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Abstract. Let X, Y be smooth varieties of dimensions n, n + 1 over an algebraically closed
field, and f :X → Y a finite map, birational onto its image Z. The source double-point set
supports two natural positive cycles: (1) the fundamental cycle of the divisor M2 defined by the
conductor of X/Z, and (2) the direct image of the fundamental cycle of the residual scheme X2

of the diagonal in the product X ×Y X. Over thirteen years ago, it was conjectured that the
two cycles are equal if the characteristic is 0 or if f is “appropriately generic.” That conjecture
will be established in a more general form.

1. Introduction

Let X and Y be smooth varieties over an algebraically closed field, and assume that
dimY − dimX = 1. Let f :X → Y be a finite map that is birational onto its image
Z. For example, X might be a projective variety, and f a general central projection
onto a hypersurface Z in Y := Pn+1. Consider the source double-point scheme M2 of f .
By definition, M2 is the effective divisor whose ideal is the conductor CX of X/Z. Its
underlying set consists of the points x of X whose fiber f−1f(x) is a scheme of length at
least 2. Consider also the residual scheme X2 of the fiber product X ×Y X with respect
to the diagonal. By definition, X2 := P(I(∆)) where I(∆) is the ideal of the diagonal.
Consider finally the map f1:X2 → X induced by the second projection. Its image f1X2

too consists of the x whose fiber f−1f(x) has length at least 2. Thus there are two natural
source double-point cycles: the fundamental cycle [M2], and the direct image f1∗[X2]. Are
the two cycles equal? For over thirteen years, the equation

[M2] = f1∗[X2] (1.1)

has been known if dimX = 1, and conjectured if dimX is arbitrary provided also the
characteristic is zero or f is “appropriately generic” [19, p. 383; 9, p. 95]. This article will
establish that conjecture in a more general form.
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In arbitrary characteristic, Equation (1.1) holds if and only if

cod(Σ2, X) ≥ 2, (1.2)

where Σ2 is the locus of points x in X such that dim Ω1
f (x) ≥ 2; see (3.11). (In other words,

Σ2 is the “Thom–Boardman” locus of points where the “kernel rank,” or the “differential
corank,” of f is at least 2. It is also the locus where the fibers of f are not “curvilinear.”) If
f is a “generic” map, such as a generic projection [19, pp. 365–366], then the ramification
locus Σ1, the locus where dim Ω1

f (x) ≥ 1, is of codimension 2 or empty, and Σ2 is of codi-
mension 6 or empty. In many important cases in practice, Σ1 is, however, of codimension
1, but (1.2) holds nevertheless. For example, f might be a central projection of a smooth
curve X onto a plane curve Z with cusps. Indeed, Condition (1.2) holds automatically if
dimX = 1 or if the characteristic is zero, but not always if the characteristic is positive;
see (2.6) and (2.7). In any event,

[M2] = f1∗[X2] +D, (1.3)

where D ≥ 0; moreover, the components of D are exactly the components of codimension
1 of Σ2; see (3.10).

¿From the point of view of the enumerative theory of singularities of mappings, [M2] is
the right double-point cycle whether or not Condition (1.2) is satisfied. Indeed, its rational
equivalence class is given by the double-point formula,

f∗f∗[X ]− c1(f)[X ], (1.4)

where c1(f) is the first Chern class of the virtual normal sheaf νf = f∗τY − τX . That
statement follows from Grothendieck duality theory; see (2.3). However, if f is not finite
or if f is of codimension s greater than 1, then the cycle class defined by the conductor
need not be given by the general double-point formula f∗f∗[X ] − cs(f)[X ]; Fulton [9,
2.4, 2.5, pp. 95–96] gave examples. For an introduction to some classical instances of the
double-point formula, see [19, pp. 312–315 and 366–368] and [10, pp. 167–170].

Suppose that f is appropriately generic in the sense that dimX − dimX2 = 1. For
example, f is appropriately generic if it is a general central projection [19, pp. 388]. Then
Condition (1.2) holds; see the proof of (3.12). Moreover, the class of f1∗[X2] too is given by
the double-point formula (1.4); that statement follows from residual-intersection theory,
and the proof works whenever the map f1 is of the same codimension s as f [19, pp. 377–
384; 20, pp. 46]. Since the cycles f1∗[X2] and [M2] have the same class, it was reasonable
to conjecture that they are equal.

In practice, there are three important cases where it is too restrictive to assume
that X and Y are smooth over a field: (1) iterative multiple-point theory [19, pp. 384-
391; 20], where rth-order theory for f :X → Y is derived from (r − 1)th-order theory
for the “iteration” map f1:X2 → X ; (2) Catanese’s theory of “quasi-generic canonical
projections” [6, 7], where Y is a (singular) weighted projective space; and (3) van Straten
and de Jong’s deformation theory of “normalizations” [32, §3], where the base is an Artin
ring. However, that restrictive assumption can be suitably relaxed. In fact, a priori, it is
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natural to assume instead that f is Gorenstein and Y is (S2). For example, Y could be
a normal scheme or the flat deformation of a normal scheme. (Coincidentally, Avramov
and Foxby [2] are now developing a local algebraic theory of Gorenstein maps.) On the
other hand, multiple-point theory of higher order or of higher codimension requires an
assumption of intermediate strength, namely, that X is a local complete intersection in a
smooth Y -scheme and Y is Cohen-Macaulay.

