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Abstract. For a closed subscheme Z of a noetherian separated schemeX, let ΓZ
be the functor of sections with support in Z, taking OX -modules to OX -modules.
Inspired by a theorem of Greenlees and May [GM] about duality between local
cohomology and local homology for modules over a commutative ring, we gave in
[AJL] the result that on quasi-coherent complexes F the “homology localization”
functor RHom•(RΓZOX , F ) is a left-derived functor of ΛZ :=completion along Z,
the corresponding map to ΛZF being such that its composition with the natural
map F → RHom•(RΓZOX , F ) is the completion map F → ΛZF . We also
showed how this unifies and generalizes several other recorded duality theorems.
Here we extend the result to an arbitrary noetherian separated formal scheme X,
with “quasi-coherent” replaced by “lim−→ of coherent.”

Given an open OX-ideal I, with κ : X̂I → X the completion by I and ΓI the
functor lim−→ Hom

•(OX/In,−), we deduce for any OX-complex F having coherent
homology sheaves a canonical duality isomorphism

RHom•(E, κ∗κ∗F ) −→∼ RHom•(RΓIE, F ) (E ∈ D(X)).

The special case where I is an ideal of definition—so that κ = identity—plays
an important part in the duality theory of coherent sheaves on formal schemes.

Introduction

We use the terminology of [DFS, Section 1], and basic facts about formal schemes
found in [GD, Chapter 1, §10]. In particular, we assume familiarity with the notion
of triangle-preserving functors (∆-functors) between triangulated categories (∆-
categories), and of (∆-functorial) maps between such functors.

Throughout, X is a separated noetherian formal scheme, A is the category A(X)
of OX-modules, K is the homotopy category of OX-complexes, D is its derived
category (i.e., its localization with respect to quasi-isomorphisms [Hrt, pp. 28–35]),
and q : K → D is the canonical functor. A~c ⊂ A is the plump subcategory (see
[DFS, Section 1]) whose objects are lim−−→’s of coherent OX-modules. The derived
category D~c of the homotopy category K~c of A-complexes whose homology sheaves
are all in A~c is a ∆-subcategory of D ([Hrt, p. 50, Example 3]).

We work with affine-acyclic complexes, i.e., OX-complexes E such that for each
affine open U ⊂ X, the natural map Γ(U, E)→ RΓ(U, E) is an isomorphism in the
derived category of abelian groups. In other words, if E → J is a quasi-isomorphism
from E to a K-injective complex J—a K-injective resolution [Spn, 4.5])—then
Γ(U, E)→ Γ(U,J ) is a quasi-isomorphism. (Observe, using the functor “extension
by 0,” that the restriction of a K-injective complex to an open subset remains K-
injective; and that RΓ can be realized via K-injective resolutions [Spn, 5.12, 6.4].)

For example, every A~c -complex is affine-acyclic (Example 2.2.1(c)).
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The homotopy category Ka
~c of affine-acyclic complexes with A~c -homology is a

∆-subcategory of K, see Remark 2.1.1(4). Since every complex admits a quasi-
isomorphism into a K-injective (clearly affine-acyclic) one, the derived category Da

~c

of Ka
~c can be identified with a ∆-subcategory of D~c , whose inclusion ja : Da

~c ↪→ D~c

is an equivalence of ∆-categories. The canonical functor qa : Ka
~c → Da

~c is then the
restriction of q.

Fix a coherent OX-ideal I. The torsion functor ΓI : K→ K is described by

ΓIG := lim−−→
n>0

Hom•(OX/In, G) (G ∈ K),

(see [DFS, Section 1.2.1]). The completion functor ΛI : K→ K is described by

ΛI(G) := lim←−−
n>0

((OX/In)⊗ G) (G ∈ K).

By the universal property of right-derived functors, there is a unique functorial
map RΓI → 1 whose composition with the canonical map ΓI → RΓI is the inclu-
sion map ΓI ↪→ 1. For any K-injective resolution E → J as above, RΓIE → E is
naturally isomorphic to the canonical map ΓIJ → J .

The functor RHom•(RΓIOX,−) is right-adjoint to RΓI (via (4.1.1.2), (4.1.1.1)
below). So the following main result establishes a duality (= adjunction) between
the right-derived torsion and the left-derived completion functors associated to I.
Theorem 0.1. There exists a unique ∆-functorial D-morphism

ζF : RHom•(RΓIOX , F )→ ΛIF (F ∈ Ka
~c)

such that:

(i) the pair (RHom•(RΓIOX ,−), ζ) is a left-derived functor of qΛI|Ka
~c

(i.e.,

a final object in the category of pairs (S, %) with S : Da
~c → D a ∆-functor and

% : Sqa → qΛI |Ka
~c

a map of ∆-functors), and

(ii) the composition of ζF with the natural map

ρF : F ∼= RHom•(OX, F )→ RHom•(RΓIOX , F )

is the canonical completion map F → ΛIF .

Moreover, this ζF is an isomorphism whenever F is a K-flat A~c-complex.1

The uniqueness of ζ is shown as follows. It results from (i) and (ii) that any
two choices of ζ are the same modulo a functorial automorphism θF of ΛIF :=
RHom•(RΓIOX , F ) respecting ρF . But just as in setting up the isomorphism (B)
in [DFS, Remark 6.3.1](1), we can see that composition with ρF is an isomorphism
Hom(ΛIF ,ΛIF) −→∼ Hom(F ,ΛIF), whence θF = identity.

0.2. Existence of ζ in Theorem 0.1 is proved along lines similar to those in [AJL],
which deals with ordinary schemes. Here there are new technical problems. For
example, the canonical functor D(A~c) → D~c might not be an equivalence (as it
is for separated quasi-compact ordinary schemes). Another—related—problem is
that for an open immersion i : U ↪→ X, the functor i∗ doesn’t necessarily take A~c(U)
into A~c (as it does for separated quasi-compact ordinary schemes.) To get around
such obstacles we need properties of sheaves on formal schemes established in [DFS].

1An OX-complex is K-flat if its tensor product with every exact OX-complex remains exact,
cf. [Spn, pp. 139–140]. For example, any lim−→ of bounded-above flat complexes is K-flat (cf. e.g.,
[Lpm, Example (2.5.4)]).
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In outline, we proceed as follows. After setting up some preliminaries on Čech
functors in Section 1, we show in Section 2 that the completion functor ΛI|Ka

~c
has

a left-derived functor, for which the property corresponding to the last assertion
in Theorem 0.1 holds. Then in Section 3 we identify this left-derived functor with
the pair (RHom•(RΓIOX ,−), ζ), in such a way that Theorem 0.1(ii) is satisfied.
In so doing we describe only the modifications needed in the corresponding proof
in [AJL], referring to loc. cit. for the remaining details.

It must be noted that the main results in [AJL] are inadequately packaged, at
least for non-affine X. There X is an ordinary scheme. The completion functor ΛI
is said to have a left-derived functor (denoted LΛZ , where Z = Supp(OX/I )) on
D~c(X) = Dqc(X). However, that holds only on some equivalent subcategory Da

qc(X),
among whose objects are all the quasi-coherent complexes. (The error lies in the
unduly facile paragraph preceding (1.2) on page 10 of [AJL]. To fill the gap we
have had to work with the functor č∞ of Section 1.2 below.) Thus the map

F → LΛZF (F ∈ Dqc(X), κ : X/Z → X the completion map)

and its factorization via F → κ∗κ
∗F , which play an important role in Theorem (0.3)

and Proposition (0.4.1) of loc. cit., make sense, as defined there, only on Da
qc(X).

But they can be extended to all of Dqc(X), by means of its equivalence with Da
qc(X)

or (better) as described above in Theorem 0.1, and then the rest is okay.

