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Topological invariants of quasi-ordinary singularities
ABSTRACT

A complex-analytic d-dimensional hypersurface germ_ (X x) is quasi-ordinary
if there exists a finite projection z: (X, x) — (C4,0) which is unramified outside
the union of the coordinate hyperplanes in C?. The branching number m; = m; (%)
over a coordinate hyperplane H; (1 £ i £ d) is then the local covering degree of

n~!(H;) — H; at a generic point of the irreducible variety 7~ *(H;). The main result
is that except for its largest member, the famzly {m,}1<,<d is (modulo permutations)
a topological invariant of (X, x). This result is a major mgredlent in the embedded
topologlcal classification of quasi-ordinary singularities via charactenstlc monomi-
als”, given by Y.-N. Gau in the accompanying paper.

Key Words: Topology of analytic hypersurface germs; characteristic monomials |
of quasi-ordinary singularities; rational equlvalence and local homology (for
codimension one cycles).

Embedded topological classification of quasi-ordinary singularities -
ABSTRACT

We give the embedded topological classification of the quasi-ordinary hypersur-
face singularities. The proof involves the topology of plane curve germs (Puiseux
expansion, characteristic pairs, intersection multiplicity) and the result of Lipman
on the local homology of the quasi-ordinary singularities. The classification is in
terms of “distinguished tuples” which is a generalization of characteristic pairs.

Key Words: Analytic hypersurface germ, quas1-ordmary singularity, link, singular
locus, topological type.
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INTRODUCTION
This paper deals with topological invariants of quasi-ordinary singularities

on complex analytic hypersurfaces, Before describing the main results, we

give some motivating background,

(0.1) The Jungian strategy for resolving the singularities of a hypersurface

d+1

Xt begins with diagrams like

s c!

Xde=X X
[
W.l o~1(D) 1W > D
M/ cd/
o

where w is a finite projection, with (reduced) discriminant locus D, M is
smooth, and ¢ is a bimeromorphic map such that c'](D) has only normal
crossings as singularities. (The existence of o would be given by induction
on d.} Then o' 1is bimeromorphic, and X' admits a finite projection 7'
to M whose discriminant locus has only normal crossings. This leads one to
consider d-dimensional hypersurface singularities admitting locally a finite
projection to cd with normal-crossing discriminant. Such singularities are
called quasi-ordinary [Eg Def. 1.1]. Every plane curve singularity is quasi-

ordinary (d = 1). The case d =2 1is discussed in [&J.

An irreducible quasi-ordinary singularity x € X can be represented
explicitly by means of certain fractional powern senies parametrizations, which

we now describe briefly. (More details are given at the beginning of §5).

The Tlocal ring OX X of germs of holomorphic functions is isomorphic to a
R ‘

¢-algebra

¢(T-' Yoo ,Td>[C]

Received by the editors December 1;-1986.
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2 JOSEPH LIPMAN

where @(T1,...,Td) is the cdnvergent power series ring in d variables,

and, for some integer n and some convergent power series H:

_ 1/n 1/n
z = H(T] seeesTy ).

Moreover the fractional power series ¢ satisfies the following condition.
Let c],...,cm be the distinct t(Tl,...,Td)-conjugates of z (obtained from

1/n Uno ith oM =1 (1<is<d));

z by various substitutions of the form Ti > wiTi i

then for all i # j,

- 1/n 1/n
c-i = Cj = Mijsij(T] ,--ogTd ) €ij(0,--o’0) # 1]
where
a,/n a,/n
B L,
Mg =T T4

with integers a15...,3y depending on i,j. Sucha ¢t is called a

quasi-ohdinary branch, and the monomials Mij are called the characteristic
monomials of 5. We say then that ¢ 1is a quasi-ondinany |Puiseux-)parametrization
of the analytic germ (X,x); and (X,x) can be realized geometrically as the

d+1

image of the map wC:U +C (U some neighborhood of 0 in cd) defined by

(0.1.1) w;(s1,...,sd) = (s?,,..,sg, H(sqseenssg)).

The plane curve case (d = 1) is of course classical.

A given germ (X,x) may be parametrized by many diffefent quasi-ordinary .
branches 7. We will naturally be interested in those features of ¢ which
reflect intrinsic geometric information about (X,x). It turns out that much
of the geometry of (X,x) is determined just by the characteristic monomials
of a parametrizing branch 7  (cf. [L, p. 163]1). This is illustrated below in

the Appendix, §7, where we describe the singular locus of (X,x).
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TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 3

For another example, in the plane curve case the characteristic monomials
of any Puiseux parametrization i determine and are determined by the
"characteristic pairs" of r; and via knot theory, the characteristic pairs
determine the Loeal topology of the pair (X,x) c:(cz,o), and vice versa
{cf. [5}).1 So for d > 1, characteristic monomials are a natural higher-
dimensional generalization of characteristic pairs; and it is natural to ask about

the relation between the topology of (X,x) < (€d+],0) and the

characteristic monomials of a (normalized) quasi-orndinany parametrization,

It is this question which motivates the present paper.

(0.2). Part of the question is not hard to answer, As indicated in

[k, §2], the characteristic monomials of a quasi-ordinary parametrization ¢

0§ (X,x) detewmine the Q(T],...,Td)-éazunatéan of 0X . t(Tl,...,Td)[;],
and hence, by a theorem of Zarnishi, detenmine the topology of (X,x) < (Cd+],0).

While this is nice to know, it is not very illuminating, in the sense that
it gives no insight into the actual nature of the pair (X,x) < (Cd+],0).
A better approach is suggested by the case d =1, where one can realize the

pair explicitly as the cone over a compound toroidal knot specified by the

characteristic pairs. But for d > 1, little seems to have been done along such
lines.

The converse is harder:

Conjecture (0.2.1).* Let (X,x) < (€4*1,0), (x*.x") < (¢9*1,0) e

d-dimensional genms parametrized by normalized quasi-ondinany branches T, '

“nespectively. 1§ there exists a gerun-homeomorphism

'Here ¢ needs,to be "normalized", in the sense that no characteristic monomial
has the form T{ with A < 1. There is a well-known “inversion" procedure which
transforms any non-normalized parametrization ¢ into a normalized one; and
this procedure works in the higher-dimensional case as ye]] (where "normalized"
means “having no characteristic monomial of the form T§ with A < "), cf.
Appendix to accompanying paper of Gau.

*This has now been confirmed by Y.-N. Gau (see accompanying paper).
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4 ’ JOSEPH LIPMAN

Cp:(cd+1 ’0) > (Ed"l‘] ’o)

such that

Cp(x,x) = (X' ,X')

then t© and 7' have the dame characternistic monomials,

Note that the truth (or falsehood) of this statement is not at all obvious

even when (X,x) = (X',x') and ¢ 1is the identity map.

For d = 2, the conjecture was affirmed by Gau in [G]. Gau recovers the
characteristic monomials of a parametrization essentially from the following

data (A), (B) at a genmeric point z

i of each codimension-one component Zi

of the singular locus Sing(X) (there are at most two such components):
(ﬁ) The homotopy type 04 a pair
(X n P’zi) < (Psz-i)
where PcC isa plane thansversal o 1, at z;, (so that X nP isa
possibly reducible plane curve),

Even though "transversal planes" are not preserved by homeomorphisms ¢
as above, the "transversal homotopy types" are topologicél invariants of
(X,x) c:(¢3,0), roughly because ¢ preserves components of Sing(X), and
because X s equisingular along Zi at z%, so that there is a local

homeomorphism of triples

(P x€,(xnp) =€, {z;} x €) 3 (,x,7,).

(E). The branching onden my at z, of the projection mi(X,x) -+ (tZ,O)

taking (s?,sg,ﬂ(s],sz)) o (s?,sg) ef. (0.1.1) 2

2This information is needed to carry out the inversion procedure mentioned in the
footnote® above, since the restriction of ©m to X nP (cf. (A)) might not

be su;f;ciently generic - consider for example the germ parametrized by

= T]/ T2, and see what happens at a generic point of Z; = zero-set of Tj.
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TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 5

The problem here is that there is no apparent reason why the mss which
depend a paioni on the chosen parametrization ¢, should be topological
invariants of (X,x). A key result of Gau is that nevertheless they are!

In fact, Gau proves that:
(0.2.2) m; 48 the order of the Local singular homofogy group  H,(X,X-x).?

The main result of this paper (Theorem (6.1)) is the Lopological invariance
0f the branching numbenrs m; (with one exception - cf, (0.3) below) for
arbitrany dimension d.

With this generalization of step (B) above, and a suitable elaboration of

step (A), Conjecture (0.2.1) has been shown by Gau to hold in all dimensions.

(0.3). We will now describe the main result, Theorem (6.1),more closely,

e

So let {X,x) (Cd+1

»0) be parametrized by a guasi-ordinary branch ¢,
and let w:(X,x) » (cd,o) be projection on the first d coordinates, the map
germ corresponding to the inclusion of local rings

04

g " T Ty = 6T TRkl S oy

The discriminant locus D of m is defined by

by by
ale) = igj (6 - g5) = Ty e Ty e(TnennsTy) = 0
{(where Cyseeesty, are the conjugates of ¢, the bi are non-negative integers,

and e(0,...,0) # 0. Suppose that D has ¢ < d components, so that after

*This requires ¢ to be “reduced", a technical condition which can be arranged
by replacing (X,x) by a homeomorphic germ, cf. Proposition (6.3) below.
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6 JOSEPH LIPMAN

relabelling the variables Ti’ we may assume that D 1is given by

T]TZ"‘Tc = 0, Let Zi < X be the zero set of Ti (1 <i<d). One shows
that Z, is irreducible (beginning of §4), Let m; be the branching order
of w at a generic point z; of Z, (mi = number of points in w'l(y)

approaching z, as y € cd approaches “(Zi) in a generic direction). After

i
further relabelling of the variables, we have (cf. (5.10.1)):

(0.3.1) T =my=myy =.ommq <mm_;]...]my = (branching order of = at x)

c+

(where "|" denotes "divides"). Furthermore we have the following generalization

of (0.2.2) (cf. (5.10.3)):
(0.3.2)  The group Hyy o(X.X-x) has order mpms...m .

Thus the product Moy e oMy is a topological invariant of (X,x).

Better yet, Theorem (6.1) says that:

(0.3.3) The entire sequence mclmc_1l... m, 44 a topological invariant of
{Xsx), 4n the 6b££ow£ng senser  Af (X'.x') 45 parametrnized by a quasi-
ondinany branch 7', and {f there exists a germ homeomorphism

Pr{Xt,x') = (X,x) zthen, with self-explanatony notation, c' =c¢

and the two sequences mliml_y|...Imy, m im ;.. |my coincide.

Rematks (i). We could not»héve expected ms the branching order of = at
X, to be topologically invariant, since when d =1 all irreducible plane
curve germs are homeomorphic to (@1,0)). However, when ¢ is reduced,

(cf. footnote®) then m = m,.
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TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 7
(ii) Consider the map W:€3 - C3 given by
Vtpatynty) = (tt,.tt,),

If X' c c3 (resp. X c 03) is the surface parametrized by ' = T]/Z ]/2

{resp. ¢ = T3/2T]/2) then ¢ induces a homeomorphism (X',0) + {x, 0),

which is identical with the blow-up of the line T] = T3 = 0 on the surface

X (whose equation is Tg = T?Tz). Because of (0.2.1), which holds when d = 2,
this homeomorphism cannot extend to a homeomorphism of (63,0) to itself. Many
such examples can be found by blowing up codimension-one smooth subgerms of
quasi-ordinary singularities, Another kind of bimeromorphic homeomorphism appears

in (6.3).

(ii1) At present I don't know much beyond what is given by (6.1)
concerning the classification of quasi-ordinary germs under homeomorphism.* (0f

course (0.2,1) gives a complete classification under "embedded" homeomorphism, )

(0,4). Now here is a brief summary of the contents of the paper, leading

up to the proof of Theorem (6.1).

In 81, we define, for any anatytic germ (X,x) and any integér k=0,
a Local fundamental class map

ck:Ak(X)x - HZk(X’X' X)

where Ak(x)x is the group of rational equivalence classes of germs at x of

k-dimensional cycles on  X.

For d-dimensional quotient singularities (= (td,o)/finite group) the map
Cd-1 is an {somonphism. This holds, more generally, for rational singularities,
as shown by FIénner. We will need only the quotient-singularity case, where a

relatively simple proof can be given (and is, in §2),

*Progress has been made by Gau [G'].
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8 ' JOSEPH LIPMAN

In §3 we show that C4-1 8 an Lsomorphism fon any d-dimensional |
quasi-ondinary singulornity (X,x) (i.e. a - not necessarily hypersurfaqe -
germ admitting a finite projection m:{X,x) - (td,o) with normal-crossing
discriminant). The idea is to compare C4-1 with the corresponding map for
the normalization, whiéh is a quotient singularity. Since the rational
equivalence group Ad_](x)x can be calculated by algebraic methods {applied
to the local ring ck,x)’ this gives us an explicit presentation of the local
homology HZd_z(X,X-x) (cf. §4). In particular (cf. (4.1.3)) the order of
HZd-Z(X’X'X) is

(0.3.2)' ’ MW,...my/(branching order of m at x)

where the branching numbers m. are defined as above.

In 85, we'consider hypersurface germs (X,x) parametrized by quasi-

2 ordinary branches. The presentation of HZd-Z given in §4 is then described
in quite computable terms, via the characteristic monomials of ¢z, as are the
integers m; (cf. (5.9)). From this, (0.3.1) results, and hence (0.3.2)
follows from (0.3.2)* (cf. (5.10.3)).

Finally, in §6, we prove Theorem (6.1) by applying (0.3.2)' to generic
points of certain topologically distinguished subvarieties 2i of the singular
Tocus of X (and to the inverse images of such points on the normalization of
X). One problem here is that the singularglocus Sing(X) itself is not
always topologically distinguishable: if X s irreducible at a generic point
z of a codimension one component 2 of Sing(X), then X is a topological
manifold at z (because X 1is locally the topological product of Z - which
is smooth at 2z - with a transversal plane section, which, being an irreducible

plane curve germ, is homeomorphic to (C],O)). Now if Z 1is topologically
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TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 9

invisible, how can we capture (topologically) m,, the branching order of =

at ;? It turns out, as indicated above, that the varieties 21 cx (1sise),
which are given by T ="'=Ti-1 = Ti+1 Teee= T, =0 (cf. (0.3))s carry

enough information to determine the m;s but it takes some time to show that the
collection (ii)lsisc is actually a topo]ogi;al invariant of (X,x), cf. (6.7).
Secondly one has to make some technical adjustments to ¢, as alluded to in

footnote ° above, and this also adds to the length of §6.

(0.5) In closing, I want to thank Y.-N. Gau for some stimulating
conversations and suggestions, in particular the idea to look at the varieties

Z, in §6, Furthermore his result (0.2.2) is the spark which set this paper

going.
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I. RATIONAL EQUIVALENCE AND LOCAL HOMOLOGY IN CODIMENSION ONE

§1 Local fundamental class map

(lél) Let U. be a non-empty open subset of E", let X< U be the
set of common zeros of a finite number of holomorphic functions on U, and
let x € X,

By excision, the singular homology groups (with Z coeffic%ents)
Hi(x)x = Hi(x,x-x) (i 20)

do not change if we replace X by an open neighborhood of x in X.
Consequently these groups are topological invariants of the analytic germ
(Xsx). .
Here are two other interpretations of these local invariants.
First, fix a Riemannian metric on U, and let d be the inducéd

distance function. For e > 0 set

><
u

{z € X|d(z,x) < €}

e
X, = {z¢ X|d(z,x) s €}
be = X¢ - e «

The conie strhucture Lemma Lg!, p.58, Lemma 3.2] says that for sufficiently
small e, 7; is homeomorphic to the cone over Le, with x corresponding

to the vertex. Hence, for such ¢, and ail 1 >0, the natural maps

(cf. [Sp, p.184])

Hy g (L) H(RoL) —> Hy (R mx)e— Ho(XoXo=x) = Hi(X),

are Lsomoaphisms; and so we have an interpretation of Hi(x)x in terms of

the (reduced) homology of the "Tink" Lg.(])

(I)For i=0, Ho(x)x = 0 unless x is an isolated point of X ,

10
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TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 1

Next, if we take the usual metric on U then Yg is a finite
simplicial complex and L. is a subcomplex [Le, p.464, Thm. 3], so

that there is a natural identification

(1.1.1) By (L) = KM

where "BM" signifies Borel-Moore homology with coefficients in the integers

Zz [BH, p.463, bottom]. As above, for ¢ small we have Hi(Yg,LE) = Hi(X)X.
Thus .

Yy = 74 BM
Hi(x’x = 1%2 Hi (Xe)

is the Local Bonel-Moore homology at x [BH,p.464].

(1;3) Let R be the local ring of germs at x of holomorphic functions

on X. Imitating Lf, §1.3; or p.396, 20.1.3] we define the local k-cycle group
Zk(X)x = Zk(Spec(R)) (k =0}

to be the free abelian group generated by prime ideals p < R such that the
local ring R/p has dimension k (or, as we shall say, p is a "k-dimensional
prime").

For any (k+1)-dimensiona] prime ¢ <R and any non-zero r € R = R/q,

the k-cycle [div(r)] is defined to be
[div(r)] =] ordp (r).p
' 4

where p runs through all k-dimensional primes containing q; and ordxp(r)
is the Length of the artin local ring (ﬁ?rﬁ)@RRp. The set of all cycles [div(r)]
(as both ¢ and r vary) generates a subgroup R_atk(x)x of Zk(X)X;F and the

quotient group

A (X), = 7, (%), /Rat, (%)
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12 , JOSEPH LIPMAN
is, by definition, the group of £ocal k-cycles modulo national equivalence,
(ng) There is a natural map
c:Zk(X)x — H2k(X)x (k = 0)

defined as follows. The Nullstellensatz [gR, p.79](1) implies that the zeros
of a k-dimensional prime ideal p form an irreducible k-dimensional analytic
subgerm (S,x)  (X,x). The gundamental class of S gives, for sufficiently
small e, an element of ng(se), which maps canonically to Hgg(xe) and

thence to HZk(X)x {cf. Lgﬁ, p.481, §4.2]). Thus we have an element
_ X
clp) = cg € Hy, (X),

(not depending on ), the Local fundamental class of S 4n X, at x.

