))® H,(R)

l | l

HY(Hom,(P', P'))® H(R) +- H{Hom, (P, P})® H (R} — H%Hom,(P, P)}}® H(R)

R;R Resq

Proof. Start with an element

£® 1 € HYHom, (P, R))® Hy(R)
where £ is represented by a g-cocycle |

f € Hom, (T A(R/A), Hom,(P', R))
and 7 is represented by a g-cycle

1®@x € R®pe B,
Referring to (1.5.2), we find that {A.2) comes down to the equality
Trpya(s o d o f(x)) = Trpja(X o f(x) o ),

which holds by [B, Ch. I, §4.3, Prop. 3).

CoroLLARY (A.2.1) {ef. also [H, p. 523, Cor. 2.3].) Suppose that there is @ sequence
of left ideals in R, '

R=103113 b DInD -

such that R/1, fis finitely generated and projective -over A for all n. Then Res?

induces an A-linear map
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lim HY(R, Homs(R /1, R))® H(R,R) — A.

n

ExaMpPLE-DEFINITION (A.3). Suppose that A is a field, and that R is a commuta-
tive noetherian g-dimensional semi-local A-algebra with Jacobson radical m, such
that R/m is finite over A. Then by (2.5.2) we have a natural isomorphism

(A.3.1) lim HYR, Homis(R/m®, R)) = lim Ext%g(R/m", R) = HJ (R).

So we can define
resg : Hi(flg) —» A

to be the composition

(1.10.2) (A2.1)
Hi(Or)=HiR)®r Oz — HIR)® H{R,R) — A

CoroLLARY {A.3.2). With A,R as in (A.3), assume further that R is Cohen-
Macauley. For any w € Qg = Q% and eny system of parameters £=(fy,..., )
tn R, let :

w/(fh IR | fq) € Hrg(n‘R)

be the natural ¥mage of

w + 0y € Or/fg
| |

{ By s fq} €  Ext%(R/fR, Qp/fOR)=Ext%(R/IR, 0g)
(cf. (2.7)). Then

f'ESR(W/(fh ceey fq)) = Res |:f1, ' w , fq:|'

Hence, if A s a perfect field and R ts a Cohen-Macaulay locel domain essentially of
finite type over A, then the map resg of (A.3) agrees with the map resy in [L].

(Idea of ) proof. The first assertion follows from (2.7.2),(1} and the second from the
discussion in (A.1).

11} For present purposes we only need the case when R is local. .
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Now we look at the general case, when R is not necessarily Cohen-Macaulay, the
aim being to show that the map resy of (A.3) agrees with that of [L, p.97], where
applicable. 'We need only show that property (ii) in (A.1) holds for resy; and we will
do this by reduction to the Cohen-Macaulay case.

Let SO R be as in (ii), with, say, S= ﬁp, where R is a domain which is a
finite R-algebra, with maximal ideals p,p;,..., p;. Choose an element x in
p-U,p;, and choose an element y€p [ p; M -+ M p, such that T = Kfy].
Then, R being infinite (we may assume q > 0), a standard argument shows that for
suitable r € R, we have T == K[x + ry]; and clearly

x+ry €p- Uz i

It follows that if &' is the localization of R'=R[x+ry] at p (R, then
S=R®p & is a finite S-module, both § and §' have the same fraction field T,
and S’ is Cohen-Macaulay.

Now for some r 3 0 in R, rsds) - --ds; lies in the image of the natural map
Qg — Qg. I claim that it suffices to prove (ii) with s replaced by rs. Indeed, bearing
in mind that, with » the maximal ideal of S, we have

Hi(g) = Hi(0Qg) = HA(R)® g 0,

we see that (ii) can be interpreted as asserting the commutativity of a certain diagram
of R-linear maps

A4

Qs QR

\ /

Hom,(Hz (R), A)

But we have an exact sequence

H3(R) - H(R) — H3 (R/rR) = 0
(since R/rR has support. of dimension < q), and applying the functor Hom,{ *,A)
we conclude that multiplication by r in Hom,(H3(R), A) is injective, whence the
claim.
Let us assume then that » = sds, * - - ds, lies in the image of Qg — Q5. Since
(ii) holds for the pair "S' > R (8’ being Cohen-Macaulay), the following Lemma will
complete the proof. '
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LemMMa (Ad). Let A be a field and let S' C S be g-dimensional noetherian semi-local
A-algebras. Let m be the Jacobson redical of S', and assume that the A-algebra
S/mS i finite-dimensional. Assume further that for some s'€S  with
dim(S'/s'S") < q we haves'S C S'. Then the following diagram commutes

Qf ———> Hom,(H3(S), A)
s ———> Homy(H(S), A

where the vertical arrows represent natural maps, end the horizontal arrows represent
the maps corresponding to the maps resy and resg of (A.8).

Proof. Let v'€ flg, with image v € Qg; and let % € H3(S), with image
n € H3(S). As in the preceding argument, multiplication by s’ in HZI(S") is surjec-
tive, so it will be enough to show that :

(A4.1) resg(s'f @ v') = resg(sn ® v). |

Note that since multiplication by s' is an S-linear map of S into &', we have a com-
mutative diagram

HY(S) RS HA(5)

(A.4.2) \ /
)

HJI (s

For any n > 0, set
s, = S'/m*", S, = S/(m™)S.
We can choose, for suﬂiciently large n~, '
s € H(S', Hom, (8", $)
having natural image 7, cf. (A.3.1); and similarly (since H2(S) = H35(S))
1, € HY(S, Hom(S,, S))

having natural image 7.
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Let a be the composed map

f
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5
HYS, Hom(S,, S)) — HYS', Hom(S,, S)) — HYS', Hom, (S, 8')) — HY(S', Hom, (S, §))

where the unlabelled maps are natural. One checks, using (A.4.2), that the image of

a(n,) in HZ(S)is s'p = s'. Hence, after enlarging n if necessary, we have
(A.4.3) a(ngy) = s',.
Now to prove (A.4.1), let
p : HY(S, Hom4(S,, S))® H(S, S) — Hy(S, Hom(S,, S))
and ‘
p': HY(S', Hom,(S'y, §'))® H(S', 8") — Hy(S', Hom,(8',, 7))

be as in (1.1), and let
f: 05— HS,S)
6 Qg — Hy(S, §)

be as in (1.10.2). Consider the following sequence

¢ o ¢ = ¢
—bSn-—+S—>S'—>S’n—>Sn

Sf

n
where

~t and ' are the natural maps

- = p(m® 6(v)).
It is then a straightforward exercise to verify that
ress(8 @ 1) = Trg a(w (S0, ® 8 (V)))
= Trgya(@ < /(a(n,)® 6 () (A4.3)
= Trgya(so/e o +1)
='T1's.,/A(" o o5’ p¥) [B, Ch.IL,§4.3, Prop. 3]
= Trga(7es'p*) (where m:8 — 8, is the natural map)

= resg(s'n® v).