0.3. The oft-used Proposition 6.2.1 in [DFS] follows from Theorem 0.1. In fact we
will use Theorem 0.1 to show that a certain ∆-bifunctorial map, more general than
the one in loc. cit., is an isomorphism. To wit:

Suppose I is open, i.e., contains an ideal of definition of X. Let

κ = κI : X̂I → X
be the completion by I. Thus X̂I is the topological space Supp(OX/I) together with
the sheaf of topological rings lim←−− OX/I

n; and κ is the obvious ringed-space map.

By [GD, p. 412, Proposition (10.6.3)], X̂I is a formal scheme, and by [GD, p. 422,
Corollaire (10.8.9)], [DFS, Lemma 7.1.1], and [Brb, p. 103, Corollaire], the map κ
is flat. (Both assertions are local, so need only be verified for affine X.)

In particular, if I itself is an ideal of definition then X̂I = X and κ is the identity.
Denote by Dc ⊂ D~c the ∆-subcategory having as objects the complexes whose

homology sheaves are all coherent. The following proposition is proved in Section 4.

Proposition 0.3.1. (i) For each pair E , F ∈ D the map induced by the canonical
map RΓIE → E factors uniquely as

RHom•(E, F )
natural−−−−→ RHom•(E, κ∗κ∗F )

λ(E,F )−−−−→ RHom•(RΓIE, F ).

(ii) If F ∈ Dc then λ(E,F ) is an isomorphism.

Remark. Explicitly, λ(E,F ) is the composition s−1t in the following natural com-
mutative diagram, where the isomorphisms p and p′ can be established by imitating
[DFS, Corollary 5.2.3], and r (hence s) is an isomorphism by Lemma 4.1:

RHom•(E, κ∗κ∗F ) −−→
t

RHom•(RΓIE, κ∗κ∗F ) ←̃−−
p

RHom•(RΓIE,RΓIκ∗κ∗F )x s

x' r

x'
RHom•(E, F ) −−→ RHom•(RΓIE, F ) ←̃−−

p′
RHom•(RΓIE,RΓIF )

This description makes it clear that λ(E ,F) is ∆-bifunctorial.
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1. Preliminaries on Čech functors and left-derivability

1.1. Let U = (Uα)1≤α≤t be an open cover of the separated formal scheme X. Let
Pt be the set of subsets of {1, 2, . . . , t}. For i ∈ Pt set

Ui :=
⋂
α∈i
Uα , and Oi := OUi.

For i ⊃ j in Pt let λij : Ui ↪→ Uj be the inclusion. Set λi := λiφ : Ui ↪→ X.
A U-module is a family F = (Fi)i∈Pt such that Fi is an Oi-module, together

with a family of sheaf homomorphisms

ϕjk : λ∗jkFk → Fj (j ⊃ k)

such that ϕjk is an Oj -homomorphism, ϕjj is the identity map of Fj, and whenever

i ⊃ j ⊃ k we have the transitivity relation ϕik = ϕij ◦ (ϕjk|Ui), i.e., ϕik factors as

λ∗ikFk = λ∗ijλ
∗
jkFk

λ∗ij(ϕjk)−−−−→ λ∗ijFj
ϕij−−→ Fi .

We say that the U-module F is quasi-coherent (resp. flat , resp. . . . ) if each
one of the Oi -modules Fi is such. So, for example, A~c(U) denotes the category of
U-modules F such that Fi ∈ A~c(Ui) for all i ∈ Pt.

The U-modules and their morphisms (defined in the obvious manner) form an
abelian category A(U) having lim−−→’s and lim←−−’s. For instance one checks that the lim−−→
of a direct system (Fm, ϕmjk)m∈I in A(U) is (lim−−→

m

Fm
i , lim−−→

m

ϕmjk).

The Čech functor Č• from the homotopy category K(U) to K := K(X) is defined
as follows. With

|i| := (cardinality of i)− 1 (i ∈ Pt),
set, for F ∈ A(U),

Čs(F ) := ⊕
|i|=s

λi∗Fi if 0 ≤ s < t, and 0 otherwise.

Whenever k is obtained from j = { j0 < j1 < · · · < js+1} ∈ Pt by removing
a single element ja , set εjk := (−1)a ; and otherwise set εjk := 0. (Thus if k
is fixed then εjk = 0 for all but finitely many j.) We specify the differential

δs : Čs(F ) → Čs+1(F ) by requiring its restriction to λk∗Fk (|k| = s) to be the
natural composition

λk∗Fk −→ λk∗λjk∗λ
∗
jkFk = λj∗λ

∗
jkFk

⊕λj∗(εjkϕjk)−−−−−−−→ ⊕
|j|=s+1

λj∗Fj .

Then δs+1 ◦ δs = 0 for all s, and so we get a functor Č• from U-modules to OX-
complexes. Next, for a complex F• ∈ K(U), Č•(F•) is defined to be the total

complex associated to the double complex Čp(F q):
Čs(F•) := ⊕p+q=s Čp(F q),

and the differential Čs(F•)→ Čs+1(F•) restricts on Čp(F q) to

(Čp(dq)⊕ (−1)qďp) : Čp(F q) −→ (Čp(F q+1)⊕ Čp+1(F q))
where dq (resp. ďp) is the differential in the complex F• (resp. Č•(F q)). One checks
that Č• commutes with translation and with forming mapping cones, so that Č• can
(and will) be regarded as a ∆-functor from K(U) to K.
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For instance, ifM is an OX-module andM∗ is the “pulled-back” U-module such
that M∗

i := λ∗iM and ϕjk is the identity map ofM∗
j = λ∗jkM∗

k for all j ⊃ k, then

Č•(M∗) is the usual U-Čech resolution ofM [Gdm, p. 206, Théorème 5.2.1]. More
generally, composing Č• with the pullback functor K→ K(U) gives the functor

č = čU : K→ K

sending each OX-complex E to its U-Čech resolution čE .
1.2. There is a functorial quasi-isomorphism χE : E → čE (E ∈ K), giving rise to
an inductive system of functors (χčm : čm → čm+1)

m>0
. Set

č∞ := lim−−→
m

čm.

There is then a functorial quasi-isomorphism

χ∞E : E → č∞E (E ∈ K).

Since X is noetherian, the functor č∞ commutes with lim−−→, and hence is idempotent—
χ∞č∞E : č

∞E → č∞č∞E is an isomorphism of complexes for all E .
Lemma 1.2.1. ΛI(χ

∞
E ) is a quasi-isomorphism. In other words, q(ΛI(χ

∞
E )) is a

D-isomorphism.

Proof. The question is readily seen to be local; and over any member U of the
open covering U , χ∞E is, by the following Corollary 1.2.3, a homotopy isomorphism,
whence so is ΛI(χ

∞
E ). (Observe that (čE)|U is the Čech resolution of E|U with

respect to the cover (U∩Uα)1≤α≤t of U, a cover of which U itself is a member).

Lemma 1.2.2. Let U = (U1,U2, . . . ,Ut) be an open cover of X, with U1 = X.
Then for any OX-complex E, the natural map χ = χE : E → čE has a left inverse
whose kernel is homotopically trivial (i.e., its identity map is homotopic to 0).

Proof. Let E∗ be the pullback of E to a U-complex, so that čE = Č•E∗. Then

Č•0E∗ := E ⊕ λ2∗λ
∗
2E ⊕ · · · ⊕ λt∗λ∗tE ∼= Č•E∗/Č•>0E∗

where Č•>0E∗ is the total complex associated to the double complex Čp(E∗q)p>0; q∈Z.

Composing the natural map Č•E∗� Č•0E∗ and the projection Č•0E∗� E we get a
left inverse π = πE of χ.