Extending by linearity, we get the asserted map c.

Proposition (1.4). For any [div(r)] as in (1.2), we have

cldiv(r)] = 0.
Thus ¢ 4dnduces a homomonphism (s2iL to be denoted by “c")
A (X), —> Hop (XD, (k=0).
ggggj.(z) For any subgerm (V,x) of (X,x), there is a canonical map

HZk(V)x —_ HZk(x)x' Hence with ¢ as in (1.2), we may replace (X,x) by

the subgerm corresponding to ¢. In other words, we may assume that ¢ = (0),
i.e, that X is irreducible, of dimension k + 1.

) which reduces to the case when R 1is a one-dimensional domain, by virtue
of the fact that {Spec(R)- maximal ideal} is a Jacobson space [ GrD., p.671;
and is easily proved in this case by Puiseux-parametrizing the noti&1ization of R.

A
(2’A different proof is given in (1.6) below.
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TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 13

Now let p be a holomorphic function defined in a neighborhood of x
in U, and inducing the function germ r. Shrinking U if necessary, we
may assume that p is defined everywhere on U, and we may assume that

p{x) = 0 (otherwise [div(r)] = 0). Llet
Y = {y € Ulp(y) = 0}.

Since r % 0, therefore ¢ does not vanish identically on X, and the
intersection X N Y is a pure k-dimensional analytic set. I claim that i
XeY s the analytic intersection cycle deﬁinedib1£§ﬂ, p.483, §4.6], and
(X-Y.)x € Zk(X)

X 48 ity germ at x, then

c[(X'Y)x]= 0.

Indeed, we have a commutative diagram (compatibility of intersections and

"enlargement of families of supports" Lgﬂ, p.468, 1.12]):

X Y intersection xny
Mo (U) % Hpp o (U) === W (V)

natural 1

X U X o
Hoa2 (V) * Hop o (V) formamsrzon™ Mok (U) = Hap (X)

and moreover (supposing, as we may, that U is an open ball) we have
U
Hona(U) [= H3N (U)] = 0, cf. (1.1.1).

Thus it will be enough to show that
[div(r)] = (x¥),.

This follows at once from the "Fact” on p.184 of [6L] (equality of algebraic
and topological intersection numbers) provided that each component of XY

contains a point where Y is smooth, i.e. where the partial derivatives of o

425




14 JOSEPH LIPMAN

do not all vanish. But this can always be arranged: for, to prove (1.4),
which is intrinsic to the germ (X,x), we may choose any embedding whatsoever
of X in any E", and so we may assume that some coordinate function & in
t" vanishes on X; then we can replace p by p+ tf forany ted
(without changing X n Y), and almost any choice of t will ensure thét

the partial derivative {8/5£)(p+tf) does not vanish identically on any

component of X N Y. Q.E.D.

Example (1.5) (Codimension~one cycles). Assume that every component of
X at x has dimension d. Let Z 3 x be a closed analytic subset of X
such that dimZ <d and X=X -Z is smooth. Llet k = d-1, and let

ps S be as in (1.3), After shrinking X we may assume that
- pBM ;
H.i()()x = H.i (X) (1 = 0)

(¢f (1.1)) and that S 1is a closed codimension-one subvariety of X,

0

Then S0 =S n X dis a divisor on the smooth variety XO, to

which corresponds a 1ine bundle 0(50), and hence an element £ € H](XO,O;O).

The Cherw elass
¢, (s%) € #(x,z)
of O(So) is the image of £ under the connecting homomorphism
5 H‘(x°.0;0) — 0, z)
induced by the exact sequence
0 —s>Z —> 0 s v 50
0 0
X X
where

exp(f) = eZWVCT?
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TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 15

for any holomorphic f defined on an open subset of XO.

We also have an isomorphism (Poincaré duality)

(0, z) — 1" (X0

2d 2

given by cap product with the fundamental class [XOJ. According to
Lgﬂ, p.487, 4.13], the image of c](so) under this isomorphism is
identical with the natural image of the fundamental class

[50] € H2d-2(so)’ Thus, if (abusing notation) we let
c(p) € Koy _,(0)
be the element corresponding to the fundamental class of S, and if
3iHpa.(X) — g, (")
is the restriction map, then we have:
(1.5.1) ~delp) = 1 n cl(SO).

In case dim Z < d-2 (for example if X is normal and Z is the
singular locus of X), then Jj 1is an .isomonphism: there is an exact

sequence
BM BM B .0
Hogup (Z) = Hag o (X) =1 K3 , (X°) —> W34 o(2)

[Eﬁ, p.465, 1.6], and the two outside terms vanish [ibid, 1.10, 3.1]. So
in this case, the map c of (1.3) with k=d-1, 4{s uniquely determined
by (1,5.1).

Remark (1.6). Example {1.5) gives another proof of (1.4). For, we may
assume as in (1.4) that X 1is irreducible, of dimension d=k+1. Then ¢
0

extends to a homomorphism from the group of divisors of X = {X = singular

Tocus} into the group HZ(XO, Z), and the kernel contains the divisor of

427




16 JOSEPH LIPMAN

any function. So if X is normal, then (1.4) follows easily from (1;5,1).
And in the general case, if v: X — X is the normalization of X, and
X 1is the unique point in v'1{x}, then an argument similar to the one in

the proof of Lemma 19.1.2 in Lﬁ, p.372] gives the commutativity of

(1.6.1) Vi -

and since

[div{r)] = va[div(re)]

><
H

[F, p.12, Prop.1.4(b)], therefore (1.4) for X follows from (1.4) for
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§2. Codimension one cycles at quotient singularities

In this section, the hurried reader need only look at Theorem (2.2) and the
first two sentences in its proof.
let X be as in (1.1), and let x € X be a quotient singularity. This
means that the local ring R of X at «x (cf.{1.2)) is the ring of invariants
of a finite group of T-automorphisms of the convergent power series ring
E(T],...,Td) (d=dimxx), or, equivalently, that R 1is normal and that the
'fraction field K of R has a finite Galois extension L in which the
iniegra] closure RL of R is a negular local ring. Such an L, if one
exists, is not unique, but can be chosen so that the extension RL/R is
un&amiéied An codimension one; the corresponding Galois group G = G(L/K)
" is then uniquely determined by the germ (X,x): it is the focal fundamental
group (cf.Egl, p.381, Thm. 1], or ng]).
And the divison class group -

CR(R) = Ay_;(X), (d=din.R = dim x)
(cf.(1.2)) is isomorphic to the abelianization of G:
(2.1)° Ad-1(x)x = HomZ(G,t*) ¥ 6/(6,6]
(where "=" means "canonically isomorphic to") cf.‘ng, p.78, Prop. III.4](1).

Theorem (2.2), 1§ x € X 4s, as above, a quotient singulanity, then the
L g o om0
class map

. —_— = dim X>0
€:Ag1 (X)) = Hay o(X), (d= dim x> 0)
lef. 11.4)) 48 an Lsomonphism,

Mo 2he 1

or the footnote to Remark (2.3) at the end of this section,

17
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Proof., The quotient singularity x . is national (cf. e.g. L§§, Kdrollar
5.8]) and so (in view of (1.5)) the Theorem is a special case of a result of
Flenner [Fr,Satz (6.1)]. However, since Flenner's proof involves some deep
theorems (resolution of singularities, extension of coherent sheaves,...),
we give here a more elementary proof, adapted to quotient singularities.

We will need a basis of "conical” neighborhoods of x {as in (1.1)),
well-chosen with respect to G. For this purpose, we recall some more results
of Prill, concerning standard models for quotient singularities Lgl, vy,

For a given d-dimensional quotient singularity (X,x), the local
fundamental group G is isomorphic to a “small1" subgroup of GL(d,l), unique
up to conjugation; and the germ (X,x) is isomorphic to the germ (Id/G,P(O»,

d onto the orbit space Ed/G (6 acting‘on td

where p is the natural map of (
in the obvious way). By Qg,ﬁs], the analytic space td/G (in which holomorphic
functions are holomorphic functions in md constant on the orbits of G) admits
an Lsomorphism

¢:09/6 = x°
with X' anormal closed algebraic subvariety of some ", - dop being given

by
1(y) = (0] see sy (¥)) (v € th)

where {¢1""’¢n} is a finite set of homogeneous polynomials generating the !
T-subalgebra of the polynomial ring t[T1,...,Td] consisting of all elements '
invariant under the obvious action of G. For studying local properties of (X,x),

we may therefore identify X with X' and x with 0 ¢ t". The surjective map

n:¢d + X 1is proper, with finite fibres; and is &tale (= locally biholomorphic)

outside the singular locus of X Lgl, p.379].
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For any e >0, with the usual norm | on T we set

X, = {x € x| [Ix]<e} Vo= (x)
- _ v _ =1,

X, = {x € X]| [Ix|lse} Yo =7 (X))
Xg = X.~{singular locus} Yg = n"](Xg).

Note that G operates on Ye’ with. orbit space xe;' and that G operates on
0

Yg without §ixed points, the orbit space being Xe

For every e > 0, 7; (respectively V;) is homeomorphic to the cone over
the real algebraic variety 7; - Xe (respectively 7; - YE), with the origin
corresponding to the vertex: indeed X; - XE is compact (as is 'Ye - YE, T
being proper); and the map

g:(Xe-XE) x [0,1] —> XE
given by
dl dn
E(Xpseeesx st) =(t Xyseenst x ) d; = degree of ¢
{respectively
: n:(Ye-Ye) x [0,1] —> Ye
n(y,t) = ty )

induces the asserted homeomorphism. As in (1.1), we have then, for all ¢ > 0,

_natural isomorphisms

BM - .
Hy (Xe) = Hi(x)x {i=0)
BM - d, _ . .
Hy (Ya) = Hi(t )0 =Z if i=2d
=0 otherwise
* * *
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It is now easy to see that
HZd-Z(X)x ~ 6/[6,6] (% Ad-l(x)x’ cf.(2.1}).
Indeed, as in (1.5), we have isomokphisms
- yBM 0 2,,0
Hag-a¥y = Hag o) 3 130 00 = 200,
Furthermore, there is a spectral sequence
(2.2.1) HP(e%(v22)) = 00 2)

(cf. [Gr p.205, Cor.3] or EEE, p.355]). But, for q = 1,2, we have, as above,

isomorphisms

Ay0 7y & BM (40 -
(2.2.2) HI(YQZ) % Hag (Y0) % KN (Ye) = 0,

- whence, from (2.2.1), an (edge-)isomorphism

(2.2.3) H(6,1001%2) % Wi(,).

Finally, Yg is connected, so that HO(YS, Z) =2, with trivial G-operations

(since complex-linear maps are orientation-preserving); and so
- 2, 4 ?
Hog-o(W), = K0, 2) % W(6.2) = /16,61

(cf [CE, p.250, (7)]).

Thus, to prove Theorem (2.2), it will suffice to show that ¢ 1is injective.
In other words, if Pysesespy are height one primes in R, and D= ig]"ipi is
such that ¢(D) = 0, then D = [div(r])] - [div(rz)] for some r1sty € R, For
this, after adding to D a suitable [div(r)], we may assume that the integers

n; are allt- > 0.
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For sufficiently small e, there are irreducible codimension-cne |

subvarieties Pi of ng with germs at 0 corresponding to P Let !

J be the Oxs-ideal consisting of functions vanishing on each P,i to

order at Teast ny. The restriction of 7 to Xg is invertible

(= locally free of rank one), and, as in (1.5), there is a corresponding

element
g e (e

such that, modulo Poincaré duality, we have
c(D) = &(gp).

Since the class of D in Ad_](x)x = 6/[G,G] has finite order (i.e. for some
integer m, mD is the divisor of zeros of some function germ at x) it
follows (after shrinking e) that also &y has fdinite onder,

Arguing as above, we have an isomorphism

H0G2) = (62) = 0 |

(for the last equality cf. [CE, p.237,(4)].). The exponential sequence in (1.5)

gives then an exact sequence

0= 1002 — K 00,) — H (Qop) < w(0),
and the kernel of & (viz. the T-vector space H‘(Xg,ox)) contains no non-zero
element of finite order. Thus if 0 = ¢{D) = G(ED), then gy = 0, i.e. the
restriction of 4 to Xg is generated by a single holomorphic function p.
Since Xe is normal, p extends uniquely to a holomorphic function on XE.
Then the ideals ¥ and poxe agree outside a set of codimension two (viz. XE-Xg),
so they are equal, and hence D = [div(r1)] with ry the germ of o at o,

Q.E.D.
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Remark (2.3) One can also prove (2.2)(]) by showing that ¢ factors
(modulo Poincaré duality, cf. (1.5)) into the following sequence of three

maps, each of which {8 an {somorphism:
ca(r) 4> H(e.rp) 2 H(6z) L w20l ).

Here:
- d is Samuel's descent isomorphism LES’ p.82] (note that RL is a
unique factorization domain, unramified over R in codimension 1).

- e is induced by the exponential sequence

0 —>7Z —> RL &Xp Rf —_— 0

{exp(r) = ez"ir), which is a sequence of G-modules (G acting trivially on Z);
and e is an isomorphism because multiplication by the order |G| 1is bijective
in RL’ so that Hi(G,RL) =0 forall i>0 LSE, p.236, Prop.2.5].

- f is the edge-isomorphism (2.2.3).

The idea is that since H](YSJZ) =0 (cf. 2.2.2)), we have an exact

"exponential" sequence of G-modules:
0,,0 0,,0 \ 0,,0

0—>H (Ye,Z) —> H (YE’OYE) —> H (Y€,0¢;) —s 0
whence a commutative diagram

1 (600,05 )) — W (e.(v32)) = Wi(e.2)

€
| I
1,,0 8 2,,0
HL(g,0% )= KUK

where the vertical arrows are edge homomorphisms for the spectral sequence (2.2.1)

and its analogue for ¢*, and the horizontal arrows are connecting homomorphisms

(Mand incidentally (2.1), since H(

Gs Z) = Hom(G,8*), cf.[CE, p.250, (7)),
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induced by the exponential. Then one checks that for a divisor D in R, a
one-coc_yc'le representing d(D) ‘“spreads out" to a one- cocycle with values in
H (Y ,0* ) (e suff1c1ent1y small), giving an element in H (G,H (Yo,o* ))
whose 1m§ge in H ( ,0* ) is the element E;D of (2.2.4)..
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§3. .Quasi-ordinary singularities

This section is devoted entirely to Theorem (3.2). It is not necessary to
read the proof of (3.2) to understand the rest of the paper.

tet (X,x) be an analytic germ, with Tocal ring R (génns of holomorphic
functions). Assume that X 1is {areducible at x, i.e. that R 1is an integral
domain, of dimension, say, d. Corresponding to any set of elements Flsesrsly
in R such that R/(r],...,rd)R is a finite-dimensional l-vector space, there

is an injective finite homomorphism of T-algebras
E(T],...,Td)c——-> R

{where E(T],...,Td) is the ring of convergent power series in d variables)
taking Ti to r5 (1gi=zd); and hence (by a standard equivalence of categories)

a g4inite map germ

T (%x) + (29,0).

. In fact we can choose a neighborhood X0 of x in X such that for each

i= 1, 2540.,d, s is the germ of a holomorphic function Pyt Xo »~8; and
then w 1is the germ of the map - still to be denoted by m-from X0 to td
given by

‘"(y) = (pl(y)’.."pd(y)) (y e Xo)'

Moreover if XO is sufficiently small, then the map 7 is proper, with
finite fibres, and open; in particular N = w(Xo) is a neighborhood of 0
in td. We assumé henceforth that all these conditions hold.

For all z in some open dense subset of N, the fibre cardinality

#{n'](z)} has the same value, say m. The set

D= {y € N|#tr (y)} < m)

24
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is an analytic subvariety of td, the discaiminant Locus of 7, Qutside of D,
7 is an m-sheeted &tale covering map (= local jsomorphism of d-dimensional
manifolds). Of course the germ (D,0) depends only on the geam T, SO we

can think of the discriminant locus of 7 ejther in the category of analytic
spaces or in the category of germs. It is much easier to use the same notatioﬁ
etc. in both cases; and the proper interpretation should always be clear from

the context.

Definition (3.1) _ Let m:(X,x) » (89,0) be a finite map germ, as above.

We say that w 44 quasi-ordinary if for some choice of analytic coondinates
(t],...,td) at 0, the discniminant Locus D of 7T 48 contained (germuise)
in ihe subvariety of Ed given by the equation

t]tz aes td = 0.

We say that (X,x) [(on its Local ning R) 44 quasi-ondinany if there exists

such a quasi-orndinary T,

Remark (3.1.1). After changing coordinates in E(Tl,.;.,Td), we may

assume in (3.1) that ti = T.. In other words, corresponding to a quasi-ordinary

i
7 there is a finite injective U-algebra homomorphism

E(Tl""’Td) — R

which is étale at any prime p in E(T],...,Td) not containing T = T]T T

2 ' w d'
It is then well-known that fox some integer n >0, R is a U(Ty5e 05 Ty)-subakgebna
af

1 1
TIAT VLN Y5 SRS A6 s LULIO LU0

(This was deduced classically by Jung from the fact that the fundamental group of
a product of d punctured discs is Zﬁ. A purely algebraic proof is given in

Eﬂ, p.585, Thm.3].)
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Theoren (3.2). 1§ (X,x) is quasi-ondinany, then the class map
c:Ad_](X)X —_— H2d—2(x)x
{ed. [1.4)) L8 an Lisomorphism,

Remark {3.2.1). The abelian group Ad-1(x)x is ginite {(cf. Corollary

(3.5.3) below). More information about this group will be given in §4.