QED.
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APPENDIX B. EXTERIOR DIFFERENTIATION

Assumptions are as in (3.6).

ProrosITION '(B.l).m Let & denote exterior differentiation of differential forms.
Then forany v € Q‘*'IR/A, and posilive tntegers my, . .., Mg, we have

Sv i dfk Av
Res = my Res .
[fl”‘*, e fqm"] k=1 0o, G L,

Proof. We may replace R by R (cf. (3.5.1)) and so assume that all sequences like
(O f:l") (or any of its permutations) are regular (cf. (3.2)). Then by (2.8) we

have
' df
(B.2) Res| _ i/_\‘_’:} | = (_1)(k—1)(q—1) Res| . :fk Av e
SR R P (e D (Y

(The bottom row on the right is a cyclic permutation of the one on the left.)

Now, for proving (B.1), we may assume that v =r;dry - - drg, s0 that

by =drydry- - dry, difAv=r dfydry--- drg

From (3.7), (3.4.2), and (B.2), we can deduce that (B.1) will follow from the identity

(1) For the case of residues on algebraic varieties, cf. |L, pp. 65-66, (7.3.3) and (7.3.4);
and p. 99, Remarh (iv)]. CI. also [Bv , p.200, Remarque 1}.
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B3 Tl = 5 T )

= £ TG + Tl 3 (a0

where Aj is the following element of H (to avoid clutter, in the rest to this proof we

will denote determinants by vertical bars, write “D;" for “-(%-", and “r;” for
i :
urj#n):

1 Dyrs Dyryq

0 Dyyiny Dy41Tq
Ay = (-1)k-1Xa1) * -

0 Dk_1r2 Dk-qu

So we will prove (B.1) by showing that

(B.3) Tr{det(Djr;)} = 1231 Tr{(Dyry)Ax}
and that
(B.3)" Tr{r, kzi;l DAL} = 0.

For clarity, we illustrate the case q =3 of (B.3), leaving the general case to the
reader. The right hand side of (B.3)' is the trace of

Dlrl D1r2 D1r3 D2r1 D2r2 D2r3 D3r1 D3r2 D3r3
(B.4) 0 D2r2 D2r3 + (—1)2 4] D3r2 Dara -+ (-‘1)4 0 Dl]'2 D]l'3 .

10 D3r2 D3T3 0 D1r2 D1r3 0 D2r2 D2r3

Since Tr(apy) = Tr(yaf) for a, B, € H, we can replace (B.4) by



66 JOSEPH LIPMAN

Dyr; Dyry Dyrs 0 Dyry Dyrg 0 Dyry Dirg

0 D2|'2 D2r3 + D2T1 D21'2 D21"3 + 0 D21‘2 D2r3 .

. 0 D3l'2 D3]'3 0 D31"2 D3T3 D31‘1 D3l'2 D3l'3

This last sum is nothing but det(D;r;).

For proving (B.3)", consider the (q-1}-cochain
g= 3 (V* XD, o (Dy,;® Dyyy® -+ ® Dyy) € Homy(TFYH/A), H)
k=1

(cf. (1.8)). We will show below that

(B.5) Z1s a (q-1)-coboundary .

Thus J is a (q-1}cocycle whose cohomology class | § ] € H¥}(H, H) vanishes.
Hence if € Hy_j(H, H) is the image of rydry - - dry under the composed map

. {1.10.1) natural
n% R/A — Hq—l(R’ R) — Hq—l(H’ H),

and if
p: HYY(H, H)® 1 Hy(H, H) — Hy(H, H)
-is as in (1.1), then
Al 71®n)=0.
But n is the homology class of the cycle
n® ET] Dy | 20+ | ryql € H® 4 TEH(H/A) = H® e By (H)
where 7 runs through all permutations of (23,..,q) (ef. (1.10.2)). So

0==p(] 7 |®n) is the natural image in Hg(H, H) = H/{h;h; — hoh;} (cf. (1.0.1)) of
the element '

ry kf) (-1 Dy 37 (1) 171 (Dyyary) e DiraTrz) * ** e Dicalfg)
=1 T

= I'l ki DkAk € H-
=1

Since the trace map Tr:H — A[[X]] annihilates any element of the form hh, - hohy,
therefore it factors through Hy(H, H), and we sce then that (B.3)" holds.
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1t remasins to prove (B.5).

For convenience, set S == A[[X]]. Since E = Hom,(P,P) is a finitely generated
projective A-module, the natural map

E® , S=EQ® , A[[X]] — H= E[[f]]

is bijective (cf. (3.3.2)). It follows that there is an A-linear homomorphism of. com-
plexes ‘

Homg{B.(S), 8) — Homy{B.(H), H)
taking any p-cochain - Bp(S) — S to the unique p-cochain ~" B (H) — H satisfying
(for ey, ..., e, €E C H;sy ey sp'e S; and where, for any s € S, s’ is its natural
image in H):
7 lerst’ | egsg' | oo [ epsp] = erep * « - ep(sy | sz | -o. [ sp])
We see then that J = J]., where B (S) — S is given by the same formula
as 9. Thus it will suffice to show thai 30 is a coboundary. '
(In other words we have reduced to the case when H = A[[X]].)

-Let us first prove the corresponding statement for the polynomial ring S* = A[X].
In this case, both B.(S*) and the Koszul complex K. =K.(X;® 1-1® X;) over
S* = §*® 4 §* determined by the sequence (X;® 1-1® X)<icq 2re S*-
projective resolutions of S*, so that the S*®-linear map

A: K.(Xl® 1- 1® Xl) — B.(S*)

described in the proof of (2.6) is 2 homotopy equivalence. - But it is immediate from the
definitions that

and hence the homology class

(B.(S*), $*)) = HT!(S*, %)

[ z 0] € Hq'I(HomS“

vanishes, as desired.

We can say more. The complex B.(S*) is a graded module over the graded (poly-
nomial) ring S*¢, with |
n+l
degree(fo[fy | ... | fulfas1) = 3 degree(f;)
: i==0
for homogeneous polynomials fy, 4, ..., fy=; in S*. Also the Koszul complex K. is

a graded S*%-algebra, the basis elements in the free module K; = ($*¢)3 having degree
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one. The boundary maps in both K. and B.(S*) are homogeneous, of degree zero, as
is the above map A. It is easily seen that a homotopy inverse ¢:B.(S8*) — K. for A
(i.e. 2 lifting of the identity map of S$*) can also be chosen to be homogeneous of

degree zero, as can a sequence of S*®-linear maps ¢,: B, (S*) = B,,,(5*) (n > 0)
such that

a1:|+1'7‘51:| + ¢n—1 an = (1 "A(I’)n'

Finally, fﬂo is homogeneous, of degree —q; and since Py is a cocycle, with
ﬁ 0 °Aq_1 = O, we have

Jo= 91 -AD)q1 = Do(0bq1 + bg200-1) = D50
‘where
I7 = Dodqo:Beo(S*) — S*
is homogeneous, of degree —q.