The theory in this article is part of a larger body of theory, which has had a remarkable
history over the last fifteen to twenty years. On the very day (in June 1976) that Equation
(1.1) was conjectured, Fulton solved the first case, where X is a smooth curve and Y a
smooth surface. He proceeded by analyzing the effect of blowing up a singular point of
the image Z of X in Y . Fulton’s proof appears in [9, pp. 98–99]. Two months later,
Teissier told Fulton that, the previous year, he [30, pp. 118–121] had been led to discover
virtually the same equality and proof, while studying the equisingularity of curves over
the complex numbers. At the same time, Teissier [30, pp. 121–123] gave a second proof,
based on deforming Z.

It was a theorem whose time had come; indeed, closely related work had already been
done independently. In 1974, Gusein-Zade [16, p. 23], as part of a study of vanishing cycles,
proved Equation (1.1) for a smooth curve mapping into a smooth surface over the complex
numbers; he used blowups in about the same way as Fulton and Teissier. In 1973, Fischer
[11] studied the module of jets of a unibranched map from a smooth curve into a smooth
surface by considering the same blowups. In that case, he obtained a length formula that
is equivalent to Equation (1.1). The equivalence holds because the module of jets and
the structure sheaf of X2 are locally isomorphic as OX -modules, for example, because of
(3.2)(2). Later, in 1976, Brown [3] generalized Fischer’s work, eliminating the hypothesis
of unibranchedness. Brown also found that Fisher’s proofs were mildly incomplete in the
case of positive characteristic, leading Fischer to publish an improved version [12] in 1978.
Of those five authors, only Fulton mentioned the case of higher dimensional X and Y .

In 1972 Artin and Nagata [1, (5.8), pp. 322], inspired by some unpublished results and
questions of Mumford, proved a version of Equation (1.1) in the case that X is a smooth
curve, Y is a smooth surface, f :X → Y is any map birational onto its image, and the base
is a field of any characteristic. Their version, like Fischer’s and Brown’s, is a statement
about the ideal of the diagonal of X ×Y X . Their proof, like Teissier’s second, involves
deforming f into a map whose image has simple nodes at worst. Artin and Nagata also
gave an example that shows that their version of Equation (1.1) does not generalize to the
case that X is a smooth surface and Y := P4.

In a nutshell, the proof of (1.3) runs as follows; see (3.9). First, it is shown that
the direct image of [X2] on X ×Y X is equal to the fundamental cycle of the ideal of the
diagonal, [I(∆)], diminished by a positive cycle C whose components lie in the diagonal
and correspond precisely to the components of codimension 1 of Σ2. In fact, off the image
of Σ2 in the diagonal subscheme, the structure map p:X2 → X×Y X is a closed embedding,
and its ideal is Ann(I(∆)); see (3.4)(2). Moreover, off the image of Σ2, locally I(∆) is
generated by one element, and hence is isomorphic to p∗OX2

; see (3.3). (So, in particular,
X2 is equal, off the image of Σ2, to the double-point scheme X ′2 considered by Mond
[26, § 3, pp. 368–371] and Marar and Mond [25, 1.1, pp. 554-555], which is defined by
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Ann(I(∆)). Moreover, as I(∆) is locally generated by one element,

AnnX×Y X(I(∆)) = F itt0
X×Y X(I(∆)).

Mond [26, 3.2(i), p. 369] made a note of that equation because the Fitting ideal is “more
readily calculable” [25, bottom p. 554]. Furthermore [25, bottom p. 554; 31], if X is a local
complete intersection in a smooth Y -scheme and Y is Cohen–Macaulay — for example,
if X and Y are smooth over a field — then that equation continues to hold, and X ′2 is
Cohen–Macaulay and is of finite flat dimension over Y ; see (3.13).)

On the other hand, at any point w of the diagonal in the image of Σ2, the fiber
p−1w has dimension at least 1; see (3.2)(1). Therefore, the components of X2 lying over
the image of Σ2 do not contribute to p∗[X2], and the other components of X2 contribute
with the same multiplicity to both p∗[X2] and [I(∆)]. (However, Ulrich [31] has proved
that, if X is a local complete intersection in a smooth Y -scheme and Y is (S2), then
[X ′2] = [I(∆)]; see (3.13).) The preceding considerations (including those in parentheses)
are valid in great generality; in particular, f may have any codimension s (provided that,
in the more sophisticated statements, it is assumed that M2 is of codimension at least s
in X — whence it follows that M2 and X ′2 are of codimension exactly s; see (3.13)).