Prood of (3.2). From {3.1.1) it follows that the normalization (X,x) of

the germ (X,x) has a quotient singularity, with local fundamental group, say,
d
6 c ((i/m)z)".
As in (2.1), we have then
(3.2.1) Ad-l(x)i ~ G
and by Theorem (2.2), the class map
C:hyq(Xg == Haq o (X3

is an {somorphism,

The goal of the rest of this section is to prove (3.2) by showing:

(3.2)': the kernel and cokernel of the class map ¢ 4An (3.2) are nespectively
isomonphic to the ketnel and cokernel of the preceding map C. '

(iizi) We first look at the algebraic aspects'of the situation. With

notation as in (3.1.1), let
FgSmcwﬂvnn%n
be the closed subscheme where T = T]T2 ces Td vanishes, and let

E = Spec {R/TR) < Spec(R).
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Then Spec{R) - E 1is &tale over Spec(E(T],...,Td)) - F, and so is normal.

Let R be the normalization of R,
u: Spec(R) —> Spec(R)

the normalization map,

and

U = Spec(R) - E = Spec(R) - E.

In &(T}/",...,T;/") there is, for each 1 =1,2,...,d, a unique height one prime

containing Ti {namely the ideal generated by T}/"); so by the "going-up"
theorem the same is true both in R and in R. Thus E (resp. E) i; a pure
(d-1)-dimensional subscheme of Spec{R) (resp. Spec(R)) whose set of
irreducible components is mapped bijectively by w (resp. wou) onto the set

of components - d in number - of F. Let
1:E —> Spec(R) 1:E ——> Spec(R)

be the inclusion maps. As in Lf, §1.8], we get a commutative diagram, with exact

rows:

e -
Z41(E) = Ay_1(E) —> Ay_1(Spec(R)) —> Ay_;(U) —> 0
I 8 ||

Zg1(E) = Ay q(E) —=> Ay_y(Spec(R)) —> Ay_;(U) —> 0.

{Here, as in (1.2), Zd-1 denotes (d-1)-dimensional cycles, and Ad-] denotes

rational equivalence classes of such cycles.)
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Lemma (3.3.1) (cf. also [F, p.22, Ex. 1.8.11). The kernets (nesp.

cokernels) of uE and uE are natuwwally Lisomonphic.

Prnoog. As noted above, u maps the set bf components of E bifectively
onto the set of components of E; and so from the definition of ﬂE LE, §1.4]
it follows that & is injective. '

Moreover, for any v # 0 in the fraction field of R (= fraction field

of R) Lﬁ, p.12, 1.4(b)] shows that the map uE takes the divisor

C = [div(r)] on Spec(R)
to the divisor
¢ = [div(r)] on Spec(R).

The kernel of 1, (resp. 1,) consists of all such C (resp. T) supportéd on
E {resp. ‘E).‘ Hence uE maps the kernel of 1, J{somonphically onto the kernel
of 1,. ’

From this, (3.3.1) follows formally (i.e. by diagram chasing, or by two

applications of the "snake lemma"). _ Q.E.D.
’As mentioned in the preceding proof, uE is injective. Thus:

Corollary (3.3.2). The map uf 48 dnjective.

Corollary {3.3.3). The group Ad_](Spec(R)) = Agp(X), 48 finite.

Proo§. The cokernel of ﬁE is easily seen to be finite, whence so is the

cokernel of ui. By (3.2.1)
.Ad_](SPec(ﬁ)) = Ad-](Y))-(

is finite, and the conclusion follows.
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(éég) Now we pass from algebra to geometry,

As before, we may think of = as mapping X onto an open neighborhood N
of 0 in Ed, m being &tale outside the hypersurface D* c Ed given by
T]T2 cos Td =0, where {T],...;Td} is a coordinate system in ¢d. (This
D* contains the discriminant locus D of 7.) For any e > 0 such that the

polydisc
P.={(y ¥ € tdl ;] < e forall 1}
€ 1700029d7 i

is contained in N, we set:

_ =1 -~
Xe =P, E_ =TV (0%p)

and, with v: X+ X the normalization map:
—_—— = -
X =v (Xe), E =v (Es)'

€ €

Then v induces an {somorphism

' X -E = X_ - Eé = (say) Ue;

€ £ €
and
. —— - D*
e Ue > Pe D
is &tale,
For convenience, we drop the subscript e, and denote Borel-Moore homo logy
H?M simply by Hye Using [BH, p.465, 1.5 and 1.6], we get a commutative diagram,

with exact rows:

—_ j — —
Hag1(U) = Haq_5(E) == Hyy »(X) — Hyy o(U) —> Hyy_o(E)

Hago1(U) —=> Hag_o(E) 5> Hyy 5(X) —> Hyy o(U) —=> Hyy_5(E)

441




30 JOSEPH LIPMAN

By diagram-chasing, we verify:

Lerma (3.4.1) (a) The natwal map ker(3) + ker(j) 4is surjective.
(b} The natural map ker(vE) -+ ker(vf) is surjective,
{c) The natural map coker(vE) -+ coker(vi) L8 Anfective.

Moreover:
Lemma (3.4.2). The above map vi 48 Anfective,

Proog. By [BH, p.482, 4.4], H2d_2(E) {resp. Hogo(E)) s freely

generated by the components of E (resp. E). As in (3.3), the set of
components of E is mapped bijectively by v to the set of components of

E. (The algebraic argument in (3.3) yields the corresponding geometric

statement if ¢ 1is sufficiently small.) It follows that vE is injective;

and hence, by (3.4.1)(b), so is v. ' Q.E.D.

The following Lemma is crucial.

Lemma (3.4.3). The map

Hag3(E) —> Hpy_5(E)

An Zhe above diagram is infective, ‘

The proof will be given in (3.6) below,

Corollary (3.4.4). The above maps vE, vi have naturally isomorphic
cokennels,

Proof. By diagram chasing, we deduce from (3.4.3) that the map in (3.4.1)(c)

is surjective. Q.E.D.
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(E;E) Assuming (3.4.4), let us now combine the algebra in (3.3) and the
local geometry in {3.4) to’complete the proof of (3.2)°'.
Since w 1is proper and (as we may assume, after shrinking X) -
n"{ﬁ(x)} = {x}, the varieties X, in (3.4) form a basis of neighborhoods
of x. Similarly the 7; form a basis of neighborhoods of X. The abelian
group Ad-l(x)x is finite (3.3.3), hence finitely presentable as a Z-module.

So for all sufficiently small e > 0, with X. as in (3.4) the class map ¢
of (1.4) factors as
|

B M )
(3.5.7) Agq(K), == Hag p(X) —> 1 Hoga(%e) = Hagp(X),
€

{cf.(1.1), where X, has a different meaning, which however doesn't matter for

present purposes because h‘m> can be taken over any neighborhcod basis of X).

A similar statement holds for (X,X).

As in (3.4), we write H.(X) for H?M(Xe). For sufficiently small e, we

obtain, just as in (1.6.1), a commutative diagram
- % -
Ag1 (R == Hpy (%)

||

Agq (X, % Hag-2(X)

where the horizontal arrows come from (3.5.1), and the vertical arrows from the
diagrams in (3.3), (3.4) respectively. Similarly, we have (for small e) a

commutative diagram

- % -
Ago1(Eg) == Hyy H(E)
£ E

Ha V.

Ag-1(E) & ag-2(E)
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(where we have written E, (resp. E;) for the scheme denoted by E (resp. E)
in (3.3)) in which the maps g and cp are ibomoaphiAmA (CE just sends
components of Ex to the fundamental classes of the corresponding components of

E, i.e. free generators of Ad-l(Ex) to the corresponding free generators of
E E

H2d-2(E); and similarly for GEJ. Thus uy  and v, have isomorphic cokernels;
and so by (3.3.1) and (3.4.4), the cokernels of u&' and vﬁ are naturally

isomorphic. The same is true of the kernels of u5~ and vi, both of these

maps being injective (3.3.2), (3.4.2). It follows formally that the maps cx
and Cy in (3.5.2) have isomorphic kernels and cokernels. Applying li+ s We
€
get (3.2)'.. Q.E.D,
(E;E) It remains to prove (3.4.3).

With the notation of (3.4), let S be the singular locus of the hypersurface

DE = 0% 0 P, = {(yaeeeayy) €8] Iysl <€ forall 4, and

¥; = 0 for some i}l.

Set

0_ -1 .
B =a (DX-S)cE =

vl cE - F

(cf.(3.4)) and let

vO:EO - E0

0. n'](s) has complex

be the map induced by v. Since the variety E - E
dimension =< d-2, hence cohomological dimension =< 2d-4 Lgﬂ, 1.10, 3.1], and
similarly for E’-'E°=v"n"(s), we have, by [ibid, 1.5, 1,6] a natural

commutative diagram with exact rows:
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I, 5 £
0 = Hag3(E-E") = Hpy 3(E) —> Hyy 5(F)

(3.6.1) Ve V3 (H. = HEM)
0 = Hyy o(E-E0) —> H,, (E) —> H,. -(£°)
h2d-3 2d-3 2d-3(E7)-

So it will be enough to show that vg 48 Lnfective,

For this purpose we will need:

Lemma (3.6.2). For each conneeted component Di (1=isd) of the smooth
analytic space D; -~ S, the spaces

E; = w'](Di) and E} = v']w'](Di)

are connected, and their noamalizations are Etafe covernings of Di'

Proog o4 (3.6.2). The closure of Di is an irreducible component of Dg.
As observed (algebraically, hence for small €, geometrically) near the
beginning of (3.3), the irreducible components of D; (a subvariety of ¢d
whose algebraic germ at 0 is the scheme F in (3.3)) are in one-one correspondence,
under w, with those of Ee' It follows that Ei is the complement of n'](s)
in some irreducible component of Ee, so that E-Z,i is indeed connected.
Similarly E, is connected. )

For the last assertion, let vyl E% —_ Ei be the normalization map, et
Yo € E% and let Xq = vi(yo). Then v; maps some neighborhood W of Yy in E;
onto an irreducible (d-1)-dimensional variety E¥ < E;3 and if we can show that
n:E? —_— Di is étale, then it will follow that E? is normal, whence W —> 34

is an isomorphism and Tov,: E; —_— Di is étale at Ygs as desired.
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Let X0 be a Tocal component of X at Xo containing E?. Then (X0
being taken sufficiently small) = induces a branched covering map L of

X0 onto an open set U in td, with discriminant locus D0 satisfying
L3
D0 o De nuc Di‘

For convenience, we may assume that Di is defined by the equation T] = 0.
As in (3.1.1), the local ring Ry of (Xo,xo) is then isomorphic to a ring

of the form
TG SRR 5 PG AL SRR 9 TOORPAG LA SOOS AN

With convergent power series g, vanishing at 0. It follows that (Xpsxy) is
jsomorphic to a germ of the form (p(V),0), where V is a neighborhood of 0

in t on which the ¢, converge, and o: V + e s the map given by
@(s],..;,sd) = (s?,sz,...,sd,¢](s],...,sd),...,qé(s],...,sd));
and furthermore o is then identified germwise with the map
d
(@(V),O) g (t ,0)

given by projection onto the first d coordinates in ¢d+e. Now wa](Di) . ‘ ;

consists of points in (V) of the form |
(0,52,--0 ,Sd’¢](0’52,.'.’sd)’...’we(o’sz,...’sd)).

These points form an irreducible subvariety of «(V), mapped isomorphically

onto Di by o Since E? is a component of Ei at Xgs and
E*cn-](D Y E
i 0 '™y i

it follows that E? = nal(Di), and so m: E? > Di is indeed étale around Xge
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A similar proof applies to E}. (Actually, since X is everywhere
irreducible, the preceding proof shows that E} itself is étale over Di’

hence normal.)

Q.E.D.

Now vg in (3.6.1) is the direct sum of the induced maps

i, . |
(3.6.3) Vit Hog_3(Ep) —> Hyy_4(E.)

(cf. [BH, p.464, 1.3 or p.466, 1.8]). So if we can show that each vl is
injective, then we will be done,

Again, let Vs E% . Ei be normalization, which is an isomorphism outside
some (d-2)-dimensional subvariety C; of E;e As in (3.6.1), we have a

commutative diagram with exact rows:

= -1 . , R
0 = Hag-3(vi (C3)) —> Hyy 3(E}) —> Hpy s(Ei-vT7(C;))

}

|

|
0 = Hyy 3(C;) ———> Hyy 3(E;) —> Hyy o(E.=C,)

\)i*

which shows that Vi is injective. As noted at the very end of the proof of

(3.6.2), E. 1is normal, so we have a map v': E. -~ E!, and the map vl n
i i i

(3.6.3) factors naturally as
— ' ' s :
Ma-3(Es) 577 Haa-3(E0) 577> Maaua(Ey)-
Thus, to show that v, is injective, it will be enough to prove:

Lemma (3.6.4), The abelian groups H2d-3(E}) and Hyy 5(EX) are both free,
‘ n§ the same finite nank; and the cokennel of vy 4is annihilated by some n > 0,
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Proof. Recall that cap product with the fundamental class [E%J gives

the Poincaré-duality isomorphism
1 ~
(3.6..5) HU(E}, Z) <% Hyy o(EY)

[BH. p.468, 1.12]. For any a € Hyy 5(E!), there is thena 6 € H'(E!, 2)
such that

o= [E5] n s
and the projection formuta [BH, p.507, Th.7.5] says that
vil[E;T nv'*g) = n[EST N B = na

where n > 0 1is the covering degree of E} over E% (cf. LEE, p.486,4.11],
or just use a diagram analogous to (1.6.1)). This shows that the cokernel of
vy is annihilated by n.

Finally, Di is a (d-1)-dimensional polydisc minus the union of its
coordinate hyperplanes, i.e. a product of d-1 punctured discs, and by (3.6.2),
E% is & connected covering space of Di' Hence the fundamental group n](E%)

is a free abelian group, of rank d-1, and so therefore is
Hoq-3(E}) = H'(ES, Z) = Hom(Hy (E}), Z) = Hom(ny(E!), Z)

(the first isomorphism by (3.6.5), and the second by "universal coefficients").
A similar argument shows that also sz-3(E}) is free, of rank d-1.

Q.E.D.
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§4 Presentation of the group Ay ;T H,, »

P . S S e~

tet (X,x) be quasi-ordinary, of dimension d, and let R be the
Tocal ring of (X,x). In this section we describe an explicit presentation
of Ay (X), = Hyg-o(X), (cf. Theorem (3.2)), in terms of a fixed
quasi-ordinary projection w:(X,x) » (td,O).
By (3.1.1), corresponding to m there is an integer n together with

inclusions
K(TyseennTy € RE ¢<T}/“,...,T;/"> = (say) B

such that Ry = R[T/T]TZ...Td] is étale over E(T],...,Td)T (whence Ry s

locally regular). Let
p; = (T/"8) n R (1=i<d).

Any height one prime p in R containing Ti is the intersection of R
with a height one prime in B containing Ti ("going up" theorem), i.e.
P =p5s consequently Ji1 = p; is a height one prime ideal in R, and

for some integer m, (=ordp (Ti)) we have
i

[div(Ti)] msps.
Let
{py} € Agy(X), = Aq-7(Spec(R))

be the rational equivalence class of P

Theorem (4.1). With preceding notation, the abelian group

"

Aguq (X)y ¥ Hog (),

44 generated by {p}s {py},ee.dpst, subject to the nelations gdven by
1 2 d

T~ 0.

(4.1.1) aimi{pi} =0
37
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as o= (a],...,ad) nuns through the subgroup T of ((1/n) Z}d cohALAzing

O, O [¢3
0f alt d-tuples such that T'TZ... T €K, the fraction fictd of R.

1.2 d

e O o
Remarks (i) If T] 7Ty € K, then a.m, is an integen; in fact

L

Qq O o
= Tas 1.2 d

-
N0
-

{To check this equality, multiply both sides by n...).

(ii) We have

L

d

zd8crc((i/m)z)

so that T is free, of rank d. According to Theorem (4.1), any free basis of
I Tleads, via (4.1.1), to a presentation of A, ,(X), by a non-singular dxd
matrix,
. X . 1/n 1/n
(iii) Denote by Ln(nzl) the fraction field of I(T"",...,TS ). A

basis of the L]-vector space Ln is given by the monomials

Oy O a
g s d
Ta - T'l T2 -.on

with a; € (/m)z, 0= a; <1, (1<1ix<d). If, as before, L] cKel,
then these monomials are clearly eigenvectors for any L]-automorphism of Ln'
It follows easily that K (which is the L]-vector subspace of Ln consisting

of all elements invariant under the Galois group of Ln over K) has as basis

all such T with o € T. Hence
(4.1.2) [r: z%7 = [x:(,1.

(Alternatively one can prove (4.7.2) by checking that, with G the Galois

group of K over L]:
(g2 +Zd> = (g1 (€6, a €T)

defines a non-singular pairing G x (I/ Zd) - T*,)
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Corollary (4.1.3). The oxrder of Ad-](x)x 48

d
mlmZ"'md/[F: Z°] = m]mz...md/[R:t(T],...,Td)].

Proof. By remark (ii), the order of Ad-l(x)x is

m]mz...md-det(D) ("det" = "determinant")
where D is a dxd wmatrix whose rows form a basis of I. But the matrix nD
gives a presentation of the quotient group ((1/n) ZZ)d/r. Hence

nd0det(D) = det(nD)

L((1/n) Z)%:1]

nd/[I‘: Zd].

The conciusion follows.

(4.2) For the proof of (4.1), we first show that the {p;} (1=isd)
generate A, ,(X),.

Since Pys Poseees Py ave the only height one primes in R containing the
element T = TlTZ"‘Td’ we need only show that the localization RT = R[1/T]
is a unique factorization domain (U.F.D.). (As noted above, every

localization of RT at a prime jdeal is regular, so R 1is at least

locally a U.F.D.)
Set

t, = TI/N (1 <1< d)
and

B = T(tq,tyse.asty) O R
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Let G be the Galois group of L/K, where L {resp. K) 1is the fraction
field of B (resp. R). Since RT’ being locally regular, is normal,

therefore RT is the ring of G-invariant elements in
BT = Bt = B[1/t].

But Bt is a U.F.D., and so by Samuel's "Galois descent" theorem

[Fo, p.82, Theorem 16.1] it will suffice to show that
(4.2.1) ‘ H (6,8%) = 0

where B{ is the group of units iﬁ Bt’ acted on by G in the obvious way.
This will be done by elaborating the standard proof of "Noether's theorem":
H'(G,L%) = 0 (cf. e.g. [S, Ch. X, 51, Prop. 21).

