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Hironaka’s theorem on the existence of resolutions of singularities
for any algebraic or analytic variety V over a field of characteristic
zero {H. Hironaka, Ann. of Math. (2} 79 (1964), 109-203; ibid. (2)
79 (1964), 205-326; MR 33 #7333; J. M. Aroca, H. Hironaka and
J. L. Vicente, Desingularization theorems, Consejo Sup. Inv. Cient.,
Madrid, 1977; MR 80h:32027] is an outstanding achievement of
twentieth-century mathematics, by virtue of the depth both of its
proof and of its applications. For compact complex-analytic V', a
resolution is a proper modification f: ¥/ — ¥V from a manifold ¥’
onto V', where “modification” means “map inducing an isomor-
phism V' — f=1§ 5 ¥V —§ for some nowhere dense subvariety S
of ¥ (for example, S:= singular locus of V). If V' is embed-
ded in a manifold M, one also considers “embedded resolutions”,
where V7’ is embedded in a manifold M’ and f is induced by a
proper modification g: M’ — M such that g~V (D V') has only
normal crossing singularities (points where there is a local coor-
dinate system such that each local component of g~V is defined
by the vanishing of a subset of the coordinate functions). Often—
not always-—one asks for g to be a composition of blowups with
smooth centers. Hironaka also dealt with, e.g., real-analytic, non-
compact, non-reduced varieties, where further technicalities come
into play. Moreover, one may ask for a canonical realization of g—
one which commutes with open immersions, and in particular with
group actions, or more generally with smooth base change.



The history of the problem of existence of resolutions goes back
more than a century [see, e.g., J. Lipman, in Algebraic geometry
(Proc. Sympos. Pure Math., Vol 29, Humboldt State Univ., Arcata,
Calif., 1974), 187-230, Amer. Math. Soc., Providence, R.1., 1975;
MR 52 #10730]. Zariski brought about the transition from the
classical characteristic-0 approaches—which succeeded only up to
dimension 2—to the modern ones. In the 1940’s he proved local
uniformization (resolution “along a valuation”) in any dimension,
and was able to globalize in dimension 3. In positive characteristic,
the 2- and 3-dimensional cases were dealt with in the 1950’ and
1960°s by S. S. Abhyankar [see, e.g., Resolution of singularities
of embedded algebraic surfaces, Academic Press, New York, 1966;
MR 36 #164], who, like Zariski, made heavy use of valuations,
a technique which has only recently come back into vogue. And
the history is ongoing: work continues on the still-open positive-
characteristic case (the total effort diminished in its diversity by
a premature announcement of success); and novel approaches to
global desingularization have just been developed by A.J. de Jong
et al. (see, e.g., his paper with D. Abramovich [J. Algebraic
Geom. 6 (1997), no. 4, 789-802], and also the paper by F. A.
Bogomolov and T. G. Pantev [Math. Res. Lett. 3 (1996), no. 3,
299-307, MR 97e:14024]), leading to a new generation of short,
but non-constructive, proofs.

Hironaka's proof is lengthy, difficult, and non-constructive. In-
fluential as the proof has been, few people can have checked it
through entirely, even after some subsequent enhancements of the
machinery-—Hilbert-Samuel stratification (B. Bennett), maximal
contact (J. Giraud, ...). Simplified, more algorithmic proofs are
important not only for imparting better understanding of what is
really involved in this great theorem, but also for their potential
value in unearthing basic features of singularities and their classifi-
cation. The challenge of finding more straightforward algorithmic
approaches was taken up by Zariski, Abhyankar, and others, and
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successfully met only in the past decade by Bierstone, Milman,
and Villamayor.

The paper under review presents—with care, precision, and
examples—an essentially self-contained account of such an algo-
rithm. One of the stated goals is to lead the reader along the
road by which the authors have come to understand desingular-
ization rather than simply “know” it is true. They write in the
language of analysis, not in that of modern algebraic geometry.
This not only enlarges the potential readership, but leads to a uni-
fied treatment covering algebraic and analytic spaces—complex,
real, p-adic—as well as some categories where desingularization
theorems, and applications such as Lojasiewicz’s inequalities, were
not previously known—for example “quasi-Noetherian” spaces
and “quasi-analytic” hypersurfaces.