It now suffices to prove that the direct image of [I(∆)] is equal to [M2]; in other
words, at each generic point ξ of M2, the length of I(∆) is equal to the colength of CX .
The latter statement follows from these equations:

F itt0
X(I(∆)) = F itt0

Y (f∗OX/OZ)OX = CX . (1.5)

Indeed, it will be proved that CX is invertible as f is Gorenstein; see (2.3). Hence, I(∆)
is of flat dimension 1 over X , and so the desired length-colength equation holds.

The first equation in (1.5) is proved via rather simple and general considerations,
which require no special hypotheses; see (3.4)(1). The key lemma (3.3) was apparently
known to Artin and Nagata, and perhaps to Mumford; see the statement in parentheses
on line 6 of p. 322 in [1]. The second equation in (1.5) is an immediate consequence of the
following equation on Y :

F itt0
Y (f∗OX/OZ) = AnnY (f∗OX/OZ). (1.6)

Equation (1.6) follows from a general theorem of Buchsbaum and Eisenbud [4, p. 232];
see (3.7) and (3.5). However, only a special case of the general theorem is needed here,
and in that case, the theorem’s proof simplifies to a few lines involving the Hilbert–Burch
theorem; Eisenbud showed that short proof to the authors (on 26 May 1989), and it too
is given in (3.5).

The target double-point scheme N2 is, by definition, the subscheme of Y of the adjoint
ideal AnnY (f∗OX/OZ). So, Equation (1.6) says, in other words, that N2 is determinantal,
cut out locally by the maximal minors of any matrix presenting f∗OX/OZ . Now, the
proof in (3.5) of (1.6) also shows that N2 is of flat dimension 2 in Y ; hence, it is of pure
codimension 2 in Y by the Intersection Theorem of Peskine–Szpiro and Roberts, and it is
Cohen–Macaulay if Y is by the Auslander-Buchsbaum Theorem.
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Equation (1.6) was already known, however. Mond and Pellikaan, in their March
1988 preprint [27, p. 121], had obtained it independently and also from Buchsbaum and
Eisenbud’s theorem. They prove (1.6) in the course of proving the equation,

F itt0
Y (f∗OX/OZ) = F itt1

Y (X). (1.7)

That equation interested them because it, together with (1.6), says that the target double-
point scheme N2 is also defined by the Fitting ideal F itt1

Y (X).
Another proof of (1.7) is found, as Mond and Pellikaan indicated, in a June 1988

preprint of van Straten and de Jong, who used the Hilbert–Burch theorem directly, [32;
combine (4.8), (4.12), and (4.13)]. They used (1.7) to compare the deformation theory of
the pair (X,Z) with that of (N2, Z). Mond and Pellikaan, and van Straten and de Jong
gave credit to Catanese [6] (see [7] also) for introducing the key ideas in 1982. (In turn,
Catanese said that he drew inspiration from work of Arbarello, Sernesi, and Ciliberto.)
Catanese’s purpose was to study “pluriregular varieties of free general type” via “quasi-
generic canonical projections.”

Independently, in 1981, Gruson and Peskine [15] were led to Equations (1.6) and (1.7)
while studying the scheme of r-secants of a smooth space curve C. They viewed the secant
scheme as the target r-fold locus of the map f :X → Y , where Y is the Grassmannian of
lines L and where X is the variety of pairs (P, L) with P ∈ L ∩ C. They did not prove
(1.6) directly, but first proved a form [15, 1.5, p. 5] of the equation,

AnnY (f∗OX/OZ) = F itt1
Y (X). (1.8)

Their proof is simple and direct, and does not involve the Hilbert–Burch theorem or
anything like it. They do prove a form [15, 1.3, p. 4] of (1.7), but their proof needs an
additional hypothesis, which, as it turns out, amounts to the assumption that Σ2 is empty.
On the other hand, under that assumption, they prove a more general statement, involving
the higher-order Fitting ideals.

The higher-order multiple-point loci of f :X → Y are also of some interest. The first
job is to find a reasonable scheme-theoretic definition of them. Assume, as always, that
f :X → Y is finite and birational onto its image Z. Assume also that Σ2 is empty. This
hypothesis is not that much of a restriction in the rth-order theory for r ≤ 6, because
the expected codimension in X of Σ2 is 6. Moreover, there are many applications where,
in fact, Σ2 is empty. Assume finally that X is a local complete intersection in a smooth
Y -scheme and that Y is Cohen-Macaulay. Under roughly those hypotheses, Gruson and
Peskine [15] and Mond and Pellikaan [27] independently strove to show that the Fitting
ideal F ittr−1

Y (X) defines a reasonable scheme Nr of target r-fold points. For example, for
r = 1, that Fitting ideal defines the scheme-theoretic image Z; see (2.2). For r = 2, the
Fitting ideal is equal to the adjoint ideal by (1.8); so the new definition of N2 agrees with
the old. In the work [23] under preparation, the present authors will develop the following
additional evidence for the reasonableness of this definition of Nr.