We may just as well proceed without explicit reference to cohomology:
if 1 s any divisorial ideal in RT, we need to show that I 4s a

principal Lideal, Since Bt is a U.F.D.,there exists y € Bt such that
d (1) =
or p( ) ordp(y)
for all height one primes p in Bt; and hencekfor any g € G we have

ovdp(g(y)) = ordp(g(l)) = ordp(I) = ordp(y)

whence:

(4,2.2) gl{y) = y8 (Bg € B});

g
and since, for h € G,

YRy, = 9h(y) = g(y8y) = g(y)a(By) = y8,-9(8,)
therefore

(4.2.3) Bgh = Bg-g(sh) (9,h € G).
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If we can deduce from (4.2.3) the existence of B € Bg such that

' (4.2.4) g(B) = B_'B (for a1l g € G)

[i.e. if we can prove (4.2.1)], then
g(y8) = glyla(8) = ysgsé]s = yB,
whence yB € Ry; and since for all p as above
ordp(yB) = ordp(y) = ordp(I)

it follows easily that I = yBRy, as desired.
So let us find B8 € B; satisfying (4.2.4).
It is easily verified that b € B% if and only if b has the form

n. n n
1,72 d
b= t't, ceetyu (ni €Z; u € BY

(B* = {units in B}). So, in (4.2.2), we can set
B, =t % ' (uq € B%)

with Ng = (n1,...,nd) (the ny depending on g) and

N
tgn

~

n
I d
= t] .'.td -

Now for any g € G, g(t?) = ¢!

j» SO g(ti) = t.e. where €. is

iTig? ig
some n-th root of unity in T, and

N
9(8,) = 9(t Malu,) € 8%,
whence, by (4.2.3):

Bap € ByfyB*

from which it follows that
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=N+
N Ng N

gh h?

and since G is finite, there is no non-trivial group homomorphism from G
into Zd, s0 we conclude that
Ng = (0,0,...,0) (for 211 g e @).

Thus Bg € B*; and there exists bg $ 0 in T such that Bg - bg is a

non-unit in B (bg is just the “"constant term" of Bg).
It will be enough to show that for some monomial
n, n ]
I P d
= t'l tz o:ctd ) (n.i GZ)
the element
B = Z Bh'h(U)
heG
lies in Bg; for then

a(8) = 7 als)on(w) =(by (4.2.3)) T glegantu) = gl

which is the desired relation (4.2.4),
_ But L is generated as a K-vector space by monomials in the t's,
Hence by the linear independence of K-automorphisms of L LES’ Ch.VIII, §4]

there exists such a monomial, say u, such that ‘ x
I b eh(u) $ 0.
heG

As above, h(un) =" implies that
hiu) = Hey, (Sh € i),

and so

0% J be €.
heg N
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Thus {since By - bh is a non-unit in B):
héG Bpey, € B¥
and
née Byeh(u) = héG Bueph € B*u C B Q.E.D.

Qﬁ;g) We prove now that the relations on the generators {p]},...,{pd}
are as specified in Theorem (4.1).

By the first remark following (4.1), the relations (4.1.1) do hold.
The following Lemma shows that conversely every relation on the {pi} is of

the form (4.1.1), thereby completing the proof of (4.1).
Lemma. If f € K is such that
d
I agp; = [div(f)] (a; €2)
i=1 .
then
Ga O [+4
_ 1.2 d
f = U T] T2 onon

where u 1is a unit in the integral closure R of R in K, and

(a],...,ad) € T'. Moreover,

(4.3.1) ordpi(f) = a; = agm,.

Proof. As before, with T = T1TZ"'Td’ the localization RT is

normal, and
piRy = Ry ' (1<ix<d),
so that f 1is a unit in RT’ hence in BT, where

B = &/, 1.
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Thus

oy o o
- 1.2 d
f=u T] Tomeu Ty

where u 1is a unit in B, and na, €Z (1 <1s<d). Wecanwrite
- Y
u=cy+ i c,T (co,cY €T, ¢yt 0)

y
where Y = (Y],...,yd) runs through all d-tuples # (0,0,...,0) with

0s<v; € (/) Z (1 <1i=sd),
and
Y Y
Yo} d
T T] "'Td .

If L is the fraction field of B, and G 1is the Galois group of L/K,
then for all g € G, we have (with o = (CTCIE

el + Lo, T = f = ()

cqg(T™) + T ¢ g(TY+a)
: 141

n

+
conT°l + é cYeyTY o

where €ge aY are suitable n-th roots of unity in TU. Hence €

(™) = 1%, andso T €K and

n
-
-
-
-
]
.

f/Te¢Bnk=TR

=
1n

Vu=T1f€BnK=R,

j.e. u is a unit in R,

Finally, for (4.3.1), we just need

ord (u) =0 1<9=<d,
P;

But since u 1is a unit in R, this foilows at once from [F, p.412, Ex.A.3.1].

Q.E.D.
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To apply Theorem (4.1), it is useful to know more about the integers

m, = ordp_(Ti). The following examples (4.4) and (4.5) provide such
i

information.

Example (4.4). Suppose that R is nowmal. Then, with T as in (4.,1),

if m; is the projection of ((1/n) Zﬂd onto its i-th factor, we have

wi (1) = (1/m;) Z.

Proof. Clearly
Zc n_i(l“) c(i/m)Z
SO We can write
(4.4.1) 7(T) = () zZ (ny €Z, nn; €2Z)
and we can find a d-tuple
(YI""’Yi-1’]/"i’yi+]"'°’Yd) €T

with Y52 0 forall j#i. Then

T-T] "'Ti “'Td €K
whence
m, = ordpi(Ti) =, OYdF%(T)
and so
(4.4.2) n divides m; (1 <1 <d).

Conversely, with notation as in the proof of (4.3),consider an

element

ve e Tes,
£
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Since R 1is normal, we have R =B n K, and so v € R if and only if v is

invariant under the Galois group G of L/K. But for any g € G, we have

- Y
g(v) g CYEQYT

where ng = 1; whence v € R if and only if EQY =1 for all g whenever

¢, + 0. Moreover

{ng =1 forall g} o {T' is G-invariant} = {y € I},

So v €R if and only if v is of the form
vs J cT.
yér Y
Thus we see that
1/n] 1/n2 1/nd
(4.4.3)  ReUL(Ty LT, 5.0y ) = (say)g s
and it follows easily (by considering the respective ramification indices of

Ti in R and in 'Bn) that

(4.4.4) m;, divides n, (1=1<d).

By (4.4.1), (4.4.2), (4.4.4), the proof is complete.

Example {4.5). No longer assuming R to be normal, let R be the
integral closure of R in its fraction field K. As before, let p; € R
{resp. jéi < R) be the unique height one prime ideal containing Ti’ and
let m, (resp. ni) be the corresponding order of T.. By example (4.4),

we have
ni(r) = (]/ni)Z
and {cf.(4.4.2), whose proof doesn't use normality)

m; = eqn; ey €Z.
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In fact ey is just the relative degree
e = W/P.i :R/P.i]

(i.e. the degree of the corresponding extension of fraction fields) cf.
[F, p.412, Ex.A.3.11].
Now if L is the fraction field of E(T],...,Td), then we have the

well-known ramification relation
(4.5.1) ni[§7pi: ¢<T1""’Ti-1’Ti+1""’Td>] = [K:L,]
(which can also be deduced from (4.1.2) and (4.4)) and it follows that

(4.52) mi{R/piz E(T],...,Ti_],Ti+],...,Td)] = [K:L]].

The integers mi, Ny can also be interpreted geometrically as follows.
The branching onden {on deghee) of 7 at a point y € X, denoted by deg(jy),
js the integer d such that the germ of n at y is a d-sheeted branched
covering. {In other words there is a neighborhood U of =(y) € ¢d and a
neighborhood V of y € X such that © makes V - w'](D) (D = discriminant

locus of w) into a d-sheeted £tale covering of U - D.) For example

(4.5.3) deg(n) = [K:Ly].

(Idea of proog: There are non-zero elements r, ty € R such that
R c Rg =’E(T],...,Td)[t0] = m(Tl,...,Td>[T]/F(T)

where F(T) 1is a monic polynomial; by ignoring the zero-set of r, one

reduces to the case R = R0 ees)

Proposition (4.5.4). Let v:(X,X) + (X,x) be the noamalization map,
and set

7= wovi(X,x) —> (Ed.O).
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let Z; <X (nesp. fi cX) be the zeno set of Ty ld.e. of py (resp. Pl

Then for genenic z € Z; and Z € 7, we have

]

(1) m, deg(nz)

n

(i1) n; deg(iz)

and

L]

(iii) e,

i mi/ni = {number of Lureducible components of the germ (X,z)}.

Proof. We first prove (iii). For any z € Zi, the number of
components of (X,z) is the cardinality of the fibre v'](z); and for almost
all such z, this cardinality is [i/ﬁi: R/pi] = ey (cf. (4.5.3), as appiied
to v: E} +Z5). '
Next, for almost all points & € Ed where T_i = 0, the cardinality of
the fibre 7 1(£) is

#(1.1';](.‘;)) = [-R/F’i: Q(Tl,...,Ti_] ’Ti‘l']""’Td)]

u

[K:L1]/ni (¢f.(4.5.1))

#HE (e

for any £' ¢ D. Let Z ¢ i'l(g). As &' approaches &, exactly deg(ii)
points of the fibre ﬁ'](g') approach 2. So to prove (ii), we need only show

that
(*): deg(fiz) has the same value for all Z € s
for then that value is necessarily

#F U ENHGETHE) = i,

But assertion (*) follows at once from the fact that the Galois group G of K/L]

acts on X, compatibly with 7, the action being transitive on the fibres of 7.
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[For lack of a convenient reference, we sketch a proof. By the
well-known equivalence of the categories of analytic local rings and of
analytic germs, each element g of G induces a map, commuting with 7,
from é neighborhood Ug of x in X onto some other neighborhood. Setting
U= ngeG g and U* = ﬂgeﬁ(gu)’ we find that every g maps U* onto‘ U*,
so that, after shrinking X to U*, we can say that G acts on X, and
denote by §:¥»X the map induced by g € G. Now for any y € X we can find
a functiqn ¢ on X vanishing at y but not vanishing at any other point of
i']i(y) - for example, after embedding ¥ dinto some EN, we can take ¢ to
be a suitable linear function. But then the function HgGG ©°g is
G-invariant, hence is of the form o for some function {germ) ¢ on Ed,
and hence has constant value - necessarily zero - on ﬁ']i(y). Consequently
for each y' ¢ ﬁ']ﬁ(g) there must be a g such that g(y') = y; and so
transitivity holds as asserted.]

Finally, for z € Zi such that w(z) = £ with £ as above, and such

that #(v 1(2)) = e,

j» there is a neighborhood U of 2z such that v'](U)

consists of ey disjoint open sets, each of which v maps onto a different
component of U, bijectively outside n-](D). Since, as just seen, deg(7.)

is constant (=ni) along v'](z), it follows easily that

deg(nz) = eideg(n.) = e;n; = m;,

and (i) is proved. Q.E.D.
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Remark (4.6). We can interpret (4.1) via "Kummer theory”, as follows.
let m be the order of A= Ay_1(Spec(R)). For each divisor

(= codimension-one cycle) D in Spec(R) we can write
mb = [div(xD)]

for some Xp € K¥= K- {0}, Using the fact that units in the integral
closure R have m-th roots in R, we find that the element Xp is
uniquely determined modulo K*m, and there results a natural monomorphism

of groups
0: At Kr/K*M,

The corresponding Kummer extension Ke(A)’ obtained by adjoining to K all

elements of the form xé/m

» 1s an abelian extension of K, with Galois group
canonically dual to A (cf. LES’ Chap.VIII, §38]). It can be shown (using
(4.2), (4.4.2) - whose proof doesn't need normality - and (4.4.3)) that zthe
integral ctoswne of R in Ky(yy s E(T:/m],...,T;/md). Thus the ring
extension
1/m] l/md ~
Re (T Theees Ty ™) = (say)R
depends only on R (not on the chosen monomorphism t(T],...,Td)C—-> R)s
and it is easily seen that the group given by the generators and relations
of Theorem (4.1} is dual to the Galois group of R over R, hence
isomorphic to A.
In particular, A s trivial if and only if R is the nowmabization of
R 4in K,
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I1. THE HYPERSURFACE CASE

§5. Characteristic monomials of quasi-ordinary parametrizations

From now on we will be mainly concerned with d-dimensional irreducible germs
(X,x) (td+1,0) admitting a quasi-ordinary projection w:(X,x) -+ (Ed,O) which
induces a surjection of Zariski tangent spaces. Such a hypersurface germ can be
parametrized by a special type of fractional convergent power series in d variabies,
called a quasi-ondinary branch (cf.(5.3)). For d =1, this is just the classical
Puiseux parametrization of a plane curve singularity. Any quasi-ordinary branch ¢
comes equipped with characteristic monomidzé, which are natural higher-dimensional
generalizations of the "characteristic pairs" in the plane curve case. These
monomials control much of the geometry of the germ (X,x) parametrized by z.

In particular, we use them in (5.9) and (5.10) to compute Ag1(X), = Hyg o(X),.

So, let (X,x) be quasi-ordinary, with local ring R, an integral domain
of dimension d; and let E(T1,...,Td) < R be a finite ring extension with
normal crossing discriminant (corresponding to some quasi-ordinary w, cf, (3.1)).
We suppose further that the maximal ideal of R 44 generated by (T],...,Td,c)
for some ¢ € R, (In other words, = induces a surjective map on Zariski
tangent spaces.)

Then there is a surjective E(T1,...,Td)-algebra homomorphism
Pil(TyaenesTys) > R ¥(Z) = c.

The kernel of ¢ is a height one prime (since dimR = d}, hence generated by
a single irreducible element F(T],...,Td,Z); and since R is finite over

E(T],...,Td), therefore
¥(Z)/F(0,0,...,0,2) = R/(T1,...,Td)R
is a finite-dimensional &-vector space, i.e.

F(0,0,...,0,Z) $ 0.
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By the Weierstrass preparation theorem, we may assume (after multiplying F by

a unit) that
= M m-1
F(T],...,Td,Z) =7" + fT(T]""’Td)Z +...f fm(T1""’Td)

is a polynomial in Z, whose coefficients are non-units in E(Ti""’Td>' Then

gz s a root of this polynomial, and we have
R WTysenea T/ (F) 2 KTpsenn T el

We may assume, moreover, that the discriminant A of the polynomial F is of

the form

1 d

e ez e
A= T-] Tz oo.Td g(T]’Tz’ooo’Td) E(0,0"."O) % 0'

As in §3, we have, for some n > 0, an injective homomorphism

Re— i/, 1/ ()

so that for some convergent power series H vanishing at 0, we can make

the identification

R TELAN (AN LN

The fraction field of t(T;/",...,TL/"> is a finite Galois extension of the

fraction field of ¥T,,...,Ty)s and so F = F(Z) has m distinct roots

Z;] =L, Czs”'szm € E(T}/nsnuTZj/rS‘

(])In fact by (4.4.3)=where (by (4.4.2) and (4.4.4) and the definition of m,

at the beginning of §4) n; = vi(T%) is the ramification index of the K

unique prime divisor v of the normalization R such that Vi(Ti) > 0,

so that ny divides m— we can take n =m,
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In fact the cj, being the conjugates of ¢ over Q(T],...,Td), are of the

form

- 1/n 1/n
= H(ww.T] ,...,wdde )

¢ j

J

for suitable complex n-th roots of unity Wy 5 (cf.(5.5.1) below). Now

e e
N | d
) =a=T T

I (g5-¢5

i3
. ir s . s . 1/n 1/n ,
with € a unit in the unique factorization domain E(T1 seeesTy ), and

therefore if i % j, we have

Ci CJ = Mije1J(T1 Y .’Td ) Eij(O,...,O) + 0
where
a;/n a,/n a,/n
i | 2 d
(5.1) Mij = T'I T2 ...Td .

with integers a, 2 0 depending on (i.j). (Note that I a, > 0 since g and

gy are non-units in E(T}/",...,Tl/").)

Definition (5.2) (a) Given an analytic germ (X,x) with Local ring R,

we say that a §ractional convergent power series

(5.2.1) N (LA L) (H(0,...,0)=0)

45 a (Puiseux) parametrization of (X,x) 4§ there exists a UT-isomonphism
R WTysee T lel

(b) We say that t 4n (5.2.1) i8 a quasi-ordinary branch if for any two
confugates g, $ L of ¢ over KTys....Ty) we have that

_ 1/n 1/n
(5.2-2) Ci - Cj - T‘1.ij€1~j(T-l ,cc-,Td ) E.ij(O,...,o) + 0

with Mij as in (5.1). The gractional monomials Mij 50 obtained (as 1,3

vary) are called the characteristic monomials of 1.
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Remarks, (5.3.1) From the preceding discussion (and its converse) we see
that (X,x) 44 a quasi-oadinary germ satisfying the conditions specified at the
beginning of §5 if and only i (X,x) can be parametrized by a quasi-ondinany

branen ¢ as in (5.2).

(5.3.2) If (X,x) can be parametrized by a quasi-ordinary branch
;= H(T}/n,...,Tz/n), then (X,x) has a representative which is a hypersurface

(¢d+1 1

subgerm of ,0), namely the image of the map T:U - Ed+ (U some

neighborhood of 0 in Ed) given by
) E(s],...,sd) = (s?,...,sg, H(s],...,sd));

and the map w:(X,x) - (Ed,o) given by projection to the first d coordinates

is a quasi-ordinary projection.

(2;3) Quasi-ordinary parametrizations (when such exist) can obviously be a
useful tool for analyzing the geometry of (X,x). A given (X,x) may, however, be
parametrized by many different quasi-ordinary branchés Z. We will be interested
naturally in geometric information about (X,x) which, though obtained via ¢z,
is independent of the choice of parametrization. Thus, while (5.5)-(5.8) below .
are concerned with elementary‘properties of the characteristic monomials of a
givén quasi-ordinary branch z, our purpose in this section is to use such
properties in order to compute the group Ad_](x)X = HZd-Z(X)x for the germ
(X,x) parametrized by z, cf.(5.9). Furthermore, in the Appendix (§7) we will

use the characteristic monomials of ¢ to describe the singular locus of (X,x).
(5.5) Let ¢ be a quasi-ordinary branch (cf.(5.2)), and let
LcK=1L()c Ln

be the respective fraction fields of
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UTyseeesTy) € WTpseensTlel © ¢<T}/",...,TL/">.