Furthermore, π is a right homotopy inverse of χ. Indeed, if h : čE → čE [−1] is
the map of graded sheaves defined on the summand λi∗λ

∗
i Ep (i ∈ Pt, p ∈ Z) by:

if 1 ∈ i, and i′ := i− {1}, then the restriction of h to λi∗λ
∗
iEp is

λi∗λ
∗
i Ep

(−1)p−−−→ λi∗λ
∗
iEp = λi′∗λ

∗
i′Ep,

and otherwise the restriction is 0,

then one calculates, with d the differential in čE, that hd+ dh = 1− χπ.
As πχ is the identity map of E, we have a functorial direct-sum decomposition

čE = E ⊕ č0E(1.2.2.1)

where č0E is the kernel of πE . If ν : č0E ↪→ čE is the inclusion, then in K,

ν = (χπ) ◦ ν = χ ◦ (πν) = 0,

and since ν has a left inverse therefore č0E is homotopically trivial.
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Corollary 1.2.3. With U as in Lemma 1.2.2 the natural map of complexes

χ∞E : E → č∞E := lim−−→
m

čmE

has a left inverse whose kernel is homotopically trivial.

Proof. From (1.2.2.1) we deduce via induction that

č∞E ∼= E ⊕
∞⊕
m=0

č0(čmE).

Then we need only note that any direct sum of homotopically trivial complexes is
homotopically trivial.

1.3. The category Ka
~c in Theorem 0.1 satisfies č∞Ka

~c ⊂ Ka
~c (Corollary 2.2.5).

Let Ǩa
~c be the essential image of č∞|Ka

~c
, i.e., the full subcategory of Ka

~c whose
objects are those complexes which are isomorphic to one of the form č∞E (E ∈ Ka

~c).
Then Ǩa

~c is a ∆-subcategory of K~c . For if T is a K~c -triangle, with summit E,
whose base is a map E1 → E2 with Ei ∈ Ǩa

~c , then E ∈ Ka
~c (Remark 2.1.1(4)); and

considering the map of triangles χ∞T : T → č∞T in light of the idempotence of χ∞Ei
(see §1.2), we find that χ∞E is a K-isomorphism, whence E ∼= č∞E ∈ Ǩa

~c .

The functorial quasi-isomorphism χ∞ : 1 → č∞ shows that the additive func-
tor č∞ : Ka

~c → Ǩa
~c takes quasi-isomorphisms to quasi-isomorphisms, so induces

a ∆-functor ρ : Da
~c → Ďa

~c between the corresponding derived categories. Let
j : Ďa

~c → Da
~c be the natural ∆-functor. Then χ∞ induces a functorial isomorphism

from the identity of Da
~c to jρ, and from the identity of Ďa

~c to ρj (see [Hrt, p. 33,
Proposition 3.4]), so that ρ and j are quasi-inverse equivalences of ∆-categories.

We have then the natural commutative diagram of functorial maps:

Ďa
~c

j−−−→≈ Da
~c

ρ−−−→≈ Ďa
~c

q̌

x xqa

xq̌
Ǩa
~c −−−→j Ka

~c −−−−→r := č∞
Ǩa
~c

(1.3.1)

1.3.2. In the next section, we will identify a ∆-subcategory Ľa
~c ⊂ Ǩa

~c such that:

(a) for every exact complex P in Ľa
~c , the complex ΛIP is exact (Lemma 2.1.2),

(b) every complex E in Ǩa
~c is the target of a quasi-isomorphism with source in Ľa

~c

(Proposition 2.1.3), and

(c) if E is a K-flat A~c -complex then č∞E ∈ Ľa
~c (Corollary 2.3.5).

From (a) and (b) it follows that Λ̌ := ΛI |Ǩa
~c

has a left-derived functor LΛ̌ : Ďa
~c → D

such that the canonical map LΛ̌E → qΛ̌E is an isomorphism for all E ∈ Ľa
~c [Hrt,

p. 53, Theorem 5.1]. In view of (c), the following formal lemma shows then2 that
Λ:= ΛI|Ka

~c
has a left-derived functor LΛ: Da

~c → D such that the canonical map

LΛF → qΛF is an isomorphism for every K-flat A~c -complex F, thereby complet-
ing the first main step in the proof of Theorem 0.1.

2This point was overlooked in [AJL] (p. 10, just before §1.2). The resulting deficiency can
be corrected by the arguments in this paper, which apply mutatis mutandis to any separated
quasi-compact scheme.
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Lemma 1.3.3. With reference to diagram (1.3.1), if the restriction Λ̌ := ΛI|Ǩa
~c

has a left-derived functor (LΛ̌, ξ̌) then the functor (LΛ̌)ρ : Da
~c → D together with

the ∆-functorial map

ξ : (LΛ̌)ρqa = (LΛ̌)q̌r
ξ̌−→ qΛ̌r

q(ΛI(χ
∞))−1

−−−−−−−→
(1.2.1)

qΛI|Ka
~c

is a left-derived functor of ΛI|Ka
~c
.

Proof. The assertion is that for any ∆-functor S : Da
~c → D, with “Hom” denoting

the group of morphisms of ∆-functors, and with Λ:= ΛI|Ka
~c
, the composed map

α : Hom(S, (LΛ̌)ρ)
natural−−−−→ Hom(Sqa, (LΛ̌)ρqa)

via ξ−−→ Hom(Sqa, qΛ)

is bijective.
In fact, (LΛ̌, ξ̌) being a left-derived functor of Λ̌, the composition

γ : Hom(Sj,LΛ̌)
natural−−−−→ Hom(Sjq̌, (LΛ̌)q̌)

via ξ̌−−→ Hom(Sjq̌, qΛ̌)

is bijective; and we show now that the following natural composition, denoted β,
is an inverse of α:

Hom(Sqa, qΛ) −→ Hom(Sqaj, qΛj)

=== Hom(Sjq̌, qΛ̌)

−→∼
γ−1

Hom(Sj,LΛ̌) −→∼ Hom(S, (LΛ̌)ρ).

(The last isomorphism reflects the fact that j and ρ are quasi-inverse equivalences.)
First, we claim, βα = identity, i.e., the following natural diagram commutes:

Hom(S, (LΛ̌)ρ)
α−−−→ Hom(Sqa, qΛ) −−−→ Hom(Sqaj, qΛj)

'
y ∥∥∥∥

Hom(Sj, LΛ̌) ˜−−−−−−−−−−−−−−−−−−−−→
γ

Hom(Sjq̌, qΛ̌)

Indeed, going from the top left corner to the bottom right corner either clockwise or
counterclockwise has the same effect on any % ∈ Hom(S, (LΛ̌)ρ), as can be verified
in a mechanical way with the aid of the commutative diagram:

Sqaj
via %−−−→ (LΛ̌)ρqaj (LΛ̌)q̌rj

via ξ̌−−−→ qΛ̌rj∥∥∥∥ ∥∥∥∥ q̌(χ∞)−1

y yqΛ̌(χ∞)−1

Sjq̌ −−−→
via %

(LΛ̌)ρjq̌ −−−→ (LΛ̌)q̌ −−−→
via ξ̌

qΛ̌

To see now that β and α are inverse to each other we need only check that
β is injective. But this injectivity clearly follows from the fact that any functorial
map ε : S ′ → qΛ which vanishes on Ǩa

~c must itself vanish, a fact resulting from
the commutative diagram (where qΛ(χ∞E ) is an isomorphism, see Lemma 1.2.1):

S ′E ε(E)−−−→ qΛE
S′(χ∞E )

y '
yqΛ(χ∞E )

S ′rE −−−−→
ε(rE)=0

qΛrE
(E ∈ Ka

~c).
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2. Affine-acyclicity

The purpose of this section is to establish that ΛI|Ka
~c

has a left-derived functor,

by showing that the full subcategory Ľa
~c ⊂ Ǩa

~c whose objects are the K-flat, locally
I-acyclic complexes in Ǩa

~c (Definition 2.1) is a ∆-subcategory (Remark 2.1.1(4))
satisfying the conditions in Section 1.3.2.