Following the iterative approach to multiple-point theory of [20], define the scheme
Mr of source r-fold points of f as the scheme of target (r − 1)-fold points of f1; in other
words, define Mr as the scheme with ideal F ittr−2

X (X2). For example, for r = 2, that
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Fitting ideal is equal to the conductor CX ; see (3.4) and (3.7). So the new definition of
M2 agrees with the old. Now, if the definitions of Mr and Nr are indeed reasonable, then
these schemes should be compatible under pullback:

Mr = f−1Nr.

That compatibility equation will be proved in [23]; the proof is similar to the proof of
(3.4).

Assume that Mr and Nr have the expected codimensions, r − 1 and r, everywhere.
Then a general point of Nr has an inverse image of length r; so the cycle relation

f∗[Mr] = r[Nr] (1.9)

should hold. For example, for r = 2, this relation is equivalent to the usual Gorenstein
formula, because then M2 and N2 are defined by the conductors on X and Z. Relation
(1.9) will be proved for arbitrary r in [23].

There is another generalization of the usual Gorenstein formula, due to Gruson and
Peskine [15, Prop. 2.6, p. 13]. For r = 2, it reduces to the other form of the usual formula:
the colength of the conductor in a 1-dimensional Gorenstein domain is equal to the colength
of the domain in its normalization. For arbitrary r, the generalization says intuitively that
a general (r + 1)-fold point counts as r + 1 r-fold points. In [23], following the approach
to multiple-point theory based on the Hilbert scheme, which is developed in [22], it will
be shown how to interpret Gruson and Peskine’s generalization of the Gorenstein formula
as a statement about the Hilbert scheme Hilbrf , and how to derive it from Relation (1.9).
The key step is to prove that Hilbrf is equal to the blowup of Nr along Nr+1.

2. The double-point schemes

(2.1) Setup. Let f :X → Y be a finite map of locally Noetherian schemes. Assume
that f is birational onto its image; more precisely, assume that there is an open subset
U of Y such that its preimage f−1U is dense in X and the restriction f−1U → U is an
embedding. Assume that f is of pure codimension 1; that is, if ξ is the generic point of
an arbitrary component of X , then dimOY,fξ = 1. Assume that f is of flat dimension 1.
Finally, assume that Y satisfies Serre’s condition (S2) [14, (5.7.2), p. 103]: for every y ∈ Y ,

depth(OY,y) ≥ inf(2, dimOY,y).

These conditions will be assumed without further mention throughout Section 2.
If, in the derived category, f !OY is isomorphic to a (shifted) invertible sheaf ωf , then

f is called Gorenstein [17, p. 144]. If f is Gorenstein, define its first Chern class as that
of ωf :

c1(f) := c1(ωf ).

For example, if there is a factorization f = πi where i:X ↪→ P is a regular embedding and
π:P → Y is smooth, then f is Gorenstein and

ωf = det(νi)⊗ det(τπ)−1
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where νi is the normal sheaf and τπ is the tangent sheaf. For instance, if X and Y are
smooth over some base scheme S, then the product P := X×SY , the graph map i:X → P ,
and the projection π:X ×S Y → Y will work; in this case,

ωf = det(τX/Y )−1 ⊗ det(τY/S).

The ideal AnnY (f∗OX/ ImOY ) is called the adjoint ideal. The scheme it defines is
denoted by N2 and called the target double-point scheme. Its underlying set consists of the
points y of Y whose fiber f−1(y) is a scheme of length at least 2 over k(y). The adjoint
ideal is an f∗OX -module, and the associated sheaf on X

CX := AnnY (f∗OX/ ImOY )˜
is an ideal, called the conductor on X . The corresponding scheme is denoted by M2

and called the source double-point scheme. Obviously, M2 = f−1N2 as schemes, and the
restriction M2 → N2 is finite and surjective.

The Fitting idealF ittr−1
X (Ω1

f ) defines a scheme, denoted Σr. Its underlying set consists

of the points x of X such that dim Ω1
f (x) ≥ r. Obviously, Σ0 = X , and

M2 ⊇ Σ1 ⊇ Σ2 ⊇ · · · .

The formation of Σr commutes with base change as the formation of Ω1
f does and the

formation of a Fitting ideal does.
Denote by Z the scheme-theoretic image of X in Y . By definition [13, (6.10.1),

p. 324], Z is the smallest closed subscheme of Y through which f factors. Because f is
quasi-compact and quasi-separated, Z exists and is defined by the ideal AnnY (f∗OX).
Obviously, N2 is a closed subscheme of Z; its ideal is the sheaf

CZ := AnnZ(f∗OX/OZ),

and CZ is called the conductor on Z.

Proposition (2.2) The scheme-theoretic image Z of X in Y is a divisor, and its
ideal is equal to the Fitting ideal F itt0

Y (X). In other words, locally Z is defined by the
determinant of any square matrix presenting OX over OY ; such matrices exist, and their
determinants are regular elements. Moreover, the formation of Z commutes with base
change.

Proof. Because f is finite, the Fitting ideal F itt0
Y (X) exists. Because f is of flat

dimension 1 and of codimension 1, locally OX is presented over OY by a square matrix
whose determinant is regular and generates F itt0

Y (X). Let W denote the corresponding
divisor. Then W has no embedded components because Y satisfies (S2).