Ln- and hence K- is an abelian extension of L. For any L-automorphism 6 of

Ln ,and for 1<1i<d, G(Ti) = Ti » whence

T1/n

o(T/") = v T}

i

with (wie)n = 1; and so for any

_ 1/n 1/n 1/n 1/n
E; - G(T-l ,aoo’Td ) € E(T'I ’.."Td )
we have
_ 1/n 1/n
(5.5.1) 8(8) = GluggTy Meevsogg Ty ™).

let ¢ = Ty §2""’ﬁn € Ln be the L-conjugates of z. For any jJ,
we .can choose an automorphism 6 so that e(;j) =gq. Then e(ci) =Ty for
some k = 2, and setting Mk = Mk] we find, by applying & to (5.2.2) (and
keeping in mind (5.5.1)), that

Mij = Mk'

Thus the set of characteristic monomials of ¢ (on of any of its conjugates ci)
8

{Mk}Zsksm .
(We may have Mk =M, for some k' $ k.)

Lemma (5.6) The set {Mk}Zsksm 0f chanacteristic monomials of a quasi-ondinary

branch ¢ [ef.(5.5]) 48 totally ordered by divisibility {i.e. Mi < Mj i M

divides M in t<T}/“,...,T;/">).

467




56 JOSEPH LIPMAN » |

Proof. Keeping in mind the way in which conjugates are obtained from each

other (5.5.1), one easily deduces the assertion from the identity

Migin - Myeg = (55mgy) = (Tymg,) = My ey

(which also shows that Mij = mwn(Mi,Mj) ifoM, # PS).

Lemma (5.7) 1§ M), . 44 the set of chanacteristic monomiaks of a
quasi-ordinary branch ¢, then, with L as in (5.5):

L(z) = L{MyMy,en M),

Proof. Let 6 be an L-automorphism of Ly (cf.(5.5)). If o(z) = g (i=2),

then, since

e(C) -C= M'IE'”

it is clear (cf.(5.5.1)) that

So if e(Mk) = Mk for a1l k =2, then o(z) =z ; and we conclude by
Galois theory that

z € L(Myyeuu,M ). »

B | Conversely, it is clear (again by (5.5.1)) that each monomial Mk must
appear with non-zero coefficient in the fractional pbwer series z (since Mk
appears in gk-;), and hence that if o(z) = z, then e(Mk) =M  forall k
Thus M € L{z), and so V

L(MZ""’Mn) < L(z).

Q-E- D.
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Remarks (5.8), (i) If e 1is the number of distinct characteristic monomials

of ¢, then according to (5.6) we can reindex these monomials in such a way that

M] < M2 <evo< M,

e

For any i with 151 <e, there is an automorphism 8, such that

61(5) -z = Miei

with e, 2 unit in C(T}/n,...,T;/n>; and then clearly ei(Mj) = Mj for all

J<i (cf.(5.5.1)). Thus, with L as in (5.5), we have
(5.8.1) Mi ¢ L(M],Mz,...,Mi_]) - 1sise.

iiil From (5.6) and {5.8.1), one deduces easy-to-work-with necessary and
sufficient conditions on the exponents of a set of fractional monomials for this
set to be the set of characteristic monomials of a quasi-ordinary branch [E, p.167,
Prop.(l.S)]. These conditions provide a conVenient algorithm for testing whether
or not a given fractional power series is quasi-ordinary, and if it is, for
finding its characteristic monomials.

& * *

ngg). Let (X,x) be a d-dimensional germ parametrized by a quasi-ordinary
branch z; and let (X,X) be the normalization of (X,x). Using the results of
§4, we can now describe an algorithm for calculating the groups Ad_](x)X and
Ad_](Y)§ from the characteristic monomials of ¢.

© First of all, from (5.7) we deduce that the group T c ((l/n)z)d of
Theorem (4.1) is generated by the "characteristic exponent vectors" (i.e. those
vectors (A],...,Ad) such that T?]...Tdd is a characteristic'monomial of ¢ =
cf, remark 5.8(i1)), together with the standard unit vectors (1,0,0,...),
(0,1,05...)s (0,0,1,.0.)5... . We consider therefore the characteristic matrix
M(z), whose rows are the characteristic exponent vectors and the standard unit

~

vectors, According to Theorem (4.1):
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(5.9.1) a matrix presenting Ay q(X), (nesp. Ag.1(X)g) s obtained grom the
chanacteristic matnix ﬁ(c) by multiplying the i-th cotumn (1 < i < d) by the

integen m; (nesp. "i) specified in Example (4,5),

The integer n, is given by
ﬂi(F) = (1/niﬁz
cf. (4.5)). Thus:

(5.9.2) zthe .{nteger n; 45 Zhe Least common denominator of the national numbers
appearing in the i-th column of m(;).

As for mss writing

¢ = umy/M. 1™
we set
) < wrln, /e,y
and claim that:
(5.9.3) 4§ L 4s, as usual, the fraction fiekd of UTyse..sT,) then
my = L)1 = ey,

14 T;/" divides no characteristic monomial of ¢, then mo=ng =1, and s0
dn {5.9.1) we can delete the j-th column of ﬂ(c). _
Proof. In view of (4.5.2) (where Ly =L and K=1L(g)), itwill

suffice to demonstrate an isomorphism
~ : Ty
R/pi = E(T],..., i-]’Ti+1""’ d)[; ]

where
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R = ¢<T],...,Td)[c]

and

pi = MR = /M e,

(cf. beginning of 84). To do so, we need only think for a moment about the image

of Rc E(T}/n,...,T;/n) under the T-homomorphism

/n  Un 1/n /n -1/n 1/n
E(T-l ,o..,Td ) — E(TI ,'.o,T.i_] ’T‘i"’]".. ,Td )

1/n

taking T; to 0 and taking T}/" to T}/n for § ¥ 4.

The last assertion follows from (5.10) below. , Q.E.D

Now note that c(i) is a quasi-ordinary branch whose characteristic
monomials coincide with those characteristic monomials of z in which Ti
does not appear, i.e. which are not divisible by T}/". (In view of (5.5.1),
this follows easily from the definitions in (5.2)(b).) So in order to use
(5.9.3), we just need to know how to compute [L(z):L] for a quasi-ordinary z,

But by (4.1.3):
(5.9.4) [L(2):L] = nynye.ing/]Ay 4 (Xs ]

where lAd_](Y)il, the order of the finite abelian group Ad_](Y)Z , is the
greatest common divisor of the (dxd)-subdeterminants of a matrix presenting
the group, as described in (5.9.1); and ny is given by (5.9.2).

[L{z):L] can also be computed via (5.10.3.1) below.

This completes the description of the algorithm. For a concrete example,

cf. (7.4).

We close this section with some complements concerning the integers m,

and the order of Ad-l(x)x'
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temma (5.10). With notation as in (5.9), 5on‘each i=1,2,...,d zthe
gollowing are equivalent:

(1) The dntegen my = [L(2):Le )T (4. (5.9.3)) equats ome.

(i1) T}/n ‘does not divide any characteristic monomial of .

(i1)" Ti does not divide the diseriminant

= I (g4-z;
A(z) 1_ij(cj z;)

{where Lyseeesl, @he the conjugates of ¢).

Proo4 . The equivalence of (i1) and (i)' is clear from the definitions
invatved ((5.2)(b)). Condition (i) holds if and only if L(z) = L(c(i)); i.e.
(by (5.7)) every characteristic monomial of ¢ 1lies in L(c(i)). But by (5.8.1)
and the description of characteristic monomials of ;(i) preceding (5.9.4), this

means that every characteristic monomial of ¢ 1s a characteristic monomial of

1/n

c(1), i.e. it is not divisible by Ti Thus (i) and (ij) are equivalent.

Corollary (5,10.1), Assume that precisely ¢ of the variables T; divide
the discrniminant A(g). Then, aften nelabelling the Ti» we have

Temg =my g = cesm, < mclmc_1|...lm] = [L(z):L]
(where "|" denotes "divides").

Proog. Let M] <eva< Me be the characteristic monomials of ¢ (5.8).

If T}/" divides WB then Tgln divides Mk for all k > j. Hence for

1/n
.i K3

only if j > ;s in other words the characteristic monomials of c(’) are

each i there is an integer e; = 0 such that T divides Mj if and
My <My <...< M, . By (5.7), the fields L(c\')) are therefore totally

i : R
ordered by inclusion; and hence the integers m; = [L(c):L(;(‘))] are

.....

totally ordered by divisibility. Because of (5.10), we can arrange that
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(mj=1) e (j>c).

Finally, we can arrange that T}/n divides M], so that L(g(])) =1, i.e.
my = [L(z):L]. The conclusion is now obvious. Q.E.D.
Again, let M] < M2 o< My be the characteristic monomials of z (5.8).

Since M? € L, the field extension
LMy seeasMy M) LMy, M, )
(which is non-trivial, by (5.8.1)) is cyclic, of order
(5.10.2) by = min{b>0[MY € L(M,..uuM, 1)} > 1 (lsize).
Equivalently, if

A5 = Oypsenisiyy) € ((/nm)

is the vector defined by

A A
= 741 jd
M= T LTy
then
- 4 d
(5.10.2)" by = min{b>0[b); €ZN +...+Z); 4 +Z ).

The integer bi can be computed from (5.10.2)'; or from relations similar to

(5.9.4).

Proposition (5.10.3). For each i = 1,2,...,e ZLet bs be as above and Let

vy be the numbenr of variables TJ. appearing in Mi with positive exponent.

Assume the vaniables Labelled s0 that [5.10.1) is satisfied. Then the orndern a
of the ginite group Ad_](x)x i~ H2d-2(x)x 48 gdven by

V=1 v -1
= = p ] e
a= m2m3 oo M b] be .
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Proof. The equality a = mymy ... m, is immediate from (4.1.3) and (5.10.1).

Also, for each i, we have

= (o) oLzt (5.9.3)

=
i

(LM seeesM ) il(M4uue M )] (5.7) and proof of (5.10.1)
1 e 1 ey
b .p e b_.
ei+1 ei+2 e
1/n
i
i>c (5.10.1), we conclude that

=b

Noting that T i

divides Mj if and only if j > e;s and that m, = 1 if

Vy V v
JG Mg e
mmy ... me = b] b2 ves be .

Since (by (5.10.1) and (5.7))
(5.10,3.1) my = {Lt(z):L] = b]b2 ees be >
A we are done.

Remark (5.10.4). Given {(5.10.1) and (5.10.3), one might guess that the

sequence m_[m__,|...|m, fis the sequence of "invariant factors” of the abelian

group Ad-]‘ This does not always ‘turn out to be true, cf, Example (7.5).
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§6. Topological invariance of the reduced branching sequence

Throughout this section, the notation and assumptions at the beginning of
§5 nemain in force {cf,also {5.3)}).

Before stating the main result, Theorem (6.1), we need to define the
"reduced branching sequence" of a quasi-ordinary brahch .

We will usually label the variables T],...,Td in such a way that (5.10.1)

is satisfied:

Tamy = my g =eee= Mgy < mclmc_ll...lm] = [L(z):L],

where m, 1is the generic branching order of the projection w:(X,x) —> (Ed,o)

i
{corresponding to E<T1,...,Td) c E(T],...,Td)[;]) along the irreducible
subvariety Z; < X defined by T, =0 (cf. (4.5.4)). Also, as in (4.5.4),

we let n; be the generic branching order of wev (where v:(X,X) + (X,x) is
"normalization") along 7%=v'](zi). The branching sequence of ¢ consists of
the pairs

(m1,n,),(mz,nz),(m33n3),...,(mc,nc)

arranged in decreasing Lexicographic order.

(Note that my = n, for all i (4.5); and that (mi,ni) = (1,1) for
i>c.)

The neduced branching sequence of r is the empty sequence if c < 1; and
otherwise is the sequence obtained from the branching sequence by replacing

1 []
(m1,n]) by (m1,n1), where
(mysnq) = (my/my)(mysny) = (my,mony/my ),

and then shifting (mi;ni) to the right until the resulting sequence is
lexicographically decreasing.

The reason for introducing (mi,ni) will become apparent momentarily.
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Here is the main result, asserting that the reduced branching sequence of
any quasi-ordinary parametrization of a germ (X,x) is a topological invariant

of (X,x).

Theorem (6.1) Let (X,x), (X',x') be analytic germs parametrized by
quasi-ordinany branches 17, ' nespectively. Suppose that there exists a
homeomonphism of topoLogical gemms :(X,x) —=—> (X',x'). Then r and z’
have the same neduced branching sequence,

The proof will occupy the rest of §6. The basic argument can be found in

§8(6.7), (6.8).

Remark (6.1.1). By considering the case of irreducible plane curve germs -
which are always homeomorphic to the germ (E1,0) - one sees that the branching
sequence itself cannot be a topological invariant. In higher dimensions, a

similar situation occurs, as explained in the following Proposition (6.3).

Definition (6.2) A quasi-ondinany branch

- 1/n 1/n
C"'H(T-l ,-.-:d )

48 reduced if for each i = 1,2,...,d, we have

(6.2.1) H(0,..50,7/™,0,...,0) € KT,

Remarks . (1) With labelling as in (5.10.1), the condition (6.2.1) is

automatically satisfied for all i > 1. (Indeed any term of the form aTg

(at0,2 ¢z) in H(T}/q...,Té/") can be "moved” by some automorphism 6 as

in (5.5), hence appears in ¢ - 6z = Me (5.2.2), hence is divisible by the
characteristic monomial M; but T}/"

(6.10.1)), so j =1.) Thus:

divides every such M (cf. proof of

(6.2.2) ¢ is neduced if and onty if H(TV/",0,...,0) € L(T,).
| 1
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(11) From (5.9.3) and the description of the characteristic monomials of c(i)

following the proof of (5.9.3), we find that z 1is reduced if and only if £(2)

has no characteristic monomials, .i.e.
my = () L)1 = [Lz)eL] = my.
Consequently:

(6.2.3) ¢ 4is nreduced if and only if the reduced branching sequence of ¢ is

the same as the branching sequence of Z.

Proposition (6.3). For any quasi-ordinary branch ¢ = H(T}/n,...,T;/")

there exists a neduced quasi-ondinary branch r' whose branching sequence
coincides with the reduced branching sequence of ¢, and such that the gewms
{X,x)s (X',x") panametﬁized by ¢ and 7' nrespectively are homeomorphic,

Pmooﬁgl) For some integer b dividing n we have

(6.3.1) WM ™0,...,001~ = KT)/P

where "~" denotes "normalization". (The integer b is the least common

denominator of the exponents A of terms aTA (a+0) appearing in

HTY™,0,...,0).) Set

SRS AR AN LR
If wys...owy are n-th roots of unity, then

1/n 1/n 1/n b.1/n /n T/n
(6.3.2) H(T~[ ,TZ f‘.‘ )Td ) - H((ﬂ-l‘r] ngTz ,...,wde )

a./n a,/n
- 1 d /n 1/n 1/n
= T']T-l ...Td S(T] ,Tz :o-osTd )

(]jMay (should) be skipped on first reading.
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where n 1is either 0 or 1, and €(0,0,...,0) 4 0 (cf.(5.2.2), (5.5.1)).

1/n b/n
1

Replacing T, by T,'", we see that ' is quasi-ondinany and (by (6.3.1)

and the fact that (6.2.1) holds for all i > 1) xeduced.

d+1

Now let (X,x) < (¢d+1,0) [respectively (X',x') € (T° ',0)] be the

germ parametrized by ¢ [respectively '], and define ¢:¢d+1 —_— Ed+] by
= (+b :
@(tl,tz,-..,td,z) = (t],tzgo--,td,z)¢

It follows from (5.3.2) that ¢ maps (X',x') to (X,x), giving a finite
bimeromorphic map corresponding to the composition in the middle row of the

commutative diagram

R R[T}/ b

N f

KTyaeeesTlel € KR, THIE] 25 W(Tyheen,Tle']

1 ]

1 /0 ~ b/n -1 1
m]/",...,Td/") = m(T]/",TZ/“,...,Td/“)

where o is the T-isomorphism such that

]

o(T/M) /e

H

M (i>1),

1/n
a(Ti ) i

(Note that R[T}/b] is contained in the normalization of R since, as in the
proof of (5.7), H(T}/",O,...,O) c L(z).) Thismap (X',x') —> (X,x) is
proper, with image a neighborhood of x; and to show that it is a
homeomorphism of germs we need only show that it is Anfective on some

neighborhood of «x'.
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Let
y = (s?,...,sg,H(s],...,sd)) € X
cf. (5.3.2). Then, if w 1is a primitive n-th root of unity, we have
m-](y) = {((sz1)"/b,sg,...,sg,H(s],...,sd))}]sjsb.
On the other hand, any point y' € X' is of the form
y' = (u?,ug,...,ug,H(u?,uz,...,ud))

for suitable complex numbers Upseessly. SO if y'e€ wfl(y), then for some

n-th roots of unity Wysees sys and for some j with 1< j=<b, we have:

u? = w]sz]

U = @Sy k=2
and
(6.3.3) H(S1,...,sd) = H(w]szl’wZSZ""’wdsd)'

Let us deduce from this that either $1 = 0 or j=b, thereby showing that
there is just one point in mhl(y) n X', as desired.

With these Wysenestly in (6.3.2), note that if n $ 0 then

a]/n ad/n

T] ces Td is a characteristic monomial of ¢, and that moreover a; > 0

for some i = 2, as can be seen, in view of (6.3.1), by substituting 0 for all
1/n J1/n

/n
of T2 )73 ,...,Td .