Returning now to the power series ring S = A[[X]], with its X-adic topology, we
consider on each

B(S)=S®@,8® ---®,8 © (n +1 times)

the topology for which a fundamental system of neighborhoods of 0 is given by the
kernels of the natural maps

B,(S) — By(S/(X8)™) (m > 0).

For this topology, B, o(S*) is dense in Bq_z(S), and 7" , being homogeneous, is
"uniformly continuous. Hence J extends to a continuous map

95 :BgoS)— S
and we have (over S):
30 = z;“ Bq_l.

(Both sides are continuous, and agree on the dense subset By ,(S*) of B, ,(S), hence
are equal.) Thus Z; is a {q-1)-coboundary, as asserted in (B.5).
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§ 4. TRACE AND COTRACE

The principal result in this section is the “Trace Formula II”’ given in §4.7, which
asserts that for a finite projective R-algebra R', £ € HYR, Hom,(P,P)) (P an R-
module which is finite and projective over A), and o' € HQ(R’, R'), we have

Res{1%(€)® /) = Res(£® (/).
Here
to Hy(R', R') = H (R, R)
is a natural ‘‘trace' map, and
~% HYR, Homy (P, P)) — HY(R/, Hom4(P', P))
(P! = R'® P) is a natural “cotrace” map.

Most of the section is taken up with defining the trace and cotrace maps, giving
examples, and developing the properties needed to prove the Trace Formula (4.7.1) and
its corollaries (4.7.2) and (4.7.3). The definitions are based on a canonical (up to homo-
topy) H®-linear map of complexes (H = Hompg(R', R)):

B.(H) —* HOIDR(RI, R!@ R B.(R))
described in (4.1).
As mentioned in the Introduction, the trace and cotrace maps defined here should
be of interest in other contexts. In (4.6), for instance, we take a side trip to view

several illustrations of the connection between the trace map and previously known
trace maps for differential forms.

(4.1). Let g: A — R be 2 homomorphism of commutative rings. We will think of
R-modules as being right R-modules. An R-module isomorphic to one of the form
N® s R (N an A-module) is said to be g-free ; and a direct summand of a g-free

module is sald to be g-projective. For example any R-free module is g-free, and any
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R-projective module is g-projective.
Let F be a g-projective R-module, and let H = Homg(F, F), which is naturally

an R-algebra. Then H is also an A-algebra via the composition

['4 natural

gg:A—R — H.
We will denote the bimodule bar resolutions B.(g), B.(gg) (cf. (1.0)) by B.(R), B.(H)
respectively.

For any R-R bimodule M, we will consider F@ g M to be an R-module via
the right R-module structure on M. Then Homg(F,F@ g M) is an H-H bimodule,
with '

(by¢ hy) = (b, ®1)opohy h;,hy € H; ¢ € Homg(F, F® g M).
A basic role in this sectioﬁ is played by natural R-linear cotrace maps
c% HY(R, M) — HY(H, Homg(F, F®  M)) - {920

defined as follows.
Since the complex B.(R) = R has a right R-linear splitting (sp)p>-; (cf. (1.0)),
the same is true, for any A-module N, of the complex '
N® 4 B.R)=(N® 4, R)®g B.(R) = N® 4 R,
and we deduce, for F a direct summand of N® , R, that the complex
F®gB.R)—F

.bhas a right R-linear splitting. (Restrict the splitting of the complex
(N® , R)® g B.(R) to its direct summand F® g B.(R), then project back down to
the direct summand.) It follows that the complex of H® (= H® , H®}modules

Homg(F, F® g B.(R)) = Homg(F,F)=H

has a right H-linear splitting, say (an)n.z-l ; and we may assume that o,0,., =0 for
all n > 0 [M, p.264, Thm. 5.2]. Since B.(H) — H is an (A - H®}free resolution of
H, we conclude, by [M, p.261, Thm. 4.3; and p.265, Corollary 5.3] that there is a
“homotopy unigue H®-linear map of complezes
(4.1.1) CF: B.(H) — HOII]R(F, F®R B.(R))
lifting the identity map of H.

For example we could take for Cp the ‘‘canonical comparison” of M, p.267,

Thm. 8.2], which can be seen (since all o, are right H-linear) to satisfy

(4.1.2) Cr(b[h | hy | - | Bylh) = b oy yhyog s« - * hooLy ().
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Thus, if (s'y)p>-1 is a right R-linear splitting of F® g B.(R) = F, with s';s’, ; =0
for all n > 0, then Cp(h[h; | by | ... | hg]h') is the composed map
(413) F-F—->F® By - F® B,—F® B, =

bf 5’_1 b1 srp

q

F@& B F® B F&® B,.
B®1 ® Tl ® B F® B

Now any
¢ € H{R, M) = HY{Homg«{B.(R), M))

can be identified with a homotopy class of R°®-linear maps of complexes B.(R) — M|q],
where M]|q] is the complex which is M in degree —qf) and O elsewhere. So ¢
induces a homotopy class of H®-linear maps

Homg(F, F® g B.(R)) — Homg(F, F® g M)[q]
which, composed with Cp, gives us a homotopy class of H®-linear maps
B.(H) — Homg(F, F® g M)[q],
i;e. an element
c¥(€) € HY(H, Homg(F, F @ g M)).

This, then, is how the cotrace ¢9 is defined.

. Ezercise (4.1.4). If £ € HYR,M) C M, then
c%(€) € H(H, Homp(F, F® g M)) = Homy(F,F® g M)
is given by

(1) = 1@ ¢

ExampLE (4.2). Suppose that F is h-free, L.e. that there exists an R-isomorphism
P:F =5 N& 4, R for some A-module N. After identifying F with N@ R via ¢,

we see that in (4.1.3) we can take
S'n: F®RBD > F®R:Bn+1

I I
N®AB11 N®ABD+1

to be the map given by

{1) We consider B, to be the component of B. of degree -q (not q).
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L,(r@1) = v®[ | € N® 4 By
sSh@rry | v [} =@ v | 1y | oo | 1) (n>0).

More ezplicitly (and even less canonically) we can deseribe Cp  as follows .

Fix a family (v)jc of generatorsof N. For any
h € H = Homg(F,F) = Hom,(N, N® 4 R)
we can set

(4.2.1) hy) =% 4® b Gel)
o icL

where ri}‘ € R vanishes for all but finitely many i. In this way we associate a matrix
#h = (rijh) (i.j €L)

‘to h. (Of course, u? depends on many choices — the isomorphism ¥, the generating

family (), and coefficients ri}‘ making (4.2.1) bold!). Similarly, if M is any R-R

bimodule, then to any map in
HomR(F, F® R M) = HOIDA(N, N® A M) _
we can associate a matrix with coefficients in M.