The schemes W and Z have the same support, and Z ⊆W because

AnnX(Y )n ⊆ F itt0
Y (X) ⊆ AnnX(Y )
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for some integer n. Moreover, W and Z are generically equal because f is generically an
embedding. Therefore, W and Z are equal because W has no embedded components.

The formation of Z commutes with base change because the formation of a Fitting
ideal does.

Theorem (2.3) The conductor CX is an invertible sheaf if and only if f is a Goren-
stein map. In either case, the double-point cycle [M2] is given by the double-point formula,

[M2] = f∗f∗[X ]− c1(f)[X ],

which holds modulo rational equivalence.

Proof. The proof is a version of that in [19, pp. 365–366]; this version uses more
abstract, but nevertheless standard Grothendieck duality theory [17, 24].

Say f = jg where g:X → Z and j:Z ↪→ Y . Work in the derived category of quasi-
coherent sheaves. Trivially

f !OY = RHomX(OX , f !OY ).

Since g and j are finite, Rg∗ = g∗ and Rj∗ = j∗. Also, f ! = g!j! and f∗ = j∗g∗. Hence,
duality yields the equations,

(g∗)f
!OY = RHomZ(g∗OX , j!OY ),

j∗RHomZ(g∗OX , j!OY ) = RHomZ(f∗OX , OY ).

The latter complex has all its cohomology concentrated in degree 1, because f is finite
and of flat dimension 1 and because Z is nowhere dense in Y and Y has no embedded
components as it satisfies (S2). Hence, f !OY does too. Say f !OY [1] is isomorphic to the
quasi-coherent sheaf ωf .

By (2.2), Z is a divisor in Y . So j!OY = OZ(Z)[−1]. Hence

g∗ωf = HomZ(g∗OX , OZ(Z)) = HomZ(g∗OX , OZ)⊗OZ(Z).

Now, X has no embedded component because f is of flat dimension 1 and Y satisfies (S2);
hence, g∗OX is contained in the sheaf of total quotient rings of OZ (that condition is not
implied by the definition of birationality adopted in (2.1)). Therefore, standard elementary
considerations show that evaluation at 1 defines an isomorphism,

HomZ(g∗OX , OZ) = AnnZ(g∗OX/OZ);

its inverse sends a local section to multiplication by that section. Therefore, taking asso-
ciated sheaves yields the following equation on X :

ωf = CX ⊗ g∗OZ(Z).

The assertions follow immediately.
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Proposition (2.4) The source double-point scheme M2 is of pure codimension 1
in X, and the target double-point scheme N2 is of pure codimension 1 in Z and of pure
codimension 2 in Y .

Proof. Since X → Z is finite and birational and since M2 = f−1N2, it suffices
to treat N2. By (2.1), Z is a divisor in Y . So it suffices to prove that N2 is of pure
codimension 2 in Y . Now, by definition, N2 is the support of the OY -module f∗OX/OZ .
That module is of flat dimension at most 2 because OX and OZ are both of flat dimension
1. Hence N2 is everywhere of codimension at most 2 by virtue of the Intersection Theorem;
it is well known that the case needed here may be derived easily from the work of Peskine
and Szpiro [28], but the general case was proved by P. Roberts [29]. On the other hand,
N2 is of codimension at least 2, because X → Z is birational. Therefore, N2 is of pure
codimension 2.

The Intersection Theorem is not needed here if f is Gorenstein, for then CX is invertible
by (2.3).

Lemma (2.5) Let ξ be a generic point of a component of M2. Suppose that X is
regular at ξ and that the field extension k(ξ)/k(fξ) is separable. Then ξ /∈ Σ2.

Proof. Denote the reduced scheme (M2)red by D. Then D is of pure codimension
1 in X by (2.4). So D is a divisor in X at ξ because X is regular there. At ξ, consider the
standard exact sequence,

OD(−D) −→ Ω1
f |D −→ Ω1

D/Y −→ 0.

The first term is invertible, and the third term vanishes because k(ξ)/k(fξ) is finite and
separable. Hence, dimk(ξ) Ω1

f (ξ) ≤ 1. In other words, ξ /∈ Σ2.

Proposition (2.6) Suppose that X and Y are of finite type over a field k, and that
X is regular in codimension 1 (for example, normal). Suppose either (a) dimX = 1 and
k is perfect or (b) k is of characteristic zero. Then cod(Σ2, X) ≥ 2.

Proof. Let ξ be a generic point of a component of M2. Then X is regular at ξ
because M2 is of pure codimension 1 in X by (2.4). If dimX = 1 and k is perfect, then
k(ξ)/k is finite and separable; whence, then k(ξ)/k(fξ) is separable. Of course, k(ξ)/k(fξ)
is separable if the characteristic of k is 0. Therefore, ξ /∈ Σ2 by (2.5). Thus the assertion
holds.