Just as in (6.3.2), we also have

; by/n b./n 1
(6.3.2) KM/ T - I T e el
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And from (6.3.1), we see that if 1< Jj=<b, then substitution of 0 for all of

T;/",...,T;/" in (6.3.2)"' does not annihilate the left hand side, whence n' = 1

and b2 =, .= bd = 0. It follows (if 1 < j <b) that of the two characteristic

a]/n ad/n b]/n
monomials T] vee '% s T] s of T, the second properly divides the first

(cf.(5.6)). Thus (from (6.3.2), (6.3.2)"):

1 i1/ 1
(6.3.4)  HTY™TY/" 1™ - Ml T, TR, T

2
T L S Nt N R R YRy
SRR B S L A AR AN L

b./n '
=1 e/t €"(0,...,0) $ 0.

1/n
i
see that (6.3.3) is impossible when $ $0 and 1< j<b, Thus either $s1=0

Now in (6.3.4) just rep];ce T by sufficiently small S5 (1gizd), to

or j=b, and ¢ does indeed map (X',x') homeomorphically to (X,x).
It remains to compare the branching sequences of ¢ and z'. If cx

then (5.7) easily implies that

g € LIHTY™,0,...,0)) = L(TI/),

whence ' € L, and ¢' has an empty branching sequence. So we may assume
¢ z 2. Consider the commutative diagram
(X',x") ——> (X,x)
n n
(¢d+1,0) __Er> (td+],0)
Il

(td,0) . (t%,0)

where the vertical arrows represent “"projection onto the first d coordinates",

and
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_ b
ol tyatyreeesty) = (Ehtyeeensty).

Since, as we have just seen, the top arrow is a homeomorphism, it is evident

(cf.(4.5.4)(i)) that (with self-explanatory notation):
my = bmi

m; = m]f (iz2).

Moreover, since (as mentioned above) we have a commutative diagram

where v 1is "normalization”, therefore
- ]
n] bn]

n; = n% (i=2).

So, to show that the branching sequence of ¢' is the same as the reduced

branching sequence of g, it suffices to prove that:
(6.3.5) b= m1/m2.

Now we have seen (following (5.9.3)) that c(z) is a quasi-ordinary
branch whose characteristic monomials are the same as those of ¢ which are

;/n; and by (5.7) these monomials generate L(g(z)) over

not divisible by T
L. But the proof of (5.10.1) makes it obvious that these monomials are just

the characteristic monomials of ¢ which have the form T?, i.e. just the
charactgristic monomials of H(T}/n,o,...,o); and, by (5.7) and (6.3.1), these
monomials generate the fraction field of E(T}/b) over that of E(T]), a field

extension of degree b. It follows that
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[{?):1 = ».
Morecver,

[Le®):LT = [L(e) sL1/iL(e) sty

= my/m,

{cf.(5.9.3), (5.10.1)). This proves (6.3.5) and finishes the proof of
Proposition (6.3).

Further preparation for the proof of Theorem (6.1) is provided by the
next result, due to Gau (at least when d = 2) LE, (3.4.2), Remarks 3, 4].

Proposition (6.4) Let (X,x) be parametrized by a quasi-ondinary branch

¢ = HTY" 0 TY™) L the variables being Labelled as in (5.10.1). Then the
following conditions are equivalent;
(1) Agq(X), ¥ Hayo(X), = -
(i1) Every chanacteristic monomial of ¢ s of the foam A,
(i1)' The neduced branching sequence of ¢ 4is empty.

(iii) (Xsx) 48 topologically smooth, i.e. homeomonrphic to the germ (Ed,O).

Proog. (i) = (ii). According to {5.10) we need to show that the integer c
of (5.10.1) is < 1; but this follows from (5.10.1) and the equality

a=m of (5.10.3),

2m3 see mc

(i1) « (ii)'. Both these conditions are equivalent to the condition ¢ < 1.

O (z)

n other words the d1scr1m1nant A is of the form eTF » £{0) #
cf.(5.10). In Zariski's terminology [Z, Theorem 4.4], this &eans that (X,x
has a singularity of dimensionality type 1; i.e. the singular locus © of X
is a (d-1)-dimensional manifold (if not empty) near x, and X is equisingular
along r at x.
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(i)' = (i9i). The branching sequence of ' in (6.3) is empty, so ¢ =0
for ¢', i.e. C' € E(Tl”"’Td>’ and the germ (X',x') parametrized by ¢'
is isomorphic to (Ed,o); moreover, by (6.3), (X,x) is homeomorphic to (X',x').

(i11) = (i). Obvious, since by {1.1):

Hygp(8h)g = Hyq_5((2d-1)-sphere) = 0.
' Q.E.D.

Proposition (6.4) shows that any part of the singular locus I where X is
irreducible and equisingular will be "topologically invisible". Not surprisingly,
however, in the proof of Theorem (6.1) we will need some subvarieties of 2 ‘
which do have topological significance. wa such subvarieties 2(2) c z(l)
will now be described, in (6.5) and (6.6) respectively.

Qg;g) Let (X,x) be parametrized by a quasi-ordinary branch z, and let
T(Xo%x) —> (Ed,o) be the associated quasi-ordinary,projecfion, corresponding

to the inclusion
UTyseesTy) SR = WTyseen, T LE]

let Dc Ed be the discriminant locus of w, so that (after restricting to a
suitably small neighborhood of 0 ¢ Ed), D has only normal crossing
singularities. In fact we may assume that D is given by the equation

T]T2 vee T =0 (ef.(5.10.1)). We set

£42) -+ Ysing(D))

where Sing(D), the singular Tocus of D, consists of all points in Ed

{near 0) where at least two of the Ti(1sisc) vanish, Thus:

Lemma (6.5.1). The subvariety £‘2) X has c(c-1)/2 irneducible

components Zij at X, corresponding Lo the prime ideals
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pij = /ZTi,TjiR 1<si<jse.

(The proof at the beginning of 84 that JiiR is prime can be modified to apply
to ‘pij‘)

The definition of 2(2) involves a choice of . But 2(2)

can also be

characterized topologically:

Proposition (6.5.2). The variety 2(2) consists of azzlpainté y €X

such that either H2d-2(Y’y) 3 0 {on some component Y of X at y, or
some two such components have an intersection which {8 neducible at y.

2) is topologically

Remark (6.5.3). Proposition (6.5.2) shows that sl
invarniant, in the sense that any germ-homeomorphism e:(X,x) ——> (X',x')
maps 2(2)(X,x) onto 2(2)(X',x'): for, any such ¢ maps each component of
X at a point y € X to a component of X' at ¢(y) {and similarly for
intersections of such components) LEE, p.172, Lemma (A.8)]; and the groups
(1),
that c(c-1) 4s a topological invariant of (X,x) (whence so is .c¢ if

are topological invariants (cf. (1.1)). It follows then from (6.5.1)

c =2, i.e,if 2(2) is non-empty, i.e, if the equivalent conditions of

(6.4) do not hold).

Proof of l6.5.2)5]) If the discriminant D has at most one component at
m{y)s (i.e. y ¢ 2(2)), then the same is true for the discriminant DycD
of the restriction Ty of w to any component Y of X at y, and so by
(6.4), H2d—2(Y)y = 0, Moreover if Y' 1is another component of X at vy,
then Y' nY is a d-1 dimensional subvariety of the singular locus of X,
whence Y' n Y s irreducible at y by part (2a) of Theorem 4.5 in Lz].

[We can argue directly as follows, (learly

Y'nYer D) ny= n;‘(n).

(])May (should) be skipped on first reading.

484




TOPOLOGICAL INVARIANTS OF QUASI-ORDINARY SINGULARITIES 73

If w(y) € Dy then (D being irreducible) Dy = D near w(y), and
w;](D) = w;I(DY) near y. But n;](DY) is irreducible at y, of
dimension d-1: in fact if Ti vanishes at w(y), and if R' is the
local ring of (Y,y), then ﬂ;](DY) is the zero set of the ideal JiiR‘,

which is a prime ideal (beginning of 54). Hence, near vy,

Y'ay= n;](DY)

and so Y'Y is irreducible at y. Finally if n(y) ¢ DY then Ty is a
local isomorphism at y, so n;](D) is irreducible at y, and again we see
that Y' n Y(=n§](D)) is irreducible at y.] This proves one half of {6.5.2),
For the other half, suppose that D has at least two components at w(y)
(i.e. y€ 2(2)). Suppose moreover that H2d—2(Y)y = 0 for every component Y
of X at y. We need then to show that X has two components Y' and Y at

y whose intersection is reducible at y.

Assume that Ti and Tj vanish at y (where lsgi<jsc). We can choose

n-th roots of unity Wy e e e sty such that, with 8 the E(T1,.‘.,Td)-automorphism

of KN/ THV™ taking /M to 0 Ty/" (1sksd), we have

(6.5.4) ¢ - og = Me(T)/",...,TY/")

where €(0,...,0) $+ 0 and M 1is a characteristic monomial of ¢ divisible by

both T}/" and T}/"
rewrite (6.5.4) as

(e.g. the largest characteristic monomial of z). We can

(6.5.4)" Rty - B0y Ty TY ™ = e
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Consider the map :U »~ X defined on a neighborhood U of 0 in Ed by
w(sl,...,sd) = (s?,...,sg, H(s],...,sd))
¢f. (5.3.2). Choose (u],...,ud) € U so that
y = W(u"n-'sud) ("’ ui=uj=0)
and set
y' = w(w]u],...,wdud).

When we substitute Uy for Tl/n in (6.5.4)' (I<k<d), M vanishes (because
u; = uj = 0), and hence y = y'.

Now ¢ maps a neighborhood of (u],...,ud) {respectively w]”]""’“dud»
onto a component Y (respectively Y') of the germ (X,y). Moreover if
‘ (v],...,vd) is close to (u],...,ud) and if either vy =0 o vy = 0 then

substitution of Vi for Tl/n in {6.5.4)' (l=ck<d) shows that
w(vlsooogvd) = w(w]v-',...,wdvd).

Thus the locus TiTj = 0 is contained in w(YnY') (in a neighborhood of w(y)),
so that Y nY' will be reducible at y, as asserted, provided that Y $ Y'.
Let us complete the proof by showing that

(6.5.5) 44 Y =Y', then the Locus TiTj = 0 45 contained in DY near w(y)

contradicting (6.4) (recall that, by assumption, H2d-2(Y)y = 0},
If Y =1Y', then for each v = (VT""’Vd) very close to (“1""’ud)
there exists Vv' = (vi,...,v&) very close to (“1"]""’“dud) such that

W(v') = y(v); i.e. there exist n-th roots of unity W]seeesw) Such that
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(i) (wiv],...,wévd) is very close to (w]u],...,wdud), and
(i) H(wiv],...,wévd) = H(v],...,vd). ‘
From (i) it follows that:
(1) o = w, for all k such that Uy $ 0.

Supposing, as we may, that no v,

k vanishes, setting

1/n

seessTy

17) 1] (PS]
) = KT g™ = e /0T

(where M', 1if not identically zero, is a characteristic monomial of z,
and €'(0,...,0) ¥ 0), and substituting v for Tl/"(lgkgd) we see from
(ii) that M' vanishes, so that M' must be identically zero. Thus H
doesn't change when, for all k =1, 2,...,d, Tl/n is multiplied by wi,

and so from (6.5.4)*' we conclude that

(6.5.6) KOs T M) = s () T T, = e

We will use (6.5.6) to show that my(y') € Dy for any y' €Y where either
T, or Tj vanishes (thereby proving (6.5.5)).

Let V be a neighborhood in ¢ or (u],...,ud). If V 1is sufficiently
small, theny for v, v¥ € V, mop(v) = mey(v*) if and only if there exist n-th

roots of unity w?;...,wg such that

(i)* vﬁ = wivk l<sksd
and
(ii)* wk =1 if Uy $ 0.

Suppose we have another sequence (wﬁ*) of n-th roots of unity with wt* =1
whenever u, % 0, and that

H(...,wETl/n,...) $HC e,
Then

(6.5.7) H(...,wﬁT;/",...) - H(...,wﬁ*Tl/?...) - M*e*(...,Tl/n,...)
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where M* is a characteristic monomial of ¢, and e*(0,...,0) # 0. If we
substitute v, for T;/" in (6.5.7) (lsksd), where (Viseees¥ ) €V and no

Vi = 0, we see that
H(...,wivk,...) $ H(...,wﬁ*vk,...).
We conclude easily from this that

(6.5.8) the branching onder of Ty &t ¥ 4s equal to the number of distinet
conjugates of T of the forn H{....wtTV/",...) with wf satisfying
(ii)* above,

Finally, from (6.5.6), noting that w = (w&)-] w, satisfies (ii)* (cf.

(i11) preceding (6.5.6)) and recalling that M is divisible by both T}/" and
T}/n, we see that if y' = w(v],...,vd) with either vy or vj = 0, then the

number of distinct points in n;](n(y')) is fLess than the number of conjugates
of ¢ as in (6.5.8), so that nv(y') € DY'
Q.E.D.

4

Example (6.5.9). Let (X,x) < (T',0) be the three-dimensional germ

parametrized by the quasi-ordinary branch

- £3/2 2:3/2

Both monomials on the right are characteristic for z, and ¢ = 3. By (5.9.3),
my=m, =4, my = 2. Hence (cf.(5.10.3)) H4(X)x has order 8. (In fact by
~ 3

(5.9), H4(-X)X ¥ @/22)°) .

Here is a brief description of the behavior of (X,y) along the three
components of 2(2).

At any point y where T, =T, =0, T3 $ 0, (X,y) is irreducible, and

. - 2

H4(X)y has order 4, (In fact H4(X)y ¥ (Z/2Z)°.)

At any point y where T = T, =0, T, $ 0, (X,y) has two components

(Y,¥*) each of which is equisingular along the plane consisting of all points
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(t],tz,t3,z) with t] =z =0, So

H4(Y)y = H4(Y‘)y = 0,

The intersection of the two components is reducible, viz,

L = = = 2=32
Yyny (t] 0, z=0} U {t3 0, z t]tz}.

Finally, at any y where T, = T3 =0, T] 3 0, (X,y) has two components
Y, Y', with H4(Y)y and H‘,'(Y')‘y both having order 2; and Y 0 Y' ds the
plane t2 =z=0,

Remark (6.5.10). Using Mayer-Vietoris for Borel-Moore homology, and the
fact that the singular locus of X 1is a manifold (or empty) at any point

vy § 2(2) Lg, Theorem (4.5)], one deduces from (6.4) that at such a y:
Hyg.o(X), = 0.

I don't know whether it is possible to have a trivial H2d_2(x)y for some
y € 2(2). (If not, we would have a more elegant topological characterization

of ‘2(2).)
(g;g) We will also need the topological singular Locus :
2(1) = {y € X|X 1§ not a topological manifold at yJ}.

This locus is clearly "topologically invariant”, in the sense that it is
respected by germ-homeomorphisms (cf.(6.5.3)).

Because of (6.4), we have

(6.6.1) =V = 22 | {y € X|x s reducible at y}.
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Proposition (6.6.2) The topological siéngular Locus (Z(l),x) is an analytic

subgerm of (X,x). Its codimension one components ate the zero-sets Z; 0§ the
prime ideals py = /TR (lsisc) {for those 1 such that m % n, (ef. (4.5)).

1ts nemaining components are components of Z(z) leg.(6.5.1)).

Proof. Let wi{X,x) + (td,o) be as before, with discriminant locus D.

In view of (6.6.1) and the fact that y € X is smooth if w{y) ¢ D, we see that

y € Z(]) - 2(2) o {n{y) is a smooth point of D

and X 1is reducible at .

So for any y € Z(]) - 2(2), there is a unique 1 such that y ¢ Zi and X
is equisingular along Zi at y. Since Zi is irreducible, the number of
components of X at any point z € Zi where X 1is equisingular is the same
[z, 541(1), namely m./n; (cf.(4.5.4)(ii1)). Since X is reducible at y

we have that m. >n and so

.i!

Conversely if ms $ nys then X is equisingular and hence reducible everywhere

along Zi ‘LJj+i Zij’ and so

u oz, e,
mytny

The conclusion follows.

(])Zariski works in the “algebroid" category; but his results carry over to the
analytic context. For example, if v:iX>X s normalization, then the induced

map \)'](Zi)-rz.i is ¢tale over any z € Zi where X is equisingular, and so

the fibre cardinality (= number of components of X) stays constant over the
equisingular part of Zi' A1l this, if not explicitly stated in Lg,§4], is

easily extracted therefrom. Or, one could use the fact that equisingularity along

Zi implies)that X 1is locally a topological product of Zi with some plane curve
germ, so that, again, the number of components of X at y € Zi is locally constant.
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* * *

(,6,:.2,) We proceed now to prove Theorem (6.1) by showing that the reduced
" branching sequence of ¢ 1is determined by topological data associated with the

topologically Linvariant subvarieties ):(2) o Z(]) of the d-dimensional germ
(X,x) parametrized by ¢ (cf.(6.5.3),(6.6)).

The variables Ti will be labelled, again, as in (5.10.1), Because of
(6.3), we may assume that g 1is reduced. Moreover, as in (6.4) and its proof,
c <1 is equivalent to (X,x) being topologically smooth and also to ¢z
having an empty branching sequence. So we may assume that ¢ = 2.

For each i =1, 2,...,¢, we let Z1. < X be the subvariety defined by

z,

1:T] =T2 Foeem Ti 1 = Tiyq =eee= T =0,

i-1

Arguing as at the beginning of §4, we see that 21. is irreducible. The
collection of ¢ distinet subvarieties {21""’2c} 48 topolLogically
{nvardant: its members are all the (d-c+1)-dimensional subvarieties of X
which are intersections of components of E(-Z) (6.5.1), and, as in (6.5.3),
2(2) is topologically invariant, hence so are its components, as well as
intersections of those components and dimensions of such intersections

[GL, p.172, Lemma (A.8)]. (This is the only place 2(2) is needed.)

It is now evident that Theorem (6.1) will follow from:

Theorem (6.8). Let ' be a reduced quasi-ordinary branch parametrizing a

goun  (X',x'), and suppose that there exists a germ-homeomorphism o (X,x)+ (X',x").

As noted above, for each 1= 1,2,...,c Zhere 48 an ' with 1=1i'=sc¢' =¢

such that (with selg-explanatory notation):
cp(Z,i) = Z'.i e

The assention is that
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and

(1=izc).

Proog. Let v:(X,X)~(X,x) be the normalization map. For any y € X,

let vy € v']({y}), and let

ay = order of H2d-2(x)§'

We also set

ey = number of components of X at y.