Notation remains as before. Denote by q : K(Ab)→ D(Ab) the natural functor
from the homotopy category of complexes of abelian groups to its derived category.

Definition 2.1. An OX-complex E is affine-acyclic if for each affine open U ⊂ X
the natural map is a D(Ab)-isomorphism

qΓ(U, E) −→∼ RΓ(U, E).
E is affine-I-acyclic if for all n > 0, En := E/InE is affine-acyclic and for any

affine open U ⊂ X the natural map is a surjection

Γ(U, En)� Γ(U, En−1).

E is locally I-acyclic if X has an open cover U = (Uα) such that the restric-
tion E|Uα is an affine-I|Uα-acyclic OUα-complex for every α.

Remarks 2.1.1. (1) Affine-acyclicity is affine-I-acyclicity for I = (0).
(2) If E and F are K-isomorphic complexes and E is affine-acyclic then so is F.
(3) An OX-module E (considered as an OX-complex concentrated in degree 0)

is affine-acyclic iff for each affine open U ⊂ X, Hi(U, E) = 0 for all i > 0. In
particular, any flasque OX-module is affine-acyclic.

(4) The cone Cu of any map u : E → E ′ of locally I-acyclic complexes is itself
locally I-acyclic—an appropriate cover consisting of all intersections Uα∩U′β where
(Uα) (resp. (U′β)) is a cover over which E (resp. E ′) is affine-I-acyclic.

(Proof. Let un : En → E ′n be the map induced by u, and consider the map of
D(Ab)-triangles obtained by applying qΓ(U,−)→ RΓ(U,−) (U ⊂ Uα∩U′β) to the
standard K-triangle En

un−→ E ′n → Cu/InCu → En[1], . . . )
Hence if K0 is a ∆-subcategory of K, then the full subcategory of locally I-acyclic

complexes in K0 is also a ∆-subcategory of K.
Similarly, the full subcategory Ka

0 ⊂ K0 whose objects are the affine-acyclic com-
plexes is a ∆-subcategory of K. For example, as was noted in the Introduction,
the inclusion Ka

~c ↪→ K~c induces an equivalence of derived categories Da
~c ↪→≈ D~c.

Lemma 2.1.2. If E is an exact K-flat locally I-acyclic complex then ΛIE is exact.

Proof. Since E is K-flat the complexes En := E/InE (n ≥ 0) are all exact ([Spn,
p. 140, Proposition 5.7]), and being affine-acyclic, remain exact after application of
any functor Γ(U,−) with U an affine open subset of any Uα as in Definition 2.1.
Moreover, the natural maps Γ(U, En) → Γ(U, En−1) are surjections. So by [EGA,
p. 66, (13.2.3)], the complex

Γ(U,ΛE) = lim←−−
n

Γ(U, En)

is exact for any such U, whence the assertion.

This takes care of condition (a) in Section 1.3.2. Condition (b) is given by the
following proposition.
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Proposition 2.1.3. Any E ∈ Ǩa
~c admits a quasi-isomorphism PE → E where

PE ∈ Ǩa
~c is flat, K-flat and locally I-acyclic.

The proof will occupy the rest of section 2.

2.2. We need various examples of affine-acyclic and affine-I-acyclic complexes.

Examples 2.2.1. (a) If E ∈ A~c, then InE ∈ A~c for all n ≥ 0: this results from
[DFS, Proposition 3.2.2], because InE is the image of the natural map In⊗ E → E
whose source and target are both inA~c. [DFS, Proposition 3.2.2] shows further that
ImE/InE ∈ A~c whenever 0 ≤ m ≤ n. It follows then from [DFS, Corollary 3.1.8]
that E is affine-I-acyclic.

(b) Any lim−−→ of affine-acyclic complexes with A~c -homology is affine-acyclic and,
of course, has A~c -homology.

For, by [DFS, Proposition 3.2.2], A~c is plump in A, and by [DFS, Proposi-
tion 3.4.3], the functor RΓ(U,−) is bounded-above on D~c(U) for any open U ⊂ X.
One can, then, adapt the proof of [Lpm, Corollary (3.9.3.2)], mutatis mutandis, to
show that for any small directed system Eη of OX-complexes with A~c -homology,
and each i ∈ Z, the bottom row of the natural commutative diagram

lim−−→
η

HiΓ(U, Eη) ˜−−−→ HiΓ(U, lim−−→
η

Eη)

µi

y yνi
lim−−→
η

HiRΓ(U, Eη) −−−→ HiRΓ(U, lim−−→
η

Eη)

is an isomorphism.3 Thus if every Eη is affine-acyclic, so that each µi is an isomor-
phism, then each νi is an isomorphism, and so lim−−→ Eη is affine-acyclic, as asserted.

(c) Any complex E in A~c is affine-I-acyclic.
Indeed, for all n > 0 and affine open U ⊂ X one sees as in (a) above that

H1(U, In−1E/InE) = 0, whence the natural map is a surjection

Γ(U, En)� Γ(U, En−1) (En := E/InE);

and that each component Emn (m ∈ Z) of En is affine-acyclic. To see that En is affine-
acyclic when E is bounded below, represent the complex RΓ(U, En) as Γ(U,Tn),
where Tn is the total complex associated to a Cartan-Eilenberg resolution of En;
and use standard arguments to deduce from affine-acyclicity of Emn that the natural
map Γ(U, En) → Γ(U,Tn) is a quasi-isomorphism. Then for the unbounded case
let En,η be the complex

· · · → 0→ 0→ E−ηn → E−η+1
n → · · · (η ∈ N).

and apply (b) to En = lim−−→
η

En,η.

In particular, as quasi-coherent OX-modules are locally in A~c ([DFS, Corollary 3.1.4]),
any bounded quasi-coherent OX-complex is locally I-acyclic.

The next intermediate goal is Lemma 2.2.7, a generalization of Example (c).

3Roughly, boundedness of RΓ(U,−) enables reduction to where the Eη are uniformly bounded
below, and then RΓ(U, lim−→ Eη) can be represented via lim−→’s of canonical flasque resolutions . . .
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Lemma 2.2.2. Let ν : V ↪→ X be an open immersion with V affine. Then for any
affine-acyclic OV-complex F the natural map is a D-isomorphism.

θ : ν∗F −→∼ Rν∗F .
Proof. Let ρ : F → J be a K-injective resolution (a quasi-isomorphism from F to a
K-injective OV-complex). Then θ can be identified with the map ν∗ρ : ν∗F → ν∗J .
A D-map being an isomorphism if and only if it induces homology isomorphisms,
Lemma 2.2.2 just asserts that for all i ∈ Z, the resulting map Θi of presheaves

Θi(U) : HiΓ(ν−1U,F ) = HiΓ(U, ν∗F )

→ HiΓ(U, ν∗J ) = HiΓ(ν−1U,J ) (U open in X)

induces an isomorphism of the associated sheaves. When U is affine, ν−1U is affine
(since X is separated), so by Definition 2.1 the natural map is a D-isomorphism

Γ(ν−1U,F ) −→∼ RΓ(ν−1U,F ) = Γ(ν−1U,J ),

i.e., Θi(U) itself is an isomorphism, whence the conclusion.

