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ABSTRACT. For a closed subscheme Z of a noetherian separated scheme X, let I,
be the functor of sections with support in Z, taking Ox-modules to Ox-modules.
Inspired by a theorem of Greenlees and May [GM] about duality between local
cohomology and local homology for modules over a commutative ring, we gave in
[AJL] the result that on quasi-coherent complexes F the “homology localization”
functor RHom® (RI,;Ox, F) is aleft-derived functor of A z :=completion along Z,
the corresponding map to AzF being such that its composition with the natural
map F — RHom*(RI;Ox,F) is the completion map F — AzF. We also
showed how this unifies and generalizes several other recorded duality theorems.
Here we extend the result to an arbitrary noetherian separated formal scheme X,
with “quasi-coherent” replaced by “li_n} of coherent.”

Given an open Ox-ideal Z, with x: Xz — X the completion by Z and I the
functor lim Hom* (O /I", —), we deduce for any Ox-complex F having coherent
L1 y
homology sheaves a canonical duality isomorphism

RHom® (€, k™ F) = RHom*(RIZE, F) (€ € D(X)).

The special case where Z is an ideal of definition—so that x = identity—plays
an important part in the duality theory of coherent sheaves on formal schemes.

INTRODUCTION

We use the terminology of [DFS, Section 1], and basic facts about formal schemes
found in [GD, Chapter 1, §10]. In particular, we assume familiarity with the notion
of triangle-preserving functors (A-functors) between triangulated categories (A-
categories), and of (A-functorial) maps between such functors.

Throughout, X is a separated noetherian formal scheme, A is the category A(X)
of Ox-modules, K is the homotopy category of Oy-complexes, D is its derived
category (i.e., its localization with respect to quasi-isomorphisms [Hrt, pp. 28-35]),
and ¢: K — D is the canonical functor. Az C A is the plump subcategory (see
[DF'S, Section 1]) whose objects are lim’s of coherent Ox-modules. The derived
category Dz of the homotopy category Kz of A-complexes whose homology sheaves
are all in Az is a A-subcategory of D ([Hrt, p. 50, Example 3]).

We work with affine-acyclic complexes, i.e., Oyx-complexes £ such that for each
affine open U C X, the natural map I'(U,E) — RI'(U, E) is an isomorphism in the
derived category of abelian groups. In other words, if £ — 7 is a quasi-isomorphism
from £ to a K-injective complex J—a K-injective resolution [Spn, 4.5])—then
', &) — I'(U, J) is a quasi-isomorphism. (Observe, using the functor “extension
by 0,” that the restriction of a K-injective complex to an open subset remains K-
injective; and that RI" can be realized via K-injective resolutions [Spn, 5.12, 6.4].)

For example, every Az-complex is affine-acyclic (Example 2.2.1(c)).
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The homotopy category K2 of affine-acyclic complexes with Az-homology is a
A-subcategory of K, see Remark 2.1.1(4). Since every complex admits a quasi-
isomorphism into a K-injective (clearly affine-acyclic) one, the derived category D2
of K2 can be identified with a A-subcategory of D, whose inclusion j7*: D — D,
is an equivalence of A-categories. The canonical functor ¢*: K& — D2 is then the
restriction of q.

Fix a coherent Ox-ideal Z. The torsion functor I7: K — K is described by

17G:= lim Hom*(Ox /1", G) (G € K),

n>0

(see [DFS, Section 1.2.1]). The completion functor A;: K — K is described by
A7(G):= g((Ox/I") ®g) (G€K).

By the universal property of right-derived functors, there is a unique functorial
map R/; — 1 whose composition with the canonical map I; — RI; is the inclu-
sion map [ — 1. For any K-injective resolution & — J as above, RI; & — € is
naturally isomorphic to the canonical map I;J — J.

The functor RHom® (RI; Oy, —) is right-adjoint to RI} (via (4.1.1.2), (4.1.1.1)
below). So the following main result establishes a duality (= adjunction) between
the right-derived torsion and the left-derived completion functors associated to Z.

Theorem 0.1. There exists a unique A-functorial D-morphism
Cr: RHom®*(RI;Ox, F) — At F (F € Kg)

such that:

(i) the pair (RHom*(RI;Ox,—),() is a left-derived functor of qAI]K? (i.e.,
a final object in the category of pairs (S, ) with S: D3 — D a A-functor and
0: Sq* — qA7|ke a map of A-functors), and

(ii) the compocsition of Cx with the natural map

pr: F = RHom*(Ox, F) = RHom*(RI; O, F)

is the canonical completion map F — A, F.

Moreover, this (z is an isomorphism whenever F is a K-flat Agz-complez.!

The uniqueness of ¢ is shown as follows. It results from (i) and (ii) that any
two choices of ¢ are the same modulo a functorial automorphism 65 of AzF :=
RHom*(RI; Oy, F) respecting pr. But just as in setting up the isomorphism (B)
in [DFS, Remark 6.3.1](1), we can see that composition with px is an isomorphism
Hom(AzF, AzF) = Hom(F, AzF), whence 05 = identity.

0.2. Existence of ¢ in Theorem 0.1 is proved along lines similar to those in [AJL],
which deals with ordinary schemes. Here there are new technical problems. For
example, the canonical functor D(Az) — Dz might not be an equivalence (as it
is for separated quasi-compact ordinary schemes). Another—related—problem is
that for an open immersion i: U < X, the functor