(2.7) Example. Here is an example where Σ2 has codimension 1. Fix an algebraically
closed field of positive characteristic p. Let X be a closed, reduced, and irreducible surface
in P3, and consider its Gauss map f :X0 → Y , where X0 is the smooth locus of X , and
Y is the dual P3. Fix a point P of X0, and choose affine coordinates x, y, z such that x, y
are regular parameters of X at P . Then

dim Ω1
f (P ) = 2− rank

∂2z

∂(x, y)2

by [18, (2.6.1), p. 153; 21, § I-5, 175–177]. Therefore, the point P lies in Σ2 if and only if

the Hessian ∂2z
∂(x, y)2 vanishes at P .
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Suppose p = 2. Then ∂2z
∂x2 and ∂2z

∂y2 vanish identically near P . Hence Σ2 is defined

near P by the vanishing of ∂2z
∂y∂x

. Suppose that X is smooth of degree d at least 2. Then
f :X → Y is finite. That fact is well known, and holds in any characteristic. It holds, for
example, because f∗OY (1) is ample, as it is equal to OX(d− 1) [19, middle of p. 360; 21,
§ II-2, p.190]. Suppose that X is general of its degree. Then f is birational onto its image
[18, (5.6), p. 176; 21, (21), p. 180]. In particular, Σ2 6= X . Therefore, cod(Σ2, X) = 1.

Suppose p ≥ 3. Then ∂2z
∂x2 and ∂2z

∂y2 vanish identically if, for instance,

z = xy(x+ y)p + xp+1 + yp+1.

Then, moreover, ∂2z
∂y∂x

= (x+y)p. So, if X is the surface with that equation, then its Gauss

map f is birational onto its image by the Hessian Criterion [18, (3.3), p. 155; 21, (12),
p. 176]. Unfortunately, X has a (unique) singular point at infinity, (0,0,1,0). However,
that point corresponds to a curve C in Y , and a computation shows that the (reducible)
curve D of X corresponding to C contains the entire curve at infinity of X , but does not
contain the locus {x+ y = 0}. Hence, the restriction (X −D)→ (Y −C) is finite, and its
Σ2 is of codimension 1.

3. The residual double-point cycle

Definition (3.1) Let f :X → Y be a separated map of schemes. Form the residual
scheme of the diagonal and the corresponding map,

X2 := P(I(∆)) and f1:X2
p−→X ×Y X

p2−→X,

where I(∆) is the ideal of the diagonal, p is the structure map, and p2 is the second
projection. Then X2 is called the iteration, or derived, scheme, and f1 is called the iteration,
or derived, map [20, 4.1, pp. 36–37; 22, (2.10)]. If f is proper, then f1∗[X2] is defined and
will be called the residual double-point cycle of f .

Lemma (3.2) Let f :X → Y be a separated map locally of finite type between locally
Noetherian schemes. Let w be a point of X ×Y X.

(1) The following four conditions are equivalent:

(a) The structure map p:X2 → X ×Y X is a closed embedding at w.
(b) The fiber p−1w is empty or of dimension 0.
(c) Either w lies off the diagonal, or w lies on the diagonal and dim Ω1

f (p2w) ≤ 1.
(d) The ideal I(∆) of the diagonal is generated by one element at w.

(2) Let U be an open subset of X ×Y X on which I(∆) is generated by a single
element of Γ(U, I(∆)). Then the restriction p−1U → U is a closed embedding, its ideal is
Ann(I(∆))|U , and there is an isomorphism of OU -modules,

p∗OX2
|U ' I(∆)|U.

Proof. Trivially (a) implies (b). For convenience, set I := I(∆). Then X2 = P(I)
by (3.1). So the fiber p−1w is equal to P((I/I2)(w)). Hence (b) implies (c) because I/I2
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is isomorphic to the direct image under the diagonal map of Ω1
f . Also because of that

isomorphism and by Nakayama’s lemma, (c) implies (d).
Let U be an open subset of X ×X on which I is generated by a single section. That

section defines a surjection on U from OX×X to I, and its kernel is obviously Ann(I); in
other words, there is an exact sequence,

0 −→ Ann(I)|U −→ OX×X |U −→ I|U −→ 0. (3.2.1)

In general, if E → F → G → 0 is an exact sequence of quasi-coherent sheaves on an
arbitrary scheme, then the ideal of P(G) in P(F) is equal to the image of E(−1) in OP(F),
because the following sequence is well known to be exact [5, Ch. III, §6, no. 2, Prop. 4,
p. 499]:

E Sym(F)[−1] −→ Sym(F) −→ Sym(G) −→ 0.

Since P(OU ) ∼−→ U and OP(OU )(−1) = OP(OU ), therefore p−1U → U is a closed em-
bedding, with ideal Ann(I)|U . A second look at (3.2.1) now reveals that p∗OX2

|U is
isomorphic to I|U . Thus (2) holds. Hence, (d) implies (a).