Corollary 2.2.3. If ν : V ↪→ X is an open immersion with V affine, then for any
affine-acyclic OV-complex F, ν∗F is also affine-acyclic.

Proof. For the inclusion λ : U ↪→ X of an affine open subset, we have a commutative
diagram of open immersions where, X being separated, ν−1U is affine:

ν−1U
λ′−−−→ V

ν ′

y yν
U −−−→

λ
X

Let ρ : F → J be a K-injective resolution. Since ν∗ has an exact left adjoint
(namely ν∗), therefore ν∗J is K-injective; and so by Lemma 2.2.2, ν∗ρ : ν∗F → ν∗J
is a K-injective resolution. As F is affine-acyclic, the map

Γ(U, ν∗F ) = Γ(ν−1U, F )
via ρ−−→ Γ(ν−1U, J ) = Γ(U, ν∗J )

is a quasi-isomorphism; and the conclusion follows.

Lemma 2.2.4. Let U = (Uα)1≤α≤t be a finite affine open cover of X, and let
Č• be the corresponding Čech functor from U-complexes to OX-complexes. If F
is a U-complex such that Fj is an affine-acyclic OUj-complex for all j ∈ Pt then

Č•F is an affine–acyclic OX-complex. Moreover, if F is exact then so is Č•F .

Proof. The complex Č•F has a finite filtration

Č•F = C0 ⊃ C1 ⊃ C2 · · · ⊃ Ct = 0,

with Cs the total complex associated to the double complex Čp(F q)p≥s; q∈Z. Since
Cs+1 is, as graded module, a direct summand of Cs , we have triangles in K(X)

Cs+1 −→ Cs −→ Cs/Cs+1 = ⊕|j|=sλj∗Fj → Cs+1[1] (0 ≤ s < t)

(see e.g., [Lpm, Example (1.4.3)]).
Since λj∗Fj is affine-acyclic (Corollary 2.2.3), descending induction on s, starting

with s = t − 1, yields that each Cs is affine-acyclic. Thus Č•F (= C0) is affine-
acyclic.
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If F is exact then for k ∈ Pt, Lemma 2.2.2 shows that λk∗Fk is exact. Hence
for p ≥ 0, the complex ČpF is exact. The family (ČpF)0≤p<t contains all the non-
vanishing columns of the double complex of which Č•F is the total complex, and
the assertion results.

Corollary 2.2.5. Let U = (Uα)1≤α≤t be a finite affine open cover of X. Let č := čU
and č∞ := lim−−→ č

m be the corresponding functors (see §1.2). If E ∈ K~c(X) is an

affine-acyclic OX-complex, then so are čE and č∞E.

Proof. Affine-acyclicity of čE is given by Lemma 2.2.4, applied to the U-pullback F
of E (Fj := λ∗jE for all j ∈ Pt . . . ; and čE = Č•F ).

By induction, čmE is affine-acyclic for all m > 0. Being the target of a quasi-
isomorphism from E , čmE is in K~c(X). It results then from Example 2.2.1(b) that
č∞E is affine-acyclic.

Lemma 2.2.6. Let λ : U → X be an affine map of locally noetherian formal
schemes. Then for any F ∈ A~c(U) the natural map is an isomorphism

πG : λ∗F ⊗OX G −→∼ λ∗(F ⊗OU λ∗G) (G ∈ Aqc(X)).

Proof. The map πG is, by definition, adjoint to the natural map

λ∗(λ∗F ⊗OX G) −→∼ λ∗λ∗F ⊗OU λ∗G → F ⊗OU λ∗G.

It follows that πG “commutes” (in the obvious sense) with open immersions into X.
Hence we may assume that X and U are affine, and that there is an exact sequence

G2 → G1 → G → 0

with G2 and G1 direct sums of copies of OX.
Then both F⊗λ∗G1 and F⊗λ∗G2, being direct sums of copies of F, are in A~c(U).

So [DFS, Proposition 3.2.2] yields that the kernels of the maps a and b in the natural
exact sequence

F ⊗ λ∗G2
a−→F ⊗ λ∗G1

b−→F ⊗ λ∗G → 0

are in A~c(U). From [DFS, Lemma 3.4.2] it follows then that the bottom row in the
natural commutative diagram

λ∗F ⊗ G2 −−−→ λ∗F ⊗ G1 −−−→ λ∗F ⊗ G −−−→ 0

πG
2

y πG
1

y yπG
λ∗(F ⊗ λ∗G2) −−−→ λ∗(F ⊗ λ∗G1) −−−→ λ∗(F ⊗ λ∗G) −−−→ 0

is exact, and of course the top row is exact.
Since U is noetherian, the functor λ∗ commutes with direct sums, whence πG2

and πG1 are isomorphisms; so πG is an isomorphism too.

Lemma 2.2.7. Let U = (Uα)1≤α≤t be a finite affine open cover of X, and let Č•

be the corresponding Čech functor from U-complexes to OX-complexes. Let F be a
U-complex such that for every j ∈ Pt , Fj is a direct sum of complexes of the form
λij∗Fij (i ⊃ j) with Fij an A~c(Ui)-complex. Then Č•F is affine-I-acyclic; and

č∞Č•F is locally I-acyclic.
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Proof. Lemma 2.2.6 (with λ = λij , F = Fij and G = OUj/InOUj ) provides an
isomorphism

λij∗Fij/Inλij∗Fij −→∼ λij∗(Fij/InFij).
Hence Fj/InFj ∼= ⊕i⊃jλij∗(Fij/InFij). As in Example 2.2.1(a), Fij/InFij is an
A~c(Ui)-complex for all n > 0, so that by Example 2.2.1(c), Fij/InFij is affine-
acyclic. By Corollary 2.2.3, then, Fj/InFj is an affine-acyclic OUj -complex; and
so by Lemma 2.2.4, Č•(F/InF ) is an affine-acyclic OX-complex.

Now the natural map Č•F/(InČ•F )→ Č•(F/InF ) is an isomorphism, since it
is a direct sum of maps of the form

λj∗λij∗Fij/Inλj∗λij∗Fij = λi∗Fij/Inλi∗Fij
−→∼
2.2.6

λi∗(Fij/InFij) = λj∗λij∗(Fij/InFij).

So Č•F/(InČ•F ) is affine-acyclic.
Also, for any affine open U ⊂ X and n > 0, the natural map is a surjection

Γ(U, Č•F/(In+1Č•F ))� Γ(U, Č•F/(InČ•F )),

because it is isomorphic to a direct sum of surjective maps of the form

Γ(U, λi∗(Fij/In+1Fij)) = Γ(λ−1
i U,Fij/In+1Fij)

� Γ(λ−1
i U,Fij/InFij) = Γ(U, λi∗(Fij/InFij)),

surjectivity holding by [DFS, Lemma 3.1.8], since InFij/In+1Fij ∈ A~c(Ui) (see
Example 2.2.1(a)). Thus Č•F is indeed affine-I-acyclic.

Next, the pullback of Č•F to a U-module F∗ is such that for every ` ∈ Pt , F∗` is
a direct sum of complexes of the form λk`∗F∗k` (k ⊃ `) with F∗k` an A~c(Uk)-complex:
that follows from the relation

λ∗`λj∗λij∗Fij = λ(i∪`)`∗λ
∗
(i∪`)iFij (i ⊃ j ∈ Pt , ` ∈ Pt).

Hence čČ•F = Č•F∗ is again affine-I-acyclic. And as above, the natural map is
an isomorphism

čČ•F/(InčČ•F ) = Č•F∗/(InČ•F∗) −→∼ Č•(F∗/InF∗) = č(Č•F/InČ•F ).