Now a simple calculation shows that a matrix associated with the map
(b®1)esy1°(h;®1)e - -+ o(h;®@1)es"; o h' € Homp(F, F® g B)
(s’ as above) is

(4.2.2) BRI - @U@

~

N

where means ‘‘replace each entry in the matrix g by its natural image in R/A,

the cokernel of g: A — R”, and where, for example, the ‘‘tensor produet” of two

matrices p = {r;;), u'= (r;j) (with r; €R, respectively r;' € R/A, vanishing for
all but finitely many i € L) is given by

p® p' = (s;)
with

Sij = 2 I‘w ® l'p}’ E R® (R/A).
f€L

Thus we find that:

(4.2.3). For any g-cocycle ¢:ByR) — M representing an element € € HYR, M), a
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cocycle
®: By(H) — Homg(F, F ® gM)
representing ¢Y£) can be specified by

the map F - F@yzr M given by the matrix

®(h[h, | ... | hg)h") = | (with entries in M) obtained from the tensor product matrix
(4.2.2) by applying ¢ to each of its entries.

Ezercise (4.2.4). Asin (3.5) (and cf. (3.3.2)) let
H = Homy ) (P® 4 A[IX]], P® 4 A[[X]]) = E[[f]]
so that we have, as above, the cotrace
e': H(A[X]], A[X]])— H'(H, H).
Show that, with notation as in (1.8.2),
c![8/0X] = [8/8f}).

(Thus, while the derivation 8/8f; depends on the choice of a section o:P — R asin
(3.5), the cohomology class [3/8f;] doesn't).

ExaMPLE (4.3). Let g:A — R be, as before, a homomorphism of commutative
rings, and let R’ be an R-algebra which is g-projective as an R-module. Let P be
an R-module and let P! =R'®@ P, so that P’is a left R-module, and there is a
natural R-homomorphism P — P! taking p€P to 1® p € P\. Set

H = Homg(R', R').
. We consider R'® g Hom,(P, P) to be a right R-module, with
'@ ¢r=r'Q@¢r r € R, ¢ € Hom,(P, P), r €R.

This is consistent with what was done in (4.1), with F = R’, M = Hom,(P,P). We
also consider Hom,(P, R'® g P) to be a right R-module with

(¥r)(p) = W(rp) % € Homy(P, R® P), r €R, p € P.
Then there is a natural right-R-linear map
R'® g Hom,(P, P) — Hom,(P,R'®@y P)

and hence natural H-H bimodule homomorphisms
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(4.3.1) Homg(R', R'® g Hom, (P, P)) — Homg(R/, Hom,(P, R'® g P))
= Hom,(R'® 3 P, R'® j P)

= Hom, (P, P').

Combining (4.3.1) with the map ¢% of (4.1), we obtain a composed map

(4.3.2) o HYR, Hom,(P, P)) Z+ HY(H, Homg(R', R'® Homy(P, P))
— HYH, Hom,(P/, P) = HYR', Hom (P, P')

‘where the last map is induced by the A-algebra homomorphism R’ — H taking
¥ € R! to “left multiplication by r”.

ProposiTioN (4.3.3). With preceding notation, the following diegram commutes:

HYR, Homs(P,P) ——3—> HYR/, Hom,(P’, P"))

{ )

HY(R, Homa(P, P)) €———— HYR, Hom,(P', P"))

where u s naturally induced by R — R/, and v, w are noturally induced by P — P!
(¢f. (2.1.1) with A = A').

Before giving the proof, we note the following interpretation in the case q = 1:

CoroLLARY (4.3.4). Assume that P =R/l for some ideal I in R, so that
P! = R/[I' with I' == IR'= R'L Define the injective maps

¢: H'(R, Hom, (P, P)) — Homp(I/I% P)

%" H(R', Hom, (P!, P')) — Homp{I'/I?, P")

as in (1.4). Then, for any € € HY(R,Homy(P,P)), f a= Ww¢), gnd o = ¥ '(4(§))
(4! as above), then o is the unique P-linear map such that the following diagram (with
. horizontal arrows representing obvious maps) commutes :
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Proof of (4.3.4). Let ¢ (respectively +'(£)) be the cohomology class of the deriva-
tion D:R — Homy(P, P) (respectively D" R’ — Hom,(P', P1)), of. (1.3.3). In the fol-
lowing diagram (where unlabelled arrows represent obvious maps, and *“e” means
“evaluate at 1", the subdiagrams 1], [2], (3], obviously commute, [4] 2nd [5] com-

mute by the very definition of ¥, %', and (4.3.3) states that [6] commutes modulo
inner derivations:

™~ - /
B

Il

R — R

e

@ Dl g _ D'

L 4

Hom,(P,P) —> Hom,(P, P') «— Hom,(P', P')
el @ le L'e

P__ ., P

v G ~e Y

/12 > /12

Since any inner derivation R — Hom,(P,P’} vanishes on I, 2nd since I —I/I® is
surjective, it follows easily that commutes. Q.E.D.

Proof of (4.3.3). We begin with some preliminary remarks. For any R-R bimo-
dule - M, Homg(R,R'®gM) is, as in (4.1), an_ H-H bimodule, and hence (via
R — H) 2n R-R bimodule. Also Hom,(R',R’'® g M)} is an R-R bimodule with

{r,dro) = 1, 8(r)r, ryofe € R, ¢ € Homy(+, ), I €R;
and the inclusion
HOIDR(R’, R'@ R M) C HOIDA(R', R'@ R IVI)

is 2 homomorphism of R-R bimodules, i.e. it is R*linear.
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We define an R°-linear map of complexes _
§:B.(R) — Hom,(R', R'® g B.(R))
by
[0(x))(p) = p @ x x € B.(R), p €R".
As in (4.1), R’ being g-projective, the complex R'@gB.(R) = R’ has an A-linear
splitting, whence so does the complex of R®-modules
. Hom,(R', R’'® g B.(R)) — Homy,(R', R").

The R®linear map @ lifts the map R — Hom,(R',R) taking r € R to “multiplica-
tion by r"’. The same is true of the composed R*-linear map

natural Cr
6,: B. B.
1 B.R) — (H) ( :1_’1)
Hence, by [M, p.261, Theorem (4.3)], # and 6, are homotopic.

Now let &€ HYR,Hom,(P,P)) be represented by a g-cocycle
f: B(R) — Hom, (P, P), i.e. by a map (still denoted by f) of complexes

f: B.(R) — Hom,(P, P)[q]

Homg(R', R'®  B.(R)) — Hom,(R', R'® g B.(R)).