Lemma (3.3) Let R be a (commutative) ring, B an R-algebra, and I the kernel of
the multiplication map B⊗RB → B. View B⊗RB as a B-algebra via the homomorphism
u given by u(b) := 1⊗ b. Then there is an isomorphism of B-modules,

I ' (B/ ImR)⊗R B.

Proof. The homomorphism u splits the following exact sequence of B-modules:

0 −→ I −→ B ⊗R B −→ B −→ 0.

So I is isomorphic to the cokernel of u. On the other hand, tensoring the exact sequence
R→ B → B/ ImR→ 0 with B yields the exact sequence,

B −→ B ⊗R B −→ (B/ ImR)⊗R B −→ 0,

in which the first map is u. So the cokernel of u is also isomorphic to (B/ ImR) ⊗R B.
Thus the assertion holds.

Proposition (3.4) Let f :X → Y be a finite map of locally Noetherian schemes.
(1) View the ideal I(∆) of the diagonal of X ×Y X as an OX-module via the second

projection p2. Then

F itt0
X(I(∆)) = F itt0

Y (f∗OX/ ImOY )OX .

(2) Off the image of Σ2 under the diagonal map, the structure map p:X2 → X ×Y X
is a closed embedding, and its ideal is Ann(I). Off Σ2, the iteration map f1:X2 → X is
finite, and

F itt0
X(X2) = F itt0

X(I(∆)).
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Proof. (1) The two Fitting ideals are defined because f is finite. The asserted
equation holds locally because of (3.3), as the formation of a Fitting ideal commutes with
base change. Therefore the equation holds globally.

(2) Off Σ2, the structure map p is a closed embedding by (3.2)(1). So f1 := p2p is
finite, because p2 is as f is.

It suffices to establish the asserted equality of ideals locally at each point x /∈ Σ2. By
(3.2)(1), I(∆) is generated by one element at each point w of p−1

2 x. Since p2 is finite, there
is, therefore, a neighborhood V of x such that, if U := p−1

2 V , then I(∆)|U is generated by
a single element of Γ(U, I(∆)). So (3.2)(2) yields the asserted equality on V .

Lemma (3.5) Let R be a Noetherian local ring. Let A := R/δ where δ is a regular
element (non-zero-divisor). Let F be a finitely generated A-module such that A ⊂ F ⊂ K,
where K is the total fraction ring of A. Suppose that F/A 6= 0 and that the flat dimension
f.dR F is 1. Then

AnnR(F/A) = Fitt0
R(F/A),

and R/AnnR(F/A) is an R-module of flat dimension 2, grade 2, and codimension 2.

Proof. Choose elements x1, . . . , xh of F whose images in F/mAF form a basis,
and let E be the submodule of R⊕h of relations among the xi. Then E is free because
f.dR F = 1, and E is of rank h because F ⊂ K. It is now easy to see that F/A is presented
by a h by h+ 1 matrix.

The codimension of the R-module F/A is at least 2 because F ⊂ K. Furthermore, the
grade of F/A is at least 2; that is, AnnR(F/A) contains a regular sequence of two elements.
Indeed, if AnnR(F/A)/δR consisted of entirely of zero-divisors, then AnnR(F/A) would lie
in the union of the associated primes of δ, so in one of them, say P . However, (F/A)P = 0
because AP = KP .

Since (h+1)−h+1 = 2, it follows from a general theorem of Eagon and Hochster that
the grade of F/A is exactly 2, and from a general theorem of Buchsbaum and Eisenbud
that AnnR(F/A) is equal to Fitt0

R(F/A); for both conclusions, see [4, top p. 232]. The
general theorems may be avoided in the case at hand by the following argument, which
also yields the remaining two assertions.

Since f.dR F = 1 and f.dRA = 1, obviously f.dR F/A ≤ 2. So, since F/A is presented
by an h by h+ 1 matrix, there is an exact sequence

0 −→ R −→ R⊕(h+1) −→ R⊕h −→ F/A −→ 0.

Since the grade of F/A is at least 2, dualizing that exact sequence yields this one,

0 −→ R⊕h −→ R⊕(h+1) −→ R −→ R/I −→ 0,

where I is an ideal. In particular, R/I = Ext2
R(F/A, R). Since any element of R that kills

F/A also kills Ext2
R(F/A, R), therefore

AnnR(F/A) ⊆ I.
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Now, the dual of the second exact sequence is obviously the first. Hence

ExtiR(R/I, R) =

{
0, if i < 2;
F/A, if i = 2.

Therefore, the grade of R/I is exactly 2. Moreover, I lies in AnnR(F/A), so the two
ideals are equal. Finally, the Hilbert–Burch Theorem [8, Thm. 1, p. 122] yields that
I = Fitt0

R(F/A).
The preceding argument also shows that R/AnnR(F/A) has flat dimension 2, as as-

serted, because AnnR(F/A) = I. Hence its codimension is at most 2 by the Intersection
Theorem of Peskine–Szpiro and Roberts (see the proof of (2.4)). Since, as was noted above,
its codimension is at least 2, it is exactly 2, as asserted.