By induction, we find that čmČ•F = čm−1Č•F∗ is affine-I-acyclic for all m > 0.
So for all n > 0 and any affine open U ⊂ X, the natural map is a surjection

Γ(U, čmČ•F/In+1čmČ•F )� Γ(U, čmČ•F/InčmČ•F );

and applying lim−−→
m

, we get the same with ∞ in place of m.

By induction again, there is a natural isomorphism

čmČ•F/(InčmČ•F ) = čm−1Č•F∗/(Inčm−1Č•F∗)
−→∼ čm−1(Č•F∗/InČ•F∗) −→∼ čm(Č•F/InČ•F ).

So for all n > 0, the restriction to any Uα of

č∞Č•F/(Inč∞Č•F ) = lim−−→
m

čmČ•F/(InčmČ•F ) ∼= lim−−→
m

čm(Č•F/InČ•F )

is homotopy-isomorphic to the restriction of Č•F/InČ•F (cf. end of Section 1.2),
so that (č∞Č•F/Inč∞Č•F )|Uα is affine-acyclic (Remark 2.1.1(2)).

Thus č∞Č•F is locally I-acyclic (over the cover U ), as asserted.
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2.3. We also need a few results concerning flatness of complexes.

Lemma 2.3.1. Let λ : U → X be a flat affine map of locally noetherian formal
schemes. If F ∈ A~c(U) is OU-flat, then λ∗F is OX-flat.

Proof. The question being local, we may assume that U = Spf(B) and X = Spf(A)
where A and B are noetherian adic rings, and that λ = Spf(φ) where φ : A → B
is a continuous ring homomorphism. Then by [DFS, Proposition 3.1.1], there is

a B-module F such that F ∼= κ∗F̃, where κ : Spf(B) → Spec(B) is the canonical

map and F̃ is the quasi-coherent sheaf on Spec(B) corresponding to F .
We claim that F is B-flat. Indeed, if J is any B-ideal and N is the kernel of

the natural map τJ : J ⊗B F → F , then κ∗Ñ is the kernel of the induced map

κ∗J̃ ⊗OX κ∗F̃ → κ∗F̃ , a map which is injective since κ∗F̃ ∼= F is flat, so that

κ∗Ñ = 0, whence by [DFS, Proposition 3.1.1], Ñ = 0, and so N = 0. Thus τJ is
injective for all J , i.e., F is B-flat.

Now for each f ∈ A, with κf : Spf(B{f})→ Spec(B{f}) the natural map, and for
any B{f}-module M with corresponding quasi-coherent OSpec(B{f})-module M≈, it

follows from [DFS, Proposition 3.1.1] (since the “quasi-coherator” Q = QSpec(B{f})

can be taken to be Γ(Spec(B{f}),−)∼) that

Γ(Spf(B{f}), κ
∗
f (M

≈)) = Γ(Spec(B{f}), Qκf∗κ
∗
f (M

≈))∼= Γ(Spec(B{f}), M
≈)∼=M.

Taking M = F ⊗B B{f}—so that with if : Spec(B{f})→ Spec(B) the natural map,

M≈ = i∗f F̃—we conclude that

Γ(Spf(A{f}), λ∗κ
∗F̃ ) = Γ(Spf(B{f}), κ

∗F̃ ) = Γ(Spf(B{f}), κ
∗
f(M

≈)) ∼= F ⊗B B{f}.

Hence, since B{f} is A{f}-flat ([DFS, Lemma 7.1.1]), Γ(Spf(A{f}), λ∗κ
∗F̃ ) is flat

over A{f} = Γ(Spf(A{f}),OX) for any f ∈ A; and so λ∗κ
∗F̃ ∼= λ∗F is OX-flat.

From the definitions of Č• and čm it follows now that:

Corollary 2.3.2. If U is a finite affine open cover of X and P is a flat A~c(U)-
complex, then čmČ•P (0 ≤ m ≤ ∞) is a flat OX-complex.

If λ : U ↪→ X is the inclusion of an open subset then since X is noetherian,
λ∗ preserves lim−−→. Hence Č• and čm (0 ≤ m ≤ ∞) preserve lim−−→, and so:

Corollary 2.3.3. If U is a finite affine open cover of X and P is a lim−−→ of bounded-
above flat A~c(U)-complexes, then čmČ•P (0 ≤ m ≤ ∞) is a lim−−→ of bounded-above

flat OX-complexes, and hence is flat and K-flat.

Corollary 2.3.4. (i) If an OX-complex E is K-flat then so is čmE (0 ≤m≤∞).

(ii) If an A~c(X)-complex E is flat then so is čmE (0 ≤m≤∞).

Proof. (i) The restriction of a K-flat complex to an open subset is still K-flat, as one
sees using “extension by 0.” Thus for K-flatness the question is local, and we need
only recall that čmE is locally homotopy-isomorphic to E (cf. end of Section 1.2).

(ii) Apply Corollary 2.3.2 with P the pullback to U of E .
Applying Lemma 2.2.7 to the U-pullback F of E , we get (c) in Section 1.3.2:

Corollary 2.3.5. For any K-flat A~c -complex E, č∞E is K-flat and locally I-acyclic.
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Lemma 2.4.1. Let QX be right-adjoint to the inclusion functor A~c ↪→ A (see
[DFS, Proposition 3.2.3]). If X is affine then for any affine-acyclic E ∈ K~c the
canonical map QXE → E is a quasi-isomorphism.

Proof. Let A be a noetherian adic ring such that X ∼= Spf(A) (e.g., A := Γ(X,OX)),
and let κ : X → X := Spec(A) be the canonical map. Then with ∼ denoting the
usual functor from A-modules to OX-modules, [DFS, Proposition 3.2.3] yields

QXE ∼= κ∗(QXκ∗E) = κ∗(Γ(X, κ∗E)∼) = κ∗(Γ(X, E)∼).

By assumption, any K-injective resolution i : E → J induces a quasi-isomorphism
Γ(X, E) → Γ(X,J ); and so since κ∗ and ∼ are exact, QX(i) : QXE → QXJ is a
quasi-isomorphism.

Furthermore, [DFS, Corollary 3.3.4] implies that the natural map QXJ → J is
a quasi-isomorphism. Conclude via the natural commutative diagram

QXE −−−→ E
Q
X

(i)

y yi
QXJ −−−→ J

Proposition 2.4.2. Let U = (Uα)1≤α≤t be an affine open cover of X. Let G be
a U-complex with A~c(U)-homology such that for each k ∈ Pt , Gk is affine-acyclic.
Then G receives a quasi-isomorphism from a lim−−→ of bounded-above flat complexes
of A~c(U)-modules.

Proof. If i ⊃ j are in Pt, then λ∗ijQUjGj is an A~c(Ui)-complex, and so the natural
composition

λ∗ijQUjGj → λ∗ijGj → Gi
factors naturally as

λ∗ijQUjGj
φij−→ QUiGi → Gi .

The maps φij make the family (QUkGk)k∈Pt into an A~c(U)-complex. Lemma 2.4.1
lets us replace G by this complex, i.e., we may assume that G is an A~c(U)-complex.

After noting that if U is an affine noetherian formal scheme then, by [DFS,
Corollary 3.1.4], any A~c(U)-module is a homomorphic image of a free OU-module,
we can conclude as in the proof of [AJL, p. 11, Corollary 1.2.2].