Lemma (6.8.1) I§

then
ey(ai/ay) = n;.

The proof of (6.8.1) will be given below.

Now if y' = o(y) then ey = e‘y. {topological invariance of components,
cf.(6.5.3)). Since local homology groups are topological invariants (1.1), to
see that ay = a';. (anq similarly ag = a'i.) - whence, by (6.8.1), ny = "'i'
it suffices to note that, with v and v' the respective normalizations, there

is a germ-homeomorphism ¢ making the following diagram commute:

(Fo) —2—s (F*,5")

(XQX) 'cp""""‘> (X',X')'.
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The existence of such a ¢ is immediate from the above-mentioned "topological
invariance of components" and the following topological description of v

(cf. e.g.Lﬂ, p.258]): The points of X are equivalence classes of pairs

(y,Y) where y € X and Y is a locally closed subvariety of X containing,
and irreducible at, y, and where (y,Y) = (y*,Y*) if and only if y = y* and
Y = Y* near y; the.map v is defined by v(y,Y) = y; and a basis of open
sets on X is given by v’](v) as V runs through all everywhere irreducible
locally closed subvarieties of X,

Having thus shown that n, = n',

i 41s We now prove that m; = m'.

1!9
considering two cases.

(A) Every codimensdion one component of the topological sdingular Locus ALY
{6.6) contains Ei‘

In this case Zi (the zero-set of p; = /TiR) cannot be a component of

Z(]), and hence, by (6.6.2), m; = n.. The condition (A) is of course

“preserved" by ¢, S50 we see similarly that

(B) Some codimension one component o4 Z(]) does not contain Zi'

(1)

In this case there is a unique codimension one component of I not

containing Z,, namely Z;. By (4.5.4)(ii1)
m. = e.n.

where ey is the number of components of X at any point 2z in some open dense

subset of Zi' Similarly ((B) being preserved by o)

m_i|

= e'i,ni..
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But by topological invariance of components

Since "li' =n, (see above) therefore m'i; = m,.

Q.E.D,

It remains to prove Lemma (6.8.1).

For any component Y of X at y, m induces a quasi-ordinary projection
. d
ﬂy- (Y,.Y) > (t a“(.y))

whose discriminant at w(y) 1is contained in the zero-set of Ty ovee TiqTieq oo Teo

The corresponding integers
ny(y) T<isc, j#i

are the same as the integers nj = nj(x): indeed, by (4.5.4), if v: X + X is

normalization, and Zz 1is a generic point of
v'1(ﬂ'1{T =0} n V)

Y i

where V 1is some neighborhood of y on Y, then
nj(y) = deg((nYov)i) = deg(ﬂz) = nj(x).
It follows then from (4.1.3) that
2L IRRUI TS LEVC SR nc/deg((ny)y),

and that

ag = mn, ... nc/deg(ﬂx).

b
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Thus

(6.8.2) njag/ag = deg(m,)/deg((my) );

and we need to prove that the right hand side is ey.

We show first that
(6.8.3) n () =
By (5.3.2) setting
g = H(T}/n,..., ;/")
we can write
y= (s?,...,sg,H(s],...,sd))
for some complex numbers SyseeraSy with
(6.8.4) S] Sees= Sy 1 T Siyp Seeem S, =03

and then the number of points in v']w(y) is equal to the number of distinct

values of
H(“’151 - ..,mdsd)

as (w],...,wd) runs through all d-tuples of n-th roots of unity. However, by

(5.2.2), (5.5.1), we have, for any other such d-tuple (wi,...,wé):
H(w]s],...,wdsd) - H(w{s],...,m&sd) = M(s],...,sd)e(s],...,sd)

where, if the right hand side is not zero, then M(T}/",..., ;/n) is a

characteristic monomial of z. Since ¢ 1is, by assumption, sneduced, it

V" for some 41 (cf.(6.2)). But then

(6.8.4) shows that M(sys...,$;) = 0. So (6.8.3) holds.
1 d

follows that M is divisible by T
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Finally, for a generic & near w(y), the fibre ﬁ'](g) has cardinality
equal to deg(wx) (where @ = wov, cf.(4.5.3)). Also, as in the proof of (4.5.4),
the degree deg(ﬁy) js the same for alf y € v"(y), and is in fact equal to
deg((wY)y), since v maps a neighborhood of some y onto a neighborhood of ¥y
in Y, almost everywhere bijectively. Since the fibre v'](y) has cardinality

e we conclude that

y’

e, deg((my) ) = deg(m,),

" i.e. the right hand side of (6.8.2) is ey
This completes the proof of (6.8.1), and of Theorem (6.1).
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§7 Appendix: The singular locus

We substantiate the importance of the characteristic monomials of a

quasi-ordinary parametrization
_ 1/n 1/n
z = H(T] seeesTy )

of a germ (X,x) by showing how these monomials determine the multiplicity
of a point y € X as soon as we know which of the Ti vanish at y (Theorem
(7.2}). There results a fairly detailed deécription of the singular locus
Z(X,x) (Theorem (7.3))(]). In particular, every component of I(X,x) 1is of
the form Z, (codimension one, c¢f.(6.6.2)) or zij (codimension two, cf.
(6.5.1)); and for components of the latter form, we prove for any point y € Zij
where no T, with k $ i,J vanishes, that (X,y) is analytically isomorphic to
a subgerm of (Cd+],0) defined by an equation of the form P = TiTj'

We conclude with some examples to illustrate both the results of this

section and the computation (as in (5.9)) of Ad-l(x)x x H2d-2(x)x°

(7.1) As usual we label the variables Ti in such a way that the
discriminant A(z) (cf. (5.10)) is divisible by Ti if and only if i < c.

As in (6.6.2) we let Z; =X be the zero-set of T;3 and for any sequence

) < il <<
I: 1< i <, igsc

we set
. =1, . s =L, NI, Ne.aNZ,
I ‘112"'1e iy iy iy
At the beginning of §4 we saw that Zi is irreducible at x. A similar

argument shows that:

(])Such a description will be needed, at least in part, to prove (0.2.1).
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ZI 48 duveducible at xs of codimension e Ain X, The prime Ldeal

py < R = E<T]’---:Td>[§]
(cﬁ.(S.Z)) condiating of gems of functions vanishing on ZI i
Py = (T}{",...,T}/") 0/ a
e

We define

z

i
~N
—
1
~

lsjsc
Ji¢l

Then Z? is a connected open dense subvariety of ZI; and clearly

(7.1.1) = U 1, (disjoint union).
1'o1
We also set
;I = | the fractional power series obtained

from ¢ = H(T}/n,...,Tl/n) by substituting ' 0

for every one of T}/",...,T}/".
1

e
As usual, m: (Xyx) —> (cd,o) denotes the projection corresponding to

the inclusion
WUTyseeesTg) € WTqaeesTlE] = R,
and L denotes the field of fractions of E(T1,...,Td).

Proposition (7.1.2) With preceding notation, Let D; be the submanifold of

d

1

defined by Ti] =,..= T, =0, and Let
e

Dg ={z ¢ DI!Tj does not vanish at z if 1sj=<c and § § I},
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0 0

I) = ZI'

50 that n'1(D Then

.0 __ 0
T ZI > DI

i an Etale coverning of degree [L(;I):L]. In particular Z? 48 smooth.

Remark (7.1.3). The space D« i defined by TT, ... T, =0 hasan
obvious stratification, with strata D?. Together with (7.1,1), (7.1.2) shows
that the inverse image of this stratification under w "is a stratification of X.
By Eggg, p. 574, Lemma 2], for example, the multiplicity of X 4is constant
along each stratum, We will prove this in (7.2) below by actually calculating

the multiplicities.

Proof of (7.1.2) For conveniehce, we may assume that I is the sequence

1 <2 <,..<e, The assertion is then that for any sufficiently small complex
numbers t. i, toypse.esty With t, 10 for e <isc, the number t of

T (0 Ot s t)
sevesJy e"l’ ] d

satisfies

1/n

t = (LD ] = [LOH(0,e. 00,1, Ty ™) .

According to (5.3.2), Tt 1s equal to the number of distinct values of
H(O,...,O,se+],...,sd) as (5e+1""’5d) runs through all (d-e)-tuples of

compliex numbers such that
n _
Sk-tk e<dec

So we must show that this Last number L& equal to the number of distinet

1

conjugates of t° over L (i.e. 2o [L(;I):L]).
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I

Now (cf.(5.5.1)) the conjugates of z° are all of the form

1/n ay 1/n

a
+
e]Te+],...,w Td )

;; = Ha(O,...,O,m

2ri/n

where w = e » a primitive n-th root of unity, and

a= (ae+1""’ad) eld'e;

and ;; $ gi. implies that

besy/n b/n 1/n /n
(7.1.2.1) SRR A Mt .

a e+l ee Tc et]* "2 'd )
for suitable integers be+]""‘bc and a power series ¢ with ¢(0,...,0) $ 0
1/n
Jj
monomial of gz, cf.(5.10)). So, substituting (sufficiently small) Sy “for
1/n
T

(we use here the fact that for j>e¢, T does not divide any characteristic

in (7.1.2.1), with Se+15e+2 . Se $+ 0, we see that there is indeed a

I

one-one correspondence between conjugates of z~ and values of

H(O,...,O,se+],...,sd) as above. Q.E.D.

(7.1.4) The fractional power series ;I is a quasi-ordinary branch whose
1/n
i

any i €1 (cf.(5.2),(5.5.1)). From (5.7) it follows then that L(cl) cL(zg).

characteristic monomials are those of ¢ which are not divisible by T for

We set
M g e g = mp = [L(0):L(eD)L.
12 e .
As in the proof of (5.10.1), for each i = 1,2,...,c there is an integer
e, such that Tz/" divides the characteristic monomial Mj if and only if

i
Jj> e From this it follows that

my = max m, .
i€l
Recall from (4.5) the definition of the branching oader deg (ny) at a
point y € X. The following result generalizes (5.9.3).
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Proposition 27.1.5). Forn any y € Z?, the branching onrden deg(ny) i8
equal to my. '

1° M

and apply semicontinuity of branching orders: let (ya) be a sequence of points

Procg. We show first that deg(ny) 2 My Choose i € 1 such that m

in Z; approaching y; from (the proof of) (4.5.4), we see that for any given
§ > 0, there are points ga in any neighborhood of n(ya) such that my
distinct members of the fibre n'](ga) are at a distance less than & from
Yy and letting a-+=, we find that indeed deg(ﬂy) 2 m,.

Now by (7.1.2), the fibre w']n(y) c.Z? has [L(;I):L] members. Since
deg(nx) = {L(z):L], we have

L] = Iy.1 = .
[L(z):L] n(y.)=“(y)‘deg(ﬂy.) 2 m[L(z"):L] = [L(g):L].

Hence
deg(ny.) =m

for all y'. ’ Q.E.D.

Now we can specify the multiplicity of any y € Z?.

!

Theorem (7.2). With preceding notation, if there exist characteristic

monomials of T 4in which the expanehia of Ti seessls are not all integens,

1 Te
then Let

M$]i2 O P

be the smallest such monomial (ef.(5.6)). Set

AI = A, ot A oLt AL if Mf exists

= ] otherwise.
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Then, fon any y € 10, the mubtipbicity w(X), of X at y satisies

y

u(X)

)y~ min(mI,AImI).

with my as in (7,1.4), (7.1.5),
Remark. In (7.2) we could have defined MP to be the smallest characteristic
monomial of ¢ in which the exponents of Ti ,...,Ti are not all zero. This
1 e
might change the value of Ars but not the value of min(],AI).
We begin the proof of (7.2) with

Lemma (7.2.1). Let

be the smallest characteristic monomial of ¢ (if T has any characteristic
monomial, Li.e. 4§ [L(g):L] > 1); and set

= = ] kad i
A AC Al + Az LR Ac if M* exists

= ] otherwise.
Also, set

m = deg(m,) = [L(z):L].
Then

'u(x)x = min(m,Am).

Proof. With 7 = K(TI/",...,T/™) as before, let

P P
HO(TI""’Td) = |sum of all those terms aTI1 ces Tdd (a$0)
appearing in H for which every

exponent P3 is an integer.
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Nothing of interest changes if we replace. ¢ by ¢ - Hys S0 we may assume that
H0 =0,

Then every monomial Mo appearing in H is "moved" by some automorphism 6
as in (5.5), i.e. it appears, multiplied by 31-w for some n-th root of unity

witl, in

¢ - og = Me(T)/",.., T (cf.(5.2.2)).

Thus 'MO is divisible by the characteristic monomial M of =z, which is in
turn divisible by M*. Hence we have either ¢ = 0, in which case (7.2.1) is

obvious; ox
¢ = (/"1 1(0,...50) 4 03

and then if Tys Tpsenesty are the distinct conjugates of ¢ over L, we can

write (by(5.5.1)):
gy = (1070, T n;(0,...,0) # 0.
In this case, the Tocal ring R of (X,x) satisfies

RE WTpseeesTle] = WTpsee s TRIZ1/F(Z)

where

‘ m m
(7.2.1.1) F(z) = T (Z-g;) = I (z-Mmy)

i=1 i=1

is the minimal polynomial of . The multiplicity u(X)X of the local ring R

is the order of vanishing, at the origin, of the power series
F(Z) € E(T],...,Td,Z);

and it is apparent from (7.2.1.1) that this order is precisely min(m,\m), as

asserted. Q.E.D.
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0
I a
of X at y. Then for any i =1,2,...,a and any analytic isomorphism of germs

Now consider an arbitrary y € Z Let Y],...,Y be the local components

(W) + (1%,0)
the map
- ) d
me = w*"“‘(yis.Y) + (T a_o)

1

is clearly a quasi-ordinary projection, and correspondingly the germ (Yi,y)

will have a quasi-ordinary parametrization C(i)' Setting

Mgy = ) (cf.(7.2.1))

we have

a
U(X)y = igl “(1)

[ §-3)

‘my = Mysye
Iy 70)

In view of (7.2.1), therefore, (7.2) will be proved if we show that: .

(7.2.2) Xpsy = A : for all i =1,2,...,a.
(i) 1

For this purpose, let us describe the appropriate ;(i) more explicitly.
We note first that for j > ¢, Tj appears in H only with integral
exponents, i.e. there 48 a convengent power series H* = H*(U],...,Ud) such

that
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- n n
H(U],.'.UC’UC"']’...’Ud) - H*(U]’.."UC’UC'*}’..',Ud)’

whence

B (T T T Ty

The reason is this: if in H. there appears a term

A] Al A

= J d
Mo = tTy v Ty e Ty

0ttel

then as in the proof of (5.7) we have

My € L(T) = LMy )

where the Mi are the characteristic monomials of ¢; and since no such Mi is

divisible by T}./" (cf.(5.10)), it follows that ; €Z.

For convenience we may assume that I 1is the sequence 1 < 2 <...< e. The
~ patient reader will have no difficulty in deducing (7.2.2) from the following

Lemma.

Lemma (7.2.3). Let

cotgpz) € Xttt

y = (0,...,O,te+],. (e < ¢)

where
t ..t t $#0 (iver y €29
e+l et2 *°° ¢ te I’

Then, with H* a4 above and y sufficiently cfose Lo 0 € Edﬂ, for each

component (Yi’y) 0§ the germ (X,y) zthere {8 an analytic Lsomorphism
e (thm(y)) > (29,0)

such that the projection y.on 4is associated with a quasi-ordinary parametrization
o4 (Yi,y) 04 the form

= 1/n 1/n
Ty = BT T N Tagy + UgyyaeennTy

+ud) -z
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where the u; € U satisfy
uz = tk e<ksc
c<2=sd
and
H*(O,...,O,ue+],...,ud) =z,

Moreover, 4§ the monomial
Ay A A
- 1.2 c
Mf = T] To" eee Te
of Theonem (7.2) exisis, then the smallest characteristic monomial of Ty A4
Al A2 e
T] To™ eee Te 3 and otherwwise %y has no characteristic monomials,
Proof. As in (5.3.2) we may take X to be the image of a neighborhood V

of 0¢td under the map e: V - g9 given by
= (D n ' "
cp(v»],...,vd) - (V],...,Vc,vc_'_-‘,...,vd,ﬂ (V],...,Vd)),
the map
-, d &
T (Xoy) > (T,m(y)) |

being given by projection to the initial d coordinates.

The preceding map ¢ factors as V -+ X X, where v 1is the
normalization map. For any sufficiently small neighborhood Xy of y in X,
v separates the components of Xy at y in the sense that v'](xy) consists
of disjoint open sets, each mapped by v onto an irreducible component of X
passing through y; and hence a similar statement holds for w“(xy).(‘)

Thus ¢ induces parametrizations of the germs (Yi,y).

My

e didn't really need v here, just that ¢: V + X 1is proper and surjective,
with finite fibres.
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More specifically, let u € m"](y), say
u= (0,0,...,0,ue+1,...,ud).

Since, for e <k = ¢, ug = tk 4+ 0, we can choose € > 0,_ and holomorphic

functions wk(r) defined for lt-tkl < & such that

B lr) = T = us () = 03
i.e. for some & >0 andall v, with |v | <é:

By ) = v (e <k=c)
Then we can define an analytic {somorphism of germs

d+1

vy = @9 ,0)

by
(7.2.3.]) w(T-l seee ,TdaE) = (T] ’.."Te’we"'] (Te+])9o .o ,\I)C(Tc) ,TC""]-tC"'] sese ,Td"td,g‘Z).

Since ¢ is actually a proper map of V onto X, with finite fibres, we can choose

the above neighborhood Xy such that

-1
(x,) = U N(u,6)
¥ M UEcp-]()') ‘

where N(u,8) 1is the polydisc neighborhood of u with radii all equal to §. As
remarked above, the components of X at y are then represented by the jrreducible

varieties
{tp(cp-](xy) N MW Ty g1 (y):

(Some repetition of the same component may occur here.)

But for all (v],...,vd) in N{0,8) we have
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¥ Qp(V],...,Ve,Ve+] *lgppaeeeaVy t ud)
= (V],o'osve e+]’” "’VC C'H’.'.’Vd’H (V]s--.sv e+] e+-l,...,Vd + Ud)‘Z).