{cf. remarks following (4.1.3)). Consider the following diagram of R°®-linear maps of
complexes {where unlabelled arrows represent obvious natural maps, and “e” stands
for “evaluation at 1)

B.(H)
) Crr

B.®) =, Hom\®,R®rBR) e Homy(R)R'®zB.(R)

lvia £ lvia £

£ Hom A(R's R'® R HomA(Pv P)) [q] QHOmR(R's R'® R HomA(P! PD [q]
HO]IIA(P, P)[q] —_— . R'® R HOIIIA(P, P][q] / (4.3.1)
\ J, 4
Hom, (P, P')lq] & : Hom, (P',P')[q]

We are trying to show that vuyd(€) = w(€) (cf. (4.3.3)), which means in other words
that the two maps obtained by going from B.(R) to Hom,(P, P')[q] around the outer
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border of the diagram, in the clockwise and counterclockwise directions respectively,
are homctopic. We have already noted however that the subdiagram [a] s
homotopy-commutative; and it is simple to check that all the other subdiagrams are
commutative. The conclusion follows.

(4.4) We show next that the cotrace maps ¢ of (4.1} *“respect products’.

Let getA— R, F, and H = Homp(F,F) be asin (4.1). Let M and N be R-
R bimodules, so that we have cohomology products (cf. (1.8)):

(44.1) HP(R, M)® g HYR, N) — HPYYR, M® g N).
Similarly we have cohomology produ'cts (with H® the center of H):
(4.4.2) "HP(H, Homg(F, F ® g M))® - HY{H, Homy(F, F ® g N))

— HP*YH, Homg(F, F® g M)® y Homy(F, F® g N)).
There is a unique H® (= H® H°}linear map
(4.4.3) A: Homg(F,F® g M)® g Homg(F, F® N} —» Homg(F,F® g M® 3 N)
such that A¢® ) is the composed map
L4 ¢!
FoF®zN - FOzM®zN.
Applying X to (4.4.2), and recalling that H°is an R-algebra, we obtain the products

(4.4.2Y HP(H, Homg(F, F ® g M))® g HY(H, Homg(F, F®y N))

— HP*(H, Homp(F, F®  M® g N)).

PropositioN (4.4.4). Denoting both of the preceding products (4.4.1), (4.4.2) by %
and with the cotrace maps ¢ of (4.1}, we have, for any £ €HP(R,M), n € H¥R, N):

PTY fxm) = cP({)xcYn).
As a special casell), we have:

CoroLLARY (4.4.5). With assumptions as in ({.3.4), let
€ -« oy € € HY(R, Hom,(P,P)), let

(1) which, incidentally, in view of results in (4.3), implies (2.3.2).



78 JOSEPH LIPMAN

& = (&) € Homp(1/12, P) . 1<i<q
o = ¥/'(€) € Homp(I'/I%, P') ‘ 1<i<q

(Note the relation between o; and of given by (4.9.4).) Then, with the notation of
(1.8.8), we have .

Plagag - - - g =o' -+ * ]

(where, again, 1 is the composition ({.5.2)).
The proof of (4.4.5) is left to the reader.

Proof of (4.4.4). We first reexamine the definition of the cohomology product
given in (1.8). There is a unique R®linear map of complexes

u: B.[R) — B.(R)® R B.(R)

such that

LY ENEENED L YT LY PR
f= :
{Verification left to the reader.) If ¢ HP(R,M) is the homotopy class of a map
f: B.R) = M|p] and 75 € HYR, N) is the homotopy class of g:B.(R) — Nlq] (cf.
remarks following (4.1.3)), then

¢kn € HPPSR,M®@g N)
'is the homotopy class of the composed map
P 1®g
(f®g) - u: B.(R) - B.(R)®g B.(R) — M[p]®g Nlg] = (M®y N)[p + 4.

To prove (4.4.4), it suffices therefore to show that the following diagram commutes
up to homotopy:



B.(H) E > B.(H)®jy B.(H)

Homg(F, F® g B.(R)) Cr&Cp

via HJ, v

HomR(F,F®RB-(R)®RB.(R))(§"—4_3)HomR(F,F®RB-(R»®HHomR(F,F@aB-(R))

via f@gl . l(via £f1@ (viag)

, A
Homg, (F, F® g M|p] ® g N[q]) (i o, 3) HOmR(F; F© r M[p])® ; Homp(F, F® ¢ Niq])
The existence of the splitting (s;);>.; given in (1.0) shows that the resolution

[ 4
B.(R) = R is a homotopy equivalence of complexes of right R-modules. Hence we
have a composed homotopy equivalence

B.R)®5 B(R) > R®5B.R) = B.R) — R;

Qe
B.(R)®g B.R) = R®gR =R

is a right R-split resolution of R. Asin (4.1), it follows then that the corresponding
complex of H°-modules

Homp(F,F® g B.(R)® g B.(R)) = Homg(F,F®&gR)=H
‘has a right H-linear splitting, whence by [M, p.261, Theorem 4.3] the top half of the
above diagram is homotopy commutative.

The bottom half is easily checked to be commutative, and the conclusion results.

(4.5) Again let g: A — R be 2 homomorphism of commutative rings, let F now
be a finitely generated projective R-module, and let H be the A-algebra Homg(F, F).
We define trace maps

(4.5.1) ty Hq(H, H).— Hq(R, R)
as follows.

Let B.(R,R) be the complex of R-modules
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B.(R,R) = R®: B.(R),

whose homology is H.(R,R). Combining Cp (cf. (4.1.1)) with the natural map
. B.(R) = B.(R, R), we get a homotopy class of H®linear maps

(4.5.2) B.(H) —» Homg(F,F @i B.(R, R)) = Homy(F, F)® i B.(R, R)

= HQ® g B.(R)
and hence a homotopy class of maps
H® 1 B.(H) = (H® 3 H)® ge B.(R) = Hy(H, H)® g B.(R).
Passing to homology, we obtain canonical maps
(45.3)  HyHH) - HR, H(H, H) (a2 0)

which, combined with the usual trace map Trgp : Ho(H, H) = R (cf. (1.5)) give us the
maps t, of (4.5.1).

Ezample. One checks that for q = 0, (4.5.3) is just the identity map of Hy(H, H),
s0 that ' '

to : Ho(H, H) — Ho(R, R} =R

is the usual trace, i.e. to = Trp R

The following Proposition expresses a kind of adjointness between ‘‘trace’” and
“cotrace’’.

PRroposiTioN [4.5.4). Let M be an R-module (considered as an R-R bimodule in
the natural way). Let

ty: Hy(H, H) — H (R, R)
be the trace map (4.5.1), let '

¢%: HYR, M) — H(H, Homg(F, F® g M)) = HYH, H® g M)

be the cotrace (cf. (4.1)), and let
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ruem: HYH, H® g M)® g Ho(H, H) —» Hy(H, HQ g M)

= HQ® p: (HRzg M) = HyH,H)I® g M
and

v H(R, M)® g HyR, R) — Ho(R, M) = M

be as tn (1.1). Then for any € € HYR, M), w € H(H, H), we have
PM(E® t(w)) = (Trpr® 1)(ProM(cY(£)® w))-

Pr;mf. Let £ be represented by a g-cocycle f: B(R) — M, and let
T=1®1:BR,R) =R®peB(R) > R®pM =M.