2.5. We can now complete the proof of Proposition 2.1.3.

Let U = (Uα)1≤α≤t be an affine open cover of X. For any E ∈ Ǩa
~c , the pull-

back is a U-module G satisfying the hypotheses of Proposition 2.4.2; so there is
a quasi-isomorphism P → G with P a lim−−→ of bounded-above flat complexes of
A~c(U)-modules. Since A~c -complexes are affine-acyclic (Example 2.2.1(c) and Re-
mark 2.1.1(1)), the (exact) mapping cone F of this quasi-isomorphism satisfies
the hypotheses of Lemma 2.2.4, so Č•F is exact, and hence the induced map
Č•P → Č•G = čE is a quasi-isomorphism, as is the resulting map

PE := č∞Č•P → č∞čE ∼= č∞E .
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Since Č•P, čE , and E have isomorphic homology, therefore Č•P ∈ K~c(X); and
Č•P is affine-acyclic (Lemma 2.2.7, with I=0), so PE ∈ Ǩa

~c . (Look at the actual
construction of P—as given in [AJL, p. 11, Corollary 1.2.2]—to see that the hy-
potheses of Lemma 2.2.7 are satisfied.) By Lemma 2.2.7, furthermore, PE is locally
I-acyclic. From Corollary 2.3.3, it follows that PE is flat and K-flat.

Finally, since E ∈ Ǩ~c(X) the natural map of complexes E → č∞E has an inverse,
which can be composed with the preceding quasi-isomorphism PE → č∞E to give
the desired quasi-isomorphism PE → E. �

3. A functorial isomorphism

Denote by Λ the restricted completion functor ΛI |Ka
~c
, and by LΛ: Da

~c → D

its left-derived functor, whose existence has now been proved according to Sec-
tion 1.3.2. The proof shows we may assume LΛP = ΛP for any K-flat locally
I-acyclic P ∈ Ǩa

~c .

3.1. We first construct a ∆-functorial map

Φ: LΛE → RHom•(RΓIOX, E) (E ∈ Da
~c ).

Using the equivalence ρ : Da
~c → Ďa

~c (Section 1.3), we can replace Da
~c by its

∆-subcategory Ďa
~c . Because of Proposition 2.1.3, we can further restrict to the

equivalent ∆-subcategory of Ďa
~c whose objects are the flat, K-flat, locally I-acyclic

complexes in Ǩ~c(X)—this is the derived category of the homotopy category H
of such complexes. Thus, with q : K → D the natural functor and q′ the natu-
ral functor from H to its derived category, [Hrt, p. 33, Proposition 3.4] shows it
sufficient to construct a map of functors

(LΛ)q′P = qΛP → RHom•(RΓIOX, q′P) (P ∈ H).

Hence if OX →R is a K-injective resolution, it will suffice to construct a map

ΛP → Hom•(ΓIR, P ⊗R) (P ∈ H)(3.1.1)

between functors from H to K.
For any OX-complexes P, Q, R, the natural map

(P ⊗Q)⊗ (Hom•(Q,R)) ∼= P ⊗ (Q⊗Hom•(Q,R))→ P ⊗R
induces (via ⊗–Hom adjunction) a functorial map

P ⊗Q → Hom•(Hom•(Q,R), P ⊗R).

Letting Q run through the inverse system OX/In (n > 0) one gets the desired
natural map

ΛP = lim←−− (P ⊗OX/In)→ lim←−− Hom
•(Hom•(OX/In,R), P ⊗R)

∼= Hom•(lim−−→ Hom
•(OX/In,R), P ⊗R)

∼= Hom•(ΓIR, P ⊗R).

Now comes the principal result.
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Proposition 3.2. The ∆-functorial map Φ is an isomorphism.

Before describing its proof, we note that Proposition 3.2 allows us to complete
the proof of Theorem 0.1, as follows.

There is a canonical functorial map ξ : LΛ→ qΛ. With ζ := ξΦ−1, property (i) in
Theorem 0.1 results. The functorial map F → qΛF (F ∈ Da

~c ) factors uniquely as

F ιF−→ LΛF ξF−→ qΛF (thanks to the defining property of “left-derived functor”), and
Theorem 0.1(ii) says that ΦF ◦ ι(F ) is the natural map F → RHom•(RΓIOX,F ).
One checks that this comes down to the straightforward verification (left to the
reader) that the following natural diagram commutes for all P ∈ H:

P −−−→ ΛPy y(3.1.1)

Hom•(R, P ⊗R) −−−→ Hom•(ΓIR, P ⊗R)

Finally, for the last assertion in Theorem 0.1 see Section 1.3.2.

Proof of Proposition 3.2. The proof is similar to that of the main Theorem (0.3)
in [AJL]. We just indicate the non-trivial modifications.

Everything in sight commutes with restriction to open subsets, so we may assume
that X is affine and that I is generated by a finite number of global sections
t1, . . . , tm. Recalling that every sheaf in A~c is then a homomorphic image of a free
OX-module ([DFS, Corollary 3.1.4]), we have a “way-out” reduction, as in [AJL,
p. 15], to the case where E is a single flat OX-module, denoted P, in A~c.

This case is dealt with as in [AJL, §4]. Let R be the adic ring Γ(X,OX) (topolo-
gized by the global sections of a defining ideal of X), so that X ∼= Spf(R). Since R
is noetherian, the sequence t := (t1, . . . , tm) in R is proregular (see [AJL, p. 16], Ex-
ample (a) following Definition (3.0.1)). Throughout [AJL, §4], replace the scheme
(X,OX) by the noetherian affine formal scheme (X,OX), and interpret “quasi-
coherent” to mean “lim−−→ of coherent.” Also, replace RΓZOX by RΓIOX, which is
D(X)-isomorphic to the complex

K•∞(t) := lim−−→
r>0

K•(tr)

where K•(tr) is the Koszul OX-complex determined by the sequence (tr1, . . . , t
r
m),

see [AJL, p. 18, Lemma (3.1.1)].
To validate the sequence of isomorphisms (4.1.3) of [AJL, p. 28] in the present

context, use the following observations:

(i) If P →J is an injective resolution, then the resulting map Γ(X,P)→ Γ(X,J )
is a quasi-isomorphism.

This is because P is affine-acyclic (Example 2.2.1(a)).

(ii) If E is any complex in A~c, then the natural maps

HiΓ(X, E)→ Γ(X, H iE) (i ∈ Z)

are all isomorphisms.
This is because the functor Γ := Γ(X,−) on the abelian category A~c is exact

([DFS, Proposition 3.2.2], [DFS, Corollary 3.1.8]). In particular, since K•(tr) is a
free, finite-rank OX-complex and R = ΓOX, we have natural isomorphisms

HiHom•R(ΓK•(tr),ΓP) −→∼ HiHom•OX(K•(tr),P) −→∼ ΓH iHom•OX(K•(tr),P).
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The rest of the translation of [AJL, §4] to the present context is straightforward,
except for the last half of the proof of Lemma (4.3) in loc. cit. For that, one needs
[DFS, Corollary 3.3.4] (to replace the reference to [BN]), and [DFS, Corollary 3.1.8]
(for imitating the proof of [Spn, p. 134, Proposition 3.13]); and one needs to keep
in mind that A~c -complexes are affine-acyclic (Example 2.2.1(c)). �

4. Proof of Proposition 0.3.1.

Refer to Section 0.3 for notation, and for the statement of Proposition 0.3.1.

Lemma 4.1. The canonical map F → κ∗κ
∗F induces an isomorphism

RΓIF −→∼ RΓIκ∗κ
∗F (F ∈ D).

Proof. The question being local, we may assume that X is the completion of an
affine scheme X = Spec(A) along a closed subscheme Z, and that X̂I is the comple-
tion of X along a closed subscheme Y ⊂ Z, so that there is a natural factorization
of the completion map κY : X̂I → X as

X̂I
κ−→ X κZ−→ X.

Now let I ′ ⊂ I be an ideal of definition of X. Then for any OX-module E such
that RΓI′E = E, we have E ∼= κ∗ZE for some OX -module E [DFS, Proposition 5.2.4].
In particular, since RΓI′RΓIF = RΓIF (cf. [AJL, p. 20, Corollary 3.1.3]), therefore
RΓIF ∼= κ∗ZF for some OX-module F.