Let us indicate some salient features of the paper, with reference
to the cultural context in which they arose.

In the early 1980’s, Abhyankar announced a “canonical desingu-
- larization” procedure [Weighted expansions for canonical desingu-
larization, Springer, Berlin, 1982; MR 84m:14013]. His fundamen-
tal idea was, very roughly, to construct a desingularization as a
succession of blowups, specifying at every point of each variety ap-
pearing in the process a function, the “resolution invariant”, which
is locally invariant in the sense of compatibility with open immer-
sions, which depends on the preceding history of the process,
which takes a finite number of values in a totally ordered set, and
whose maximum value locus is a smooth subvariety, upon blowing
up which one lowers the said maximum value, thereby “improving
the worst singularities”. Eventually, by finiteness, the resolution
invariant can no longer decrease—so it is constant everywhere and
then the original variety has been transformed into a smooth one.
(This description is not only vague but also oversimplified, since
normal-crossings conditions also play a basic role; nevertheless it



may suggest what everyone since has thought a constructive reso-
lution should be.) Abhyankar stated in the preface of those notes
that by going through the 2204 pages “consisting mostly of defini-
tions ..., the reader could get an idea of the proof™; but complete
details have never appeared. Abhyankar’s paper [Adv. in Math.
68 (1988), no. 2, 87-256; MR 89¢:14012], giving his 1966 proof
of surface desingularization by “good points”, was intended to
serve as “a good introduction to the higher-dimensional canoni-
cal desingularization”. (It is, in principle, but U. Orbanz’s earlier
exposition of that proof, in a book by V. Cossart, Giraud and Or-
banz [Resolution of surface singularities, Lecture Notes in Math.,
1101, Springer, Berlin, 1984; MR 87¢:14032 (pp. 1-49)], is more
readable.)

A local version of constructive resolution for analytic spaces,
intermediate between uniformization and global resolution, was
published by Bierstone and Milman in 1989 [J. Amer. Math. Soc. 2
(1989), no. 4, 801-836; MR 91c:32033]. (An earlier version for the
hypersurface case was in §4 of another paper of theirs [Inst. Hautes
Etudes Sci. Publ. Math. No. 67 (1988), 5-42; MR 89k:32011], here-
after referred to as [BM 1988].) The first published proof of global
constructive resolution was Villamayor’s [O. E. Villamayor U., Ann.
Sci. Ecole Norm. Sup. (4) 22 (1989), no. 1, 1-32; MR 90b:14014],
subsequently refined and clarified by Villamayor [Ann. Sci. Ecole
Norm. Sup. (4) 25 (1992), no. 6, 629-677; MR 93m:14012] and
Villamayor and S. Encinas [“Good points and constructive resolu-
tion of singularities”, Acta Math., to appear]. Villamayor’s papers
all assume Hironaka’s reduction of the general problem to the
“hypersurface-like” problem of “simplification of coherent sheaves
of ideals” (see below), and constructivity must be interpreted ac-
cordingly. Bierstone and Milman’s globalization for hypersurfaces
appeared in another paper [in Effective methods in algebraic ge-
ometry (Castiglioncello, 1990), 11-30, Progr. Math., 94, Birkhiduser
Boston, Boston, MA, 1991; MR 92h:32053). The present paper
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treats fully the general—not necessarily hypersurface—case. An-
other helpful exposition by Bierstone and Milman of the hyper-
surface case is presented elsewhere [“Resolution of singularities”,
Current developments in several complex variables, edited by Y.-T.
Siu and M. Schneider, Cambridge Univ. Press, to appear].