Let w be represented by the g-cycle 1®x € H® 3B (H). Counsider the following
commutative diagram, where unlabelled arrows represent natural maps:
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B(H) > H® e ByH)

(4.1.1)1 | ' (4.1.1)
!
HOIIIR(F, F& R Bq(R)) > H@ He HOII[R(F, F@ R Bq(R))
via £ l
v
HOIIIRCF, F ® R H® He HOIDR(F, F® RBq(R’ R))
H@RM H®HeH0mR(F, F®R
1 / via f
H® He(H® R M) < H® H‘(H® RBq(R’ R))
| O
| 18F
HHHQgM < Ho(H, H)® g B(R, R)
Tr, /R®1J trF/R@l
£
M < ' By(R,R)

An examination of definitions reveals that going down the left side of the diagram
takes x € By(H) to (Trpmr® 1)pgem (cY(€)® w)) € M; while going around in the
clockwise direction takes x to py (€® to(w)). The conclusion follows.

(4.6) To give more substance to the maps ty we give some ezamples tnvolving
differential forms. (Strictly speaking, in the final section (4.7) only Definition (4.6.2)
will be needed.) A much more detailed discussion appears in notes of E. Kunz
[K, §16] and R. Hibl (to appear).

Again, let g: A — R be a homomorphism of commutative rings and let F bea -
finitely generated projective R-module. Let S be a commutative R-algebra, and let

¢: 8 — H = Homg(F, F)

be an R-algebra homomorphism. Then we have a diagram
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8% H_ ()
nqs,A-—.‘i—> Hy(S, S) > Hy(H, H)
(4.5.1) | Tq ? \ tq {4.5)
an/A R > Hq(R’R)
. <)
g .

and this suggests the question: when does there exist @ map fq making the diegram
commute? :

Derinrrion (4.6.2). A map 7, making the diagram (4.6.1) commute is called a y-
trace for differential forms of degree q.

Remarks . (i) If 0&‘ is injective then of course there exists at most one y-trace.
(i1) Below (cf. (4.6.4.1)) we describe a map
3‘!: Hq(R, R) - an/A
such that
By qu = q!(identity).
Hence if -7, -and 7, are two ty-traces, then
Q{7 - 7g) = 0.
In particular, if q! is & unitin R, then 7, =7
In fact it will be seen below (4.6.5) that .ql7y = q!7 is necessarily the “pretrace”

constructed by Angéniol in [A, pp. 108 fl ]. However, even when q! is a unit, I do not
know whether (1/q!) times Angéniol's pretrace is necessarily a t-trace.

Here are some examples of -traces.

Prorostrion (4.6.3) - (cf. [HKR, p. 305)). Assume that the A-algebra R is smooth
[EGA IV, (17.5.2)]. Then 0;" is bijective;. and hence there exists a unigue ¢-trace, viz.

7q = (030 o tq o Ho(¥) » 63

Proof. Set E=R® , R, so that R is, as usual, an E-algebra via the multiplica-
tion map E = R® 4, R — R. For any E-projective resolution P. of R, there is 2
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homotopy-unique lifting of the identity map 1y of R to an E-linear map of complexes
o:P. — B. = B.(R), and hence, for each q > 0, a canonical map

&g Torg(R, R) = HR® g P.) —» H (R® g B.) = H R, R).

Since R is smooth — hence flat ~ over A, therefore B. is E-flat, so &, is bijective.
Furthermore, a lifting of 1z to a map of complexes u: P.® g P. — P. induces a map
P.®@yP.— P. (where P. = R®P.), which gives, upon passage to homology, a
canonical graded R-algebra structureon T =® qonorqE(R, R). The diagram

P.
2
B.

is homotopy-commutative, since all the maps in it lift 1z. Thus, after applying R®g
and passing to homology, we find that

T — E —
30 agT 30 Torg*(R,R) — qﬂz_?o H(R,R)=H

P.@EP.' L >

-

. shuffle
B.®gB. (1.10) =

is an tsomorphism of graded R-algebras.

In view of the definition of & (cf. (1.10.1)), Proposition (4.6.3) asserts, in essence,
the bijectivity of the canonical R-algebra map A H,(R,R) — H (A denotes *‘exterior
algebra” ), i.e. (by the above) of the canonical E-algebra map ATorE(R, R) — T. This '
latter map is bijective if and only if it is so after localization at each prime ideal Q con-
taining the kernel J of the multiplication map E = R. Set F = Eq U=Rgq. Then
Jq is generated by an F-regular sequence f = (f,,...,fy) (argue as in [EGA IV,

(17.12.4)), using sbid, (17.12.1c)); and if K. is the corresponding Koszul complex over F,
i.e. K. = A(F™) with differential determined by f, then K. is an F-projective resolution
of U, U@ K. = A(U™) with vanisking differential, and, as a graded group:

Tq = 30 Torf (U, U) = 30 Hq(p® r K.) = A(U) = A(Tor{ (U, U)).

It remains therefore to be verified that the canonical product on Tq is identical with
the exterior algebra product. But this follows from the fact (easily checked) that the
exterior algebra product K.® ¢ K. — K. is a homomorphism of complexes lifting 1y,
and hence (as above) inducing the canonical algebra structure on Ty. Q.ED.
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Remark (4.6.4). Under the conditions of (4.6.3), one would like an explicit descrip-
tion of (HqR)‘l. In fact, we can describe 2 left inverse of GqR under either of the follow-
ing hypotheses:

() A is 2 Q-algebra.
(i) Ny /a is 2 free R-module of finite rank.
Indeed, if we define

64: By(R, R) = R® pe B(R) — Q%4
by
6/(ro@ [r) | oo | Tg}} = rgdry dry - o+ drg

then it is easily checked that & =annibilates the image of the boundary map
BY*!(R, R) — By(R, R), whence & induces '

(4.6.4.1) & HyR, R) — Q% /a5
and one verifies by direct computation that
_‘ 8,2 03 = ql(identity).
Thus if A isa Q-algebra (or, more generally, if q! is a unit in A) then
(4.6.4.2) 6y = (1/al)8,
is a left inverse for ﬂf.

If 0%/, is free over R, with basis, say (w), ..., wy), 2nd if DR — R is the
derivation corresponding to the R-homomorphism QIR/A—-r R taking w; to 1 and
wj (j 7% 1) to 0, then (noting that 2%/, is R-free) we can define an element

89 € HYR, O%/4) = HYR,R)® g W%/
by

8= 5 DD, DIY® ww, W,
i <ig<... <

where, as in (1.8.2), [Dj ---D;] € HYR,R) is the product of the elements in
HY(R, R) corresponding to the derivations D;, ..., D;. Via the natural pairing

(4.6.4.3) HY(R, 2%4)® g Hy(R, R) - 0%/
(ef. (1.1)) the element 89 gives rise to a map
bg: Hy(R, R) — Q%/a,

which is a left inverse for 93.