By [DFS, Proposition 5.2.4] again, the natural maps are isomorphisms

HomX(E, F ) −→∼ HomX(κ
∗
ZE, κ

∗
ZF ) = HomX(E,RΓIF ),

HomX(E, F ) −→∼ HomX̂I(κ
∗
YE, κ

∗
Y F ) = HomX̂I(κ

∗E, κ∗RΓIF ).

Furthermore, arguing as in the proof of [DFS, Proposition 5.2.4] we get a natural
isomorphism

κ∗κ
∗RΓIF −→∼ RΓIκ∗κ

∗F
whose composition with the natural map RΓIF → κ∗κ

∗RΓIF is the natural map
RΓIF → RΓIκ∗κ

∗F.
Thus for any E such that RΓI′E = E , we have a composed isomorphism

HomX(E,RΓIF ) −→∼ HomX(E, F ) −→∼ HomX̂I(κ
∗E, κ∗RΓIF )

−→∼ HomX(E, κ∗κ∗RΓIF ) −→∼ HomX(E,RΓIκ∗κ∗F )

which (one checks) is induced by F → κ∗κ
∗F, whence the conclusion.

Corollary 4.1.1. The canonical map F → κ∗κ
∗F induces an isomorphism

Hom(κ∗κ∗F,RHom•(RΓIOX , F )) −→∼ Hom(F,RHom•(RΓIOX , F )).

Proof. Using that RΓI is right-adjoint to the inclusion into D of the derived cat-
egory of the category of I-torsion sheaves ([DFS, Lemma 5.2.2]), one finds that
there is a unique functorial map

ψE : E ⊗= RΓIOX → RΓIE (E ∈ D)(4.1.1.1)
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making the following natural diagram commute:

E ⊗
=

RΓIOX
ψE−−−→ RΓIEy y

E ⊗
=
OX ˜−−−→ E

It follows from [AJL, p. 20, Corollary (3.1.2)] that ψE is an isomorphism.
Let us also recall the basic adjoint associativity isomorphism (see, e.g., [Lpm,

Proposition (2.6.1)∗]):

RHom•(D ⊗
=
E ,F ) −→∼ RHom•(D,RHom•(E,F )) (D,E, F ∈ D).(4.1.1.2)

The isomorphism also holds with the outer RHom•’s replaced by Hom := HomD,
as one sees by applying the functor H0RΓ(X,−).

Corollary 4.1.1 results then from the natural commutative diagram, in which all
the vertical arrows are isomorphisms, as is the bottom horizontal one:

Hom(κ∗κ∗F ,RHom•(RΓIOX , F )) −−−→ Hom(F ,RHom•(RΓIOX , F ))

'
y y'

Hom(κ∗κ
∗F ⊗

=
RΓIOX, F ) −−−→ Hom(F ⊗

=
RΓIOX, F )

'
x x'

Hom(RΓIκ∗κ
∗F, F ) ˜−−−→

Lemma 4.1
Hom(RΓIF, F )

In the following natural diagram, where “H” stands for “Hom,” the isomor-
phisms a and a∗ are obtained by adjoint associativity and multiple use of ψ
(see (4.1.1.1)), and the isomorphisms b and b∗ are obtained by imitating [DFS,
Remark 5.2.10](4). The diagram commutes, so c is an isomorphism.

Assertion (i) in Proposition 0.3.1 results.

H(RHom•(E, κ∗κ∗F ),RHom•(RΓIE, F ))
c−−→ H(RHom•(E, F ),RHom•(RΓIE, F ))

a∗
y' '

ya
H(RΓIRHom•(E, κ∗κ∗F )⊗

=
E,F )) −−→ H(RΓIRHom•(E, F )⊗

=
E,F ))

b∗
y' '

yb
H(RΓIRHom•(E,RΓIκ∗κ∗F )⊗

=
E,F )) ˜−−−→

4.1.1
H(RΓIRHom•(E,RΓIF )⊗

=
E,F ))

4.2. What remains to be shown is that λ(E,F ) is an isomorphism for all F ∈ Dc .

We can reduce the problem to the case E = OX by factoring λ(E, F ) as

RHom•(E, κ∗κ∗F )
via λ(OX,F )−−−−−−−→ RHom•(E,RHom•(RΓIOX , F ))˜−−−−→

(4.1.1.2)
RHom•(E ⊗

=
RΓIOX, F ) ˜−−−−→

(4.1.1.1)
RHom•(RΓIE, F ).
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To check that this composition is in fact λ(E, F ), using the characterization in
Proposition 0.3.1(i), consider the following natural diagram:

RHom•(E, F ) −−−→ RHom•(E, κ∗κ∗F )y' yvia λ(OX,F )

RHom•(E,RHom•(OX, F )) −−−→ RHom•(E,RHom•(RΓIOX, F ))

(4.1.1.2)

y' '
y(4.1.1.2)

RHom•(E ⊗
=
OX, F ) −−−→ RHom•(E ⊗

=
RΓIOX, F )y' '
y(4.1.1.1)

RHom•(E , F ) −−−→ RHom•(RΓIE , F )

The top rectangle commutes by the characterization of λ(OX, F ), the middle one
commutes by functoriality, and commutativity of the bottom one is given by the
commutative diagram following (4.1.1.1). It suffices then to verify that the com-
position of the vertical maps on the left is the identity, which is easy to do after
assuming (as one may) that F is K-injective, so that each RHom• can be replaced
by Hom•.

To show that λ(OX, F ) is an isomorphism when F ∈ Dc we may assume, after
replacing F by a K-injective complex into which F maps quasi-isomorphically,
that F ∈ Da

~c . For such an F we will now give another construction of λ(OX, F ),
adapted to application of Theorem 0.1.

For any OX-complex F , we have the canonical completion map

F → ΛIF = κ∗ lim←−−
n

((F/InF)|X̂I),

whence a natural factorization F −→ κ∗κ
∗F γF−→ ΛIF. The exact functor κ∗κ

∗

induces a functor Da
~c → D, so for F ∈ Da

~c Theorem 0.1(i) yields a factorization
γF = ζF ◦λ0(F ), as depicted:

F −→ κ∗κ
∗F λ0(F )−−−→ RHom•(RΓIOX , F )

ζF−→ ΛIF (F ∈ Da
~c ).

In view of Theorem 0.1, (i) and (ii), the composition of λ0(F ) with the canonical
map F → κ∗κ

∗F is the natural map F → RHom•(RΓIOX , F ), since both this
composition and the natural map give the same result when composed with ζF .
Proposition 0.3.1(i) shows then that λ0(F ) = λ(OX,F ).

The question of whether λ(OX,F ) is an isomorphism is local. One can there-
fore assume that X is affine, so that every coherent OX-module is a homomorphic
image of a finite-rank free one [GD, p. 427, Théorème (10.10.2)]. Now the exact
functor κ∗κ

∗ is bounded on D~c, and so is the functor RHom•(RΓIOX,−), by [AJL,
p. 30, Lemma (4.3)], suitably modified (see discussion at the end of Section 3 above).
Hence we have a “way-out” reduction [Hrt, p. 68, Proposition 7.1] to the case where
F is a single finite-rank free OX-module. In this case it is straightforward to see
that γF = ζFλ0(F ) is an isomorphism; and by the last assertion in Theorem 0.1, so
is ζF . Thus λ(OX,F ) = λ0(F ) is an isomorphism, and Proposition 0.3.1 is proved.



20 LEOVIGILDO ALONSO, ANA JEREMÍAS, AND JOSEPH LIPMAN
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