Proposition (3.6) Under the conditions of (2.1), the target double-point scheme N2

is of pure flat dimension 2, grade 2, and codimension 2 in Y .

Proof. By (2.2), Z is a divisor in Y . So the assertion follows (3.5) applied locally.

Proposition (3.7) If the conditions of (2.1) hold, then

AnnY (f∗OX/OZ) = F itt0
Y (f∗OX/OZ)

CZ = F itt0
Z(f∗OX/OZ)

CX = F itt0
Z(f∗OX/OZ)OX .

Proof. By (2.2), Z is a divisor in Y . So the first equation holds at each point of Y
by (3.5). The second and third equations are easily derived from the first.

Proposition (3.8) Under the conditions of (2.1), the formation of the double-point
schemes, M2 and N2, commutes with base change.

Proof. The assertion follows directly from (3.7) because the formation of a Fitting
ideal commutes with base change.

Lemma (3.9) Under the conditions of (2.1), suppose f is Gorenstein. Then

p2∗[I(∆)] = [M2]

where [I(∆)] is the fundamental cycle of the ideal of the diagonal, viewed simply as an
OX-module.

Proof. By (3.4)(1) and (3.7), F itt0
X(I(∆)) is equal to CX . By (2.3), CX is invertible.

Hence, by standard algebra, I(∆) is of flat dimension 1 over X . Hence, at each generic
point ξ of M2, the length of I(∆) is equal to the colength of CX [10, A.2.3, p. 411].
Therefore, p2∗[I(∆)] and M2 are equal at ξ.

It remains to note that, if η is the generic point of a component of the support of
I(∆), then dimOX,p2η = 1. However, the completion of the stalk I(∆)η is a module of
finite length and of flat dimension 1 over the completion of OX,p2η. Hence its 0 th Fitting
ideal is invertible, and is primary for the maximal ideal. Therefore, dimOX,p2η = 1.



14 S. KLEIMAN, J. LIPMAN, AND B. ULRICH

Theorem (3.10) Under the conditions of (2.1), suppose f is Gorenstein. Then

[M2] = f1∗[X2] +D

where D ≥ 0, and the components of D are exactly the components of codimension 1 of
Σ2.

Proof. It follows from (3.2) that [I(∆)] = p∗[X2] + C where C is a positive cycle
whose components are exactly those components of the support of I(∆) that are images
under the diagonal map of the components of Σ2. So, the assertion follows from (3.9)
because f1 := p2p and because of (2.4).

Corollary (3.11) Under the conditions of (2.1), suppose f is Gorenstein. Then

[M2] = f1∗[X2]

off Σ2, and that equation holds everywhere if and only if also cod(Σ2, X) ≥ 2.

Proof. The assertion follows immediately from (3.10).

Corollary (3.12) Under the conditions of (2.1), suppose that X and Y are of finite
type over a base scheme S, and that f is a Gorenstein S-map. Then

[M2] = f1∗[X2]

provided also one of the following two conditions is satisfied:

(1) If ξ ∈M2 is the generic point of an arbitrary component, then X/S is smooth at ξ,
and either (a) dimξ(X/S) = 1, or (b) k(ξ) is of characteristic 0, or simply, (c) k(ξ)/k(fξ)
is separable.

(2) The map f is appropriately generic in the sense that, if η ∈ X2 is the generic
point of an arbitrary component, then

dimη(X2/S) = dimf1η(X/S)− 1.

Proof. The assertion follows from (3.11) as cod(Σ2, X) ≥ 2. Indeed, by (2.4), M2 is
of pure codimension 1 in X . Let ξ ∈M2 be the generic point of a component. If (1) holds,
then ξ /∈ Σ2 by (2.5) applied to the geometric fiber of f over the image of ξ in S; compare
with the proof of (2.6). If (2) holds, then f−1

1 ξ is of dimension 0; so ξ /∈ Σ2 by (3.2)(1).
(3.13) Remark. Ulrich [31] has proved a complement to (3.10), which suggests that

the subscheme X ′2 of X ×Y X defined by Ann(I(∆)) is a better external scheme of source
double-points than X2. Namely, under the conditions of (3.10),

[M2] = f1∗[X
′
2]

provided that X is a complete intersection over Y at the generic point of every component
of M2.
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Ulrich derives that assertion from the following one, in which the restriction to codi-
mension 1 has been dropped: Let f :X → Y be a finite map of locally Noetherian schemes
that is birational onto its image. Assume that X is locally a complete intersection of codi-
mension s over Y , that Y satisfies S2s+1, and that M2 is of codimension at least s. Then
X ′2 is a perfect Y -scheme of grade 2s, its ideal Ann(I(∆)) is equal to F itt0

X×Y X(I(∆)),
and its fundamental cycle [X ′2] is equal to [I(∆)]. In particular, M2 and X ′2 are of pure
codimension s, and X ′2 is of flat dimension 2s over Y ; moreover, X ′2 has no embedded
components, and it is Cohen–Macaulay if Y is. The assertion in the preceding paragraph
follows because of (3.9) and (2.4).
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