The Bierstone-Milman approach is “bottom-up”: it begins with
an explicit, elementary construction of a resolution invariant with
properties as above. Carefully as the invariant is motivated and
described, nevertheless a good deal of patience will be required
to master it. This seems inevitable: given what it accomplishes,
no resolution algorithm is likely to be all that simple. The de-
scription of the invariant, depending initially on a choice of local
coordinates, involves numerous formulas, not easy to absorb, at
least for the reviewer. Except for the rare reader with sufficient
experience and intuition, considerable time and effort will likely
be needed to understand fully what to do with, say, the surface
Z" = X°Y*—indeed, the paper spends 13 pages on just part of
the case Z2 = X2Y3. (The point of that example is to illustrate
the workings of the invariant, not to give the complete resolution
of the surface.) This is not to say that such an effort will go un-
rewarded; the invariant and its behavior with respect to certain
blowunps computably encode the essential local features of the al-
gorithm in a concise, efficient manner; and moreover their local
properties, whose establishment in Chapter II is a basic part of the
paper, are strong enough to open up an easy passage from local to
global resolution—a fundamental problem in the work of Zariski,
Hironaka, and Abhyankar. (This passage is negotiated in Chap-
ter II) for the hypersurface case and in Chapter IV for the general
case.

In contrast, Villamayor’s approach is “top-down”: he concep-
tualizes each step of his process, and ultimately converges to the
construction of a resolution invariant-—not, however, as explic-
itly described as Bierstone-Milman’s. Thus the two approaches



reinforce each other, illuminating various aspects of resolution
procedures in different ways. On the other hand, the respective
controlling invariants are built ultimately from the same ingre-
dients, by similar processes. For instance, Encinas has informed
me that in the above example Z2 = X2 Y3, Villamayor’s algorithm
blows up the same centers described by Bierstone and Milman,
though the order for the blowups in “years two and three” is re-
versed. (By incorporating a variant of Abhyankar’s “good point”
notion, the algorithm in the most recent work of Villamayor and
Encinas becomes shorter in some cases, though not in the preced-
ing example. According to Bierstone and Milman, the algorithm
in the present paper sometimes becomes more efficient too if
one makes use of additional information—beyond the maximum
value—carried by the resolution invariant.) .
Let us go lightly over some of those ingredients, keeping in
mind that having raw ingredients is one thing, and coming up
with a recipe for refining and combining them is something else
again. Hironaka made clear that the basic resolution problems,
even in characteristic > 0, can be reformulated in terms of resolv-
ing “idealistic exponents™: pairs (J;5) (modulo some equivalence
relation) with J a coherent ideal on a non-singular variety W
and b an integer—together with a collection E of hypersurfaces
in W having only normal crossings [see in Algebraic geometry (J
J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md., 1976),
52-125, Johns Hopkins Univ. Press, Baltimore, Md., 1977; MR 58
#16661]. Such pairs appear, in somewhat different guise, as “basic
objects” in the work of Villamayor, and as “infinitesimal pre-
sentations” in the present paper. (There is a significant technical
difference between infinitesimal presentations and idealistic expo-
nents, having to do with what are called “exceptional blowups”.
Resolution invariants are defined in terms of presentations, ide-
alistic exponents, basic objects ..., so are not a priori invariant,
since the defining data depend on local coordinate systems. Prov-
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ing independence from coordinates is a major issue, taken care
of vis-a-vis presentations in Chapter II—this is where exceptional
blowups are essential.) The singular locus S = S(J,b) consists
of all points where J has order > b. One associates with any
blowup W' — W of a “permissible” subvariety C of S (i.e., hav-
ing only normal crossingsin W with E) a transformed basic object
(J',b)+ E’; and the problem is to find a sequence of such blowups
at the end of which the transform has empty singular locus. Hiron-
aka proved that this is always possible in characteristic zero. He
formulated the fundamental inductive strategy: roughly speaking,
if S itself is “large enough” then it is permissible, and blowing it up
gives a resolution; otherwise there exists a basic object in 2 “max-
imal contact” space of dimension < dim ¥, whose resolution is
equivalent to that of (J,5).