86 JOSEPH LIPMAN

It may be noted that
Q169 = (8)3 € HYR, N)4)

where § € H(R, 1'g/a) corresponds to the universal derivation d:R — Qi'g/,, and
the g-th power (6)¢ is defined via the cohomology product of (1.8). Moreover the map-
ping Hy(R,R)— {M%/a corresponding to (§)? (via (4.6.4.3)) is just the map 3q of
(4.6.4.1). Hence

(4.6.4.4) qléy =&

and so if q! isa unitin A, then & coincides with the map §; of (4.6.4.2).

Roughly speaking, then, finding a left inverse for qu involves finding a “divided

power’’

(6)9/a! € HYR, %)),

Remark (4.6.5). If 7 isa rtrace and 'S-q is as above (4.6.4.1), then
q!'rq =3q° 930 Tq ='t-5-q°tq°Hq(’l/J) ° ﬂqs
(¢f. (4.6.1)), which is Angéniol’s “pretrace” [A, pp. 108 fI.].

In other words,
(4.6.5.1) Byt (V)05 (seds, -« - ds,) (s; € S)

is found as follows (at least after localizing, so that F becomes R-free): pick a basis of
. F, and let p; (0 < i< q) be the matrix corresponding to the R-endomorphism %(s);
then (4.6.5.1) is the trace (= sum of diagonal entries) of the matrix

3 (D) podpgrydpge * - dpqg)
T

where Y. is as in (1.10.2), and for a matrix #, du is the matrix, with entries (of
degree one) in the exterior algebra G;o ﬂ"R/A, obtained by applying the universal
n>

derivation d to the entries of g. This can be verified through a careful examination
of the definitions of Eq, te Hq('z,b), and 95, and of example (4.2). Details are left to
the reader.

Note that we have indicated here an intrinsic approach to Angéniol's pretrace, via
Hochschild homology, which renders unnecessary all the computations in [A, pp. 109-
113].
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When § is étale over R, there is a very simple description of a y-trace (cf. (4.6.7)
below).

ProposiTioN (4.8.8). There is a natural structure on @g>o Hy(H, H) of graded
module over the graded ring Dy>0 Hq(R, R); and for all p,q the resulting diagram

H(R,R)® H,(H,H) ——— Hoiq(H, H)

1t t g
(4.6.6.1)

H(R,R)® HR,R) — 1157 10) Hp (R, R)

commules.

Before giving the proof, we note the following easy consequence of the special case
p =10 of (4.6.6):

CoROLLARY (4.8.7). Given S — H == Homg(F,F) as above, define the trace map
try: S — R to be the composition

¥ trace
tl'“[,: S—=H — R

(i.e. try is the unique <rtrace for q = 0). Then for any q > O the following diagram
commautes:

natural Gcrs B W)

Q%R/A®R S > 0%, —> HyS,8) 4> Hy(H, H)
l@‘l:rlp t
QR AQrR =0Q%/ 5 R ‘ >  Hy(R,R)
Q

In perticular, if S is &tale over R (so that Q% ,®pS — M)y 15 bijective) then
1@ try is a Y-lrace .
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Proof of (4.6.6). Since H is an R-algebra, we can define a shuffle pr;oduct
(4.6.6.2) B.(R)® , B.(H) - B.(H)
by essentially the same formula used in (1.10); and there results a map of complexes
R® pB.(R))®r (H® g B.(H)) - H® ;3. B.(H)
which gives rise at the homology level to pairings -
H{R, R)® H,(H, H) - Hy,oH, H)
which define the asserted graded module structure.

For the commutativity of {4.6.8.1) we consider the diagram of (R®*® , H®}linear
.maps of complexes:

{4.6.6.2)

B.(R)® 4 B.(H) > B.(H)
1®CF
(4.6.5.3) B.(R)® A HO]IIR(F, F® R B.(R)) ' CF
natural
v

ia

Homg(F, B.(R)® 4 F® g B.(R)) —mocsis” Homp(F, F® g BJ(R))

This diagram lifts the commutative diagram

R® A H \ natural H

\\ 4

R® , Homg(F, F)

Homg(F, R® 4 F) via multii:licai;ion > Homg(F, F)
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But, as in (4.1), the complex Homg(F, F® g B.(R)) = Homg(F,F) splits over A; and

hence by [M, p. 261, Theorem 4.3, (4.6.6.3) is homotopy-commutative, whence so is

the diagram obtained from (4.6.6.3) by applying the functor @ peg y{R® H). It fol-
lows that the composition

-
Hy(R, R)® Hy(H, H) - H,(H, H) — H,, (R, R)

is obtained at the homology level from the composition

(4.6.6.4) B.(R,R)® . B.(H,H) 2218 5 B (R,R)® 4 (H® ;x Homy(F, F® g B.(R)))
- = H® HGHOHIR(F, B.(R, R)® A F ®R B-(R, R))
2 H® e Homg(F, F® 5 B.(R, R) = Hy(H, H)® 5 B.(R, R)
o B.®,R).

But we have a commutative diagram

H® ;- Homp(F, B.(R, R)® , F®3 B.(R,R)) ——> H® yHomp(F,F® z B.(R, R))

via|trace vial|trace

”

B.(R,R)® 4 B.(R,R) shuffle —> B.(R,R)
Hence, it is easily checked that (4.6.6.4) also gives the composition

HR, R)@ R HH, H) = H{RR)® HyR,R) = Hy (R,R)

in (4.6.6.1). Thus (4.6.6.1) commutes, as asserted.

Our last example of a %~trace involves a variant of the ‘‘Cartier Operator”.
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Fzample (4.6.8). Suppose that A contains a field of characteristic p > 0. Let
I'jyoooy TqER, let F =18 be the R-algebra

S =Rp(1, « sy Xq]/(le—r], s e ey qu—rq) =R[E]! . sy fq]
Xy, .+ .y X, indeterminates), and let
4 S — Homg(S, S)

be the regular representation, t.e., 4(s) = “multiplication by s'. Then there is a
unique R-linear map

Tq’: QqS/R —_— ﬂqR/A
such that :
79((6r6p * + - EP1AE <+ dg) = dry -+ - drg
and
qu(glal ce fqaqd&'] e dg) =0

Jor any g-tuple of integers (a5, ..., 8))%# (p-1,...,p-1) with 0<a <p
(1 <1< q). Moreover, the composition

natural T4

T Qga — Q% — Q%p

18 a 1Y~lrace.

Proof. Since Q'gp is the free S-module generated by (dé;, ..., d&j), the

_existence and uniqueness of 7,/ is clear.