Thus each (Y,y) has a parametrization of the asserted form Cy® associated
with the quasi-ordinary projection vy,em, where ¢, is the restriction of ¥
to (Ed,w(y)) c:(td+],y) (inclusion via the initial d coordinates).

For the last assertion in (7.2.3) let Wyseees® be n-th roots of unity

e
such that

(7.2.3.2) HATY™ TYT L+ e DT TR a4

Then this difference can be written in the form

1 }\l 1

A nx' nA
1 e e+ 1/n 1/n
(7.2.3.3) T] "‘Te (Te+] e+1) ...(T +u ) n(T ,...,T ’Te+1 e+1"")
where
Ai Aé | Aé Ai 1/n e+1 1/n,"
(7.2.3.4) T] T2 vee Tc = T] e T ( e+1) cee (T )

is a characteristic monomial of ¢ (cf.(5.2.2), (5.5.1), and recall that
Tc+1""’Td do not appear in the characteristic monomials), and where n is a

convergent power series not vanishing at 0 € Ed, so that (y being sufficiently

close to 0 € Ed+])

n(O,...,O,ue+],...,ud) $ 0.
By assumption
n_
(ue+] . uc) = tapq eee te 0

and so (7.2.3.3) can be rewritten as
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A Al

(7.2.3.3) T, oo T YL TYNT T 0t (0,ea050) F 0

This shows again that Sy is a quasi-ordinary branch; and the chakacteristic
Al Al )
monomial T]] veo T € of ¢ s obtained from a characteristic monomial

e U
(7.2.3.4) of ¢ by substituting 1 for Tli?,....Tl/n. Moreover not all of
Al Al

1 e
ces Te could

not appear in the difference (7.2.3.2). Thus every characteristic monomial

A
is divisible by the monomial T,'

Ai,...,xé can be integers, since otherwise the monomial T1

of ¢ voo Tg® described in (7.2.3),

u e

provided that Mf exists; and Zy has no characteristic monomials if Mf

doesn't exist.
M
1

M

It remains to be shown, when M¥ =T 1 e

1
is a characteristic monomial of Ty

Ac : »xe
voe Tc exists, that T Te

Write Ai = bi/n with bi € Z {1<isc). Since Apseeesdy are not all

integers, there exist n-th roots of unity Wysee sl such that

b b b./n b./n
1 1 1 1
(1M ™ LT

Then the monomial Mf appears (with non-zero coefficient) in

] ! 1
O ULTRRIPNR 0 VARG A IR AN ST IR AR S
where €(0,...,0) $+.0 and )
’ A AL
21 c
me=T' T,

is a characteristic monomial of <z, with at least one of x{,xé,...,xé not an
integer, Since M divides M¥, it follows from tbe definition of Mf that

A A
M= Mf. As above ((7.2.3.2) etc.) we find that T1] ves Tee is a characteristic

monomial of Ty and we are done.

(1;3) Let (X,x) be parametrized by the quasi-ordinary branch

_ 1/n 1/n
g = H(T] ,...,Td )
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where, as usual, the variables are labelled so that Ti divides the discriminant
AMz) if and only if i< ¢ (cf.(5.10))."

We are ready now to describe the singular Locus
I={y¢ XIX is not smooth at y}
={ye Xlu(.X)y > 1}

y is the multiplicity of X at .

Theorem (7.3). (a) The singular Locus (I,X) 445 an analytic, subgewm of
(Xsx) whose components (at x| alf have the form Z; (1gize} o Zij (1si<jsc),
cfo (7.7). Moreover if neither I, non Zj 45 a component (where Isi<j<e)
then Zij 48 a component.

(b) For 1 =1 xsc, Z; 48 not a component of I 4if and only if
X v
1

A
ME=T LTS exists (of.(7.2) and is the fargest chanacteristic monomial

of 7, and Ay = 1/b  fon some integer b 22 such that

b iy o 1/n 1/n o 21/n 1/n
(M) € L(z") = LT e a2 000, T e e TT))

{wherne 'L 48 the fraction field of t(T],...,Td));
(c) For 1=si<j=e, Zij 45 a component of I Aif and only if for some |

integen b =2 and fon some y € Zij» the gewn (X.y) ds isomonphic 2o the

d+1

subgerm of (8¥1,0) degined by the equation 2P = LTy 16 2, e

component, then in fact this Last condition holds for all y € Z?j lef{7.1)).

Remarks, (7.3.1) Concerning (b), it is not hard to show, using (5.7), that

if M] < M2 <oee< Ma are the characteristic monomials of z which are not
1/n
i

(Mf.!)b € L(z") if and only if there are integers pj(lsjsd) and qk(lsksa)

divisible by T (i.e. they are the characteristic monomials of ') then

such that

b_ P Pa. 9 %
(M,‘*) - T] “ee Td M] LX) Ma .
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Thus (or by relations similar to (5.9.4)) the conditions in (b) can be checked
computationally.
Also, the integer b in (c) can be determined easily from the

characteristic monomials of ¢ (cf. proof of (7.3.3) below).

(143;3) Suppose that (X,x) 1is noamal. Then no in is a component of I,
and (b) shows that z has either no characteristic monomials (i.e. (Xsx) s
smooth) or exactly one characteristic monomial, this being of the form
T}/bT;/b vee Tl/b. Using (5.7), we see that R = E(T‘,...,Td)fcl is then the

integral closure of Q(T],...,Td) in L(T}/bT;/b cee Tl/b), i.e.

, b
RE YT TPUT Ty o TOVPT 8 Wy T2 (2T Ty o T

In other words, (X,x) is isomorphic to the subgerm X, . of (Ed+1,0) given
?

by the equation Zb = T]T2 vos TC {b=1 if X is smooth).

Conversely any such xb,c is normal, and b, ¢ are uniquely determined by

Xb,c: in]fact xb,c is a quotient singularity with local fundamental group
c- .
(Z/bZ)~-"", and reduced branching sequence consisting of ¢ copies of the

pair (b,b) if ¢ =2 (cf. §6).

Proof of (7-3). (a) Let m:(X,x) -+ (Cd,O) be as usual, with discriminant
Tocus D given by T]T2 ees T = 0. Then

red (D)= U I,
Isisc
Also, by (6.6),
2(2) = U Zi.cz(])cZ.
lsi<jsc
If I meets Z?, then, since u(X)y is the same for all y € Z? (by Theorem
(7.2), or by equisingularity of X along Z?) it follows that Zi c I. Hence I

is the union of 2(2) and of all the Zi such that I meets Zo’ and (7.3){a)

i’
results.
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(b) If is<c, then m > 1 (5.10.1). Soby (7.2), if Z, is not a

component of Z, then

and hence M} exists. Let us show that then My s the largest characteristic
monomial of <z, and that .

(M;)b € L(z') where b = m, = A;].(1)

Assume, for conyenience, that 1 =1, Since A] = b'], thelorbit of M?
under the group of E(T],T;/",...,TL/") - automorphisms of c(T}/", ;/",...,T;/")

consists of b elements, namely all the elements <wa with wb = 1. Since such

1

automorphisms leave ¢ fixed, therefore

LG se)T = b= my = [L(2)iL(eh]
But by (5.7), M% € L{z), and so
L(e) = L m).

Hence Mf has exactly b conjugates over L(c]). necessarily the above b

elements mMT, and the norm of M? in L(;]) is

Nom(Mp) = T (ut) = (49)° € L(c).
wb=1
Furthermore, since (by (5.7)) L(c]) is generated by characteristic
monomials of r which are not divisible by T}/", hence are smaller than
M#, and since every characteristic monomial M of z lies in L(zg) = L(c',Mf)
(again by (5.7)), therefore (5.8.1) shows that M < M*, 4.e. M{ is the largest

characteristic monomial.

Matso b = ng» by (5.9.2) or (6.6.2).
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Conversely, supposing that

(1) ‘Mf exists and is the largest characteristic monomial,
1= 1/b, b €Z, and

(1) (° e Ligh,

let us deduce that

(i) A

whence, by (7.2), u(X), =1 for ye¢ 29, sothat z, ¢ 5. (This will
complete the proof of (7.5)(b)).

Indeed, from (i) and (ii) and the definition of M? we find that the
characteristic monomials of ¢ other than My are not divisible by T}/",
j.e. they are just the characteristic monomials of the quasi-ordinary branch

g1. Lemma (5.7) then yields

Lz) = L',

From (ii), we see as before that Mf has at least b conjugates over L(c]),

viz, {wa} b . Hence

w =1

b< [z’ M) :L(ch].
The opposite inequality follows from (iii). Thus
b= [L( M):L(z))] = [L(z):L(zh)]

as desired,

(¢) Suppose that for some y € Zij’ (X,y) is defined (up to isomorphism)
by Zb = TiTj' Then X is normal at y, and therefore neither of the
i

in I3 so by (a), Zij is a component of I.

codimension one subvarieties Z. and Zj passing through y can be entirely
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Conversely, if Zij is a component of £, then there are no codimension
one components of I passing through any y ¢ Z?j (by {a), such a component
would have to be Zi or Zj - as always we assume that y is sufficiently
close to x). So (X,y) 1is normal, and in particular irreducible. The
discriminant of © has two components at w(y) (viz. Ti =0 and Tj = 0),
Hence by Remark (7.3.2), the germ (X,y) is given by 0 - TiTj for some b
and b =2 since X is not smooth at y.

Q.E.D.

Corollary (7.3.3). 1If I has components of the fonm Zij’ then the

Anteger b din (7.3)(c) depends only on (X,x), and not on 1,j.

Proof. First of all, since Zb

= TiTj defines a quotient singularity whose
local fundamental group is cyclic of order b (cf. 8§2), therefore b is uniquely
determined by Zij‘

Next, since neither Zi _nor Zj are components of £, (7.3)(b) shows that
for some integer b' = 2 the largest characteristic monomial of ¢ is

A] Ac
1k = M* = Mk =
Mi Mj Mij T] vos TC :
with
As = A = 1/bY;

1 J

and hence no other characteristic monomial of ¢ is divisible either by T}/"
or by T}/". So according to (7.2.3), for y € Z?j the irreducible (normal)
germ (X,y) has a_quasi-ordinary parametrization whose smallest characteristic
monomial is' T}/blT!/bl. But then Remark (7.3.2) shows that (X,y) is given by

Jd
)
Zb = TiTj’ and so b' = b,
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Finally, as in the proof of (7.3)(b), if L] c L(z) 1is the field generated

over L by all characteristic monomials of ¢ other than the largest one, then
b = [L(2):L'],
and so b' does not depend on i, j.
Example (7.4) (d=7). For convenience, let
(tou,v,w,X,y,2) = (T],TZ,T3,T4,T5,T6,T7).

Let L be the fraction field of T(t,u,v,w,x,¥,2}, and let z be the

quasi-ordinary branch

t1/2+-t5/4u3/24-t13/8u]9/12v]/6w1/3x]/6y]/6+-t5/2u5/3v4/3w8/3x]/3y1/32.
Using the relation
(tllz)(t5/4u3/2)3(tl3/8u19/12v1/6w1/3x1/6y1/6)2

- (t5/2u5/3v4/3w8/3x1/3y1/32)(t5u6V-1w—22-1)

we see that ¢ has three characteristic monomials., Moreover

(7.4.1) (tl3/8u19/12v1/2w1/3xl/6y1/6)6 " t8u8t1/2(t5/4u3/2)Glit]/z,t5/4u3/2)’

By (5.7), we have then

[L(2)eL] = [L(eV2, 5832 (VBN 6 N3 V/6 V) 1

(The last equality can be deduced from (7.4.1) or via (5.9.4).) Using (5.9.3),

we calculate further:

(ml,mz,ms,m4,m5,m6,m7) = (24,12,6,6,6,6,1).
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And by (5.9.2):
(n],nz,n3,n4,n5,n6,n7) = (8,12,6,3,6,6,1). -
So the reduced branching sequence {§6) is
{(]2512)’(]294),(606)’(606):(6,6):(6,3)}.>
By (7.2.1), the mu]tip]icjty»of the germ (X,x) pgrametrized~b; c{ is
u(x), =12

By (7.3) the components of the singular locus I are:

(Zi)i t=17=0 ‘ (generic multiplicity = (1/2)m, = 12,¢f,(7.2),
(Zz): u=0, ¢z-= t]/z (generic multiplicity=|n2= 12)

(24): Ww=0, c.- £1/2 4 t5/4u3/2 (geﬁeric multiplicity = (l/3)m4==2)

(235): v=x=0, ¢ = £1/2 4 t5/4u3/2 : (generical]y 26 = vx)

(236): v=y=0, = tl/g + 1:5/4-.:3/2 (generically 26 = vy)

i(Zss)E' x=y=0, = t]/z + t5/4u3/2 (generically 26 = xy).

As explained in (5.9), the group A6(X)x I~ HIZ(X)x is presented by the 9x6
matrix obtained by setting the following 3x6 matrix on top of the 6x6 diagonal

matrix with entries (24,12,6,6,6,6).

12 0

o 0 0 0
30 18 0 0 0 0
39019 1 2 1
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A standard reduction of this 9x6 matrix to canonical form yields the

decomposition
(7.4.2) A 2212 @ (@/6)*,
Example (7.5). 1In (7.4.2), the invariant factors of Ad-](x)x are

mc|mc_]l...[m2. This is not always true. For the three-dimensional germ (X,x)

parametrized by

r = x3/2y2/3 + x7/4‘y7/6, + X9/4y9/6z1/4 + x'|9/8y22ﬂ/8

one calculates (as in (5.9)):

(nx,ny,nz) = (8,6,8) (5.9.2)
AZ(Y)R =Z/2Z. (5.9.1)
[L(z):L] = 8.6.8/2 = 192 (5.9.4)
(mx,my,mz) = (192,192,16) (5.9.3)
and finally |
AZ(X)X:’Z/ZZ@Z/TGZ @L/96 Z. (5.9.1)

The invariant factors are 2|16]96.
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YiH-NAN GAU

APPENDIX
by J. Lipman [7]

INVERSION LEMMA. Ifa hypersurface germ in C® has a quasi-ordinary parametriza-
tion ¢ = X*/"H(XY™Y/*) with 0 < u < n and H(0,0) # 0, then it also has
one of the form ¢! = X"/*H'(X'/*, Y1/") where H'(0,0).# 0.

Proof: Let f(X,Y,Z) be the minimum polynomial of ¢ over C[[X,Y]]. The
conjugates of { over C[[X,Y]] are of the form {; = X*/*H,(X¥/" Y1/*) with
H;(0,0)#0 (i =1,2,...,m where m = degree of f in Z). Thus

fX,Y,2)= ﬁ[z - X /rH (XY, Y

i=1

and f(X,0,0) = X™*/*F(X/" 0) with ﬁ(0,0) # 0. Hence mu/n is a posi-
tive integer, and by the Weierstrass preparation theorem there is a power series
E(X,Y,Z), E(0,0,0) # 0, such that Ef = g where g is a polynomial of degree
mu/n in X over C[[Y, Z]]. It will clearly be sufficient to show that the discrimi-
nant of g has the form ZPY%.(unit in C[[Y, Z]]), and that g has a root of the form
Zrlv g (ZM e YY), H(0,0) # 0.

Let H = X*H, so that { = H(X/*,Y1/*), We shall construct a power
series G in two variables (over C), G(0,0) # 0, such that

F(ZI/uG(Zl/u’ Yl/n)’yl/n) = Z.

Assuming that such a G exists we set £ = G(Z/*,Y1/"). Since
F(X,Y,H(XY",Y/™)) = 0, we have, upon substituting 21/¢¢ for X1/»,
F(Z7/u¢7 )Y, Z) = 0; hence Z™/“£™ is a root of g. Therefore, the discriminant of g
is the product of all the conjugates over C[[Y, Z]] of the element gx(Z™/*¢,Y, Z).

Now
nfugn 2 nfuen njugn —
gX(Z ¢ ,Y,Z) aZ(Z 3 )+gZ(Z ¢ )Y’Z)—‘O'

But
EQZ_(Zn/ugn) = Z(n/u)—lel(zl/u,Yl/n) 61(0, 0) ?(__ 0
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|

and j
|

92(Z™%¢™ Y, Z) = B(Z"/¢n, K.Z)fz(Z"/"‘E" Y,2).

The product of all the conjugates (over C[[X, Y]]) of the element fz(X Y, (¢ )
is the discriminant of f, which is, by assumption, of the form X Y (X, Y),
€(0,0) # 0; hence
'fZ(X) Y, -.H—(Xi/n, Yl/n)) = Xc/"Yd/ne"(Xl/n, Yl/n)

(¢, d integers, €"(0,0) 5 0). Thus s

gz(Z"/ufn, Y, Z) = E(Zn/ugn, Y, Z)Zc/ufcyd/nell(zllug, Yi/n)
= Zc/"Yd/"e"'(Zl/“,Yl/") e"'(O, 0) ?é 0.

So
gx(Zn/uE",Y,Z) s Z(n/u)-—lel + Zc/uyd/nem =0

and : .
gx(Z"/"ﬁ“,Y,Z) = za/uyt/ne*(zllu,yl/n)

(s, t integers, €*(0,0) # 0). Hence the product of the conjugates of gx(Z n/ ¥¢,Y,2)
is of the form ZPY'?. (unit in C[[Y, Z]]) where p and ¢ are integers, necessarily
non-negative since gx(Z"/*¢,Y, Z) is integral over Cl[Y; Z]]. Thus g is as desired. 5
To prove the existence of G, we remark that if W ; is an mdetenmnate, then
H(X,Y) - W* = X*H(X,Y) — W* has a factor (in Cl[X,Y,W])) of the form
XG(X,Y) - W with G(0,0) # 0 (for G we take any power series such that
Gt=H )- By the preparation theorem, there is a unit (X, Y, W) such that

E(X,Y,W)(XG(X,Y) - W) = X - G'(W,Y)

and, setting X' = 0, we see that G'(W,Y) = WE(0, , w).

 Let GW,Y) = F(0,Y, W); then G(0,0) £ 0, and setting
X =G'(W,Y) = WG in the above relation, we have W@ - G(WG, Y)-W =0,
whence H(WG,Y) — W* = 0. Our conclusion follows on substituting Z/* for
W and Y'/" for Y. g ‘
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