Hironaka used an integer w, the “residual exponent” (roughly
the order of J minus that of E, all divided by &), which
Villamayor calls “weighted order”, to measure the progress of the
resolution. (When the weighted order vanishes, one has a “mono-
mial situation”, where a simple combinatoric procedure suffices.)
A similar integer is a basic component of Bierstone-Milman’s
invariant. A key to simplifying Hironaka’s very complicated in-
duction argument seems to have been the discovery of the right
way to take history into account as well: roughly, £ has to be di-
vided into two parts, one of which consists of divisors arising
from blowups which have occurred since the weighted order last
improved; and only those divisors should enter into the definition
of weighted order. Working this idea into an inductive scheme is
actually more complicated: informally speaking, the resolution
invariant is a sequence of up to dim V' different pairs, one for
each level of the induction on dimension, each one a weighted or-
der together with the number of exceptional divisors which were
present the last time in the resolution process that weighted or-
der, or anything at a higher-dimensional level in the invariant,
decreased.



Bierstone and Milman state in the Introduction that “Essential
points [of our proof] include the way we encode the history of the.
resolution process, originating in [BM 1988} ...”. It seems then
worth noting that some striking formal similarities are shared by
the [BM 1988] proof and the above-mentioned early 1980’s exposi-
tion by Orbanz of Abhyankar’s two-dimensional good points proof
[see V. Cossart, J. Giraud and U. Orbanz, op. cit.; MR 87¢:14032
(pp. 35-38)], especially in the enabling representation of a power
series as p; --- p,f where f = 2" + (%, »)2" "2 + - + an(x, y),
p;j =z + Bj(x, ), where the p; represent some history, and where
finally induction on dimension has been used to make the a’s and
B’s into a set of monomials totally ordered by divisibility. Any
such similarities notwithstanding, the [BM 1988] proof obviously
accomplishes much more, not only in what it proves—more than
local uniformization in any dimension—but in its revelation of
the inductive possibilities inherent in the techniques. The authors’
inductive procedure, further developed in the above-mentioned pa-
per [J. Amer. Math. Soc. 2 (1989), no. 4, 801-836; MR 91¢:32033],
lies at the heart of their approach to desingularization.

Hironaka’s reduction of resolution problems to those for ideal-
istic exponents involves coming up with what he calls an idealistic
space associated to the Hilbert-Samuel function of an arbitrary va-
riety. Hironaka’s construction works for the étale topology. (That
topology presents no obstruction to Villamayor’s approach, which
is compatible with arbitrary smooth base change.) In the pre-
sent paper a self-contained treatment of an analogous reduction
has a prominent place (Chapter III). The reduction is to a sit-
uation which can be handled by the techniques of Chapter II,
where there is a self-contained proof for simplification of coher-
ent sheaves, in particular for desingularization of hypersurfaces.
A noteworthy improvement here is that, in accordance with the
goal of presenting a constructive, unified treatment of desingu-
larization for several different categories, only “regular” functions
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within the initial class under consideration are needed, and not
functions algebraic over them (such as would be required for étale
coverings).

The authors freely acknowledge their debt to Hironaka’s results
and philosophy. What can be gleaned from this paper concerning
the natural question of its relation to the previously published work
of Villamayor? Besides the listing in the References of the first two
of the above-mentioned papers of Villamayor (as [V1] and [V2]),
the only direct allusion is a statement that ““... the way we encode
the history of the resolution process, originating in [BM 1988],
[is] used in a similar way in [V1])”. In [V1], it might be noted,
Villamayor does much more than the local induction of [BM 1988],
describing a globally valid inductive proof of desingularization by
blowing up permissible centers.

Bierstone-Milman and Villamayor are certainly aware of each
other’s work, and have communicated about it. My own im-
pression is that both approaches were worked out more or less
independently in the late 1980’s and early 1990’s. All three authors
deserve the gratitude of the mathematics community for making
both the understanding and possible applications of resolution
much more accessible than was the case before.

In conclusion, Bierstone and Milman have synthesized and lov-
ingly exposed an approach to canonical resolution whose algorith-
mic basis should prove of great use in the study of both local and
global properties of singular spaces in a variety of categories—
for some of which no form of resolution was previously available.
This is a very substantial, valuable contribution to an area of fun-

damental importance.
Joseph Lipman (1-PURD; West Lafayette, IN) m