Since
q .
Q5/p = Eo Q'sr@r 0% 'R/as

and in view of (4.6.6), to show that 7, is a t-trace, it will be enough to show, for
n < q, that for all sequences 0 < i; < iy < *-- <i; < g, and for all (a},..., 2]
with 0 < a; < p, we have

toHo (%) 65(Er" « -+ €546, + - - d) =0

untess (i, ..., i,)=(,2,..., @) and (a, ..., a))=(p-1,..., p-1), in which
case we have

tH(WBS((E; - -+ EPIdE; -+ - dEg) = OF(dr, « - - dry).
As an R-module, S= N® 4R, where N is the free A-module with basis

{ flbl ce Eqb°}0 <b<p- We proceed then to compute as in example (4.2). We have
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b b b b+1 b .
eiflz...qu_ell...fil ...fqn if bi<P_1

b b_,.b b .
—rlfll.-.ei-'l—:fi+l-;l.'.qu if b=p-1.

~r

Thus if p; is the associated matrix, and u; is obtained from pg; by replacing

each entry r in u by its natural image r =r+ A in R/A, then g; has p%!

[

entries equal to r;, (arising from members of the basis having b; = p - 1), 2nd all
other entries vanish. The reader can check that for i; < --- «<i;, the tensor pro-

duct matrix p;® -+ @ u;, has p¥™" entries equal to r;® - @ r; (arising from
members of the basis having b, = b, = +++ =b_= p-1), and no other non-zero

entries. Hence the element of
Homg(S, S® g B,(R))

corresponding to the element

Y D €y | | €iyy) € By(EHomg(S, S))

T

(notation as in (1.10.2)) has p%™® non-zero entries, all equal to

) ey [ i)

T

Now if p® is the matrix corresponding to multiplication by £ = fla‘ cee Eqa“

(0 < 3; < q), then the matrix

©e 1@ - ®u,®1

has non-zero diagonal entries only if a; =3, = --+ =132 =p -1, in which case

there are p™ such entries, all equal to

S ) T i o | Ting] € ByR).

T

Hence the trace of this matrix (= sum of diagonal entries) vanishes unless ¢ = n and
a) = 2, = *** ==a = p- 1, in which case the trace is an element of By(R) whose
image in Bg(R,R) is 2 cycle with homology class fié‘(drl oo drg) (ef. (1.10.2))

Q.ED.

(4.7) We are now prepared to give the main result of this section. But first let us

review the necessary notation.
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Let g: A — R be, as before, a homomorphism of commutative rings, and et R’
be a finite projective R-algebra. Let P be an R-module which as an A-module via g
is finitely generated and projective, and let P/ =R'®@ g P (so that the A-module P’
is also finitely generated and projective). Set H = Homg(R/,R’), fix an integer
q=>0, let

~%HYR, Hom, (P, P)) — HYR/, Hom,(P', P*))

be the map defined by (4.3.2), and let t,' be the composed map
t,H (R’ R')Hf-:b)H (H, H) -fiH R, R)
g -Hq\hy qith g\t

where ¥R’ — H is the A-algebra homomorphism taking r € R’ to ““left multiplica-
tion by ' ”’, and where tq is the trace map of (4.5.1).

THEOREM (4.7.1) (“Trace Formula II”). With the preceding notation, we have, for
any € € HY(R, Homy(P, P)) and o' € H(R',R'):

ResY~3(¢)® /) = ResY¢(® tq'(w’)) .

CoroLLARY (4.7.2). Under the hypotheses of ({.4.5), we have

W - tq(w/)
Res oy oo, of = Res Qyov oy Q"

In particular, if 1 (es in ({.8.4) is such that 1/I* is R/I-free, with basis
(fj+12)15i5q (f; €1), andif f! €R' is the natural tmage of f;, then

. o - tq/(w)
A T Tl R [ A o

q
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CoroLLarY (4.7.8). If there exzists a y-trace Q%4 — Q%4 (¢f (4.6.2)) then for
any v € Q% (¢f. (1.10.4));

' v R Tq(u)
] 1| = nes .
al,...,aq al,...,aq

Proof of (4.7.1). ({(4.7.2) and (4.7.3) left to reader.) Let M be the R-module

M = Hy(R, Hom,(P, P)) = Hy(R, P@ , Hom,(P, A))

= Hom,(P,A)® z P (¢f.(1.0.1)).

Via the indicated identifications, the trace map
Trp,a: Ho(R, Hom, (P, P)) — A

gets transformed into the map
Tp/a: Homp(P,A)® g P — A

given by

| Tp/a(¢@ p) = ¢(p).
In view of remark (1.1.1) and the definition (1.5.1) of Res9, we see that
ResY(£® t/(w))) = Tp,a om(E® t/(w))

where € is the natural image in HYR,M) of £ € HYR, Hom4(P, P)) (via the natural
RE-linear map

Hom,(P, P) — Hy(R, Hom(P, P)) = M).
And by (4.5.4), if w € Hy(H, H) is the natural image of w' € Hy(R/, R’), then
pM(E® t/(W) = (€@ te(w))

= (Trryr @ 1){PuenM(c¥(£) ® w)).
On the other hand, if
¢': HY(R', Hom ,(P", P") ® g« H (R, R)

— Hy(R', Hom 4 (P’, P")) = Hom (P, A)® g P’
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is as in (1.1), then we have

Res{(6)® o) = Tpya /OO o)

and furthermore, it is straightforward to check that the natural composed map

" Hy(R!, Hom, (P, P') = H,(R’, Homg(R', R'® g Hom, (P, P)))
— Hy(R', Homg(R', R'® g M))
— Hy(H, Homg(R', R'® g M))
= H® e (H ® M)

= Ho(H, H)® g M

satisfies

PO @ W) = rremB O w)

Hence it will suffice to show that the following diagram commutes:

Hom, (P, A)® 5/ P’ = Hy(R', Hom, (P/, P'))
J,ﬂ
TP '/a HO(H! H)®RM
TrRl /R®1
L 4 '
A + Hom,(P,A)® gP =M
P/A

(cf.(4.3.1)

As usual, one needs to expand the diagram according to the definitions of the maps

involved, and go through a tedious verification. One such expanded diagram looks like

this:



RESIDUES V1A' HOCHSCHILD HOMOLOGY

Hom, (P*,A)®,P"

HO!I'LR (R',HomA(P +A)) ®AP ' e

Y] 1]
HomR(R ", R)sRHomA (P,A) ®AR @RP

l

1 >t =
Hom, (R ',R) @ R'®, Hom, (P,R) g P

' v
HomR {R', H(::‘rrlA (r,A) sRP

!

RN

w4

[ 3 [
HomR(R +R QRHomA(P,P))

!

HomR(R',R'®RM)
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= Homhﬂ(E-'\‘:P "y —> H,(R?,Hom, (P*,P'))

v

1
Honh(R WR") ®R(H°mA (P ,A)@RP) -> HO(H,H)QR—(HomA(P,A)@RP)

HomA {p"* ,A)@R P!
Tova
A <

P/A

Remaining details are left to the devoted reader.

TrR, /R®l

\

Homn (P,A)@RP )
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[A]

[AL]
[ac]
[AY]

[B]
B

Bv]
[EGA O]

[EGA IV]
[H]

HKR]

L m

b
M]
[RD]
s]

[SGA 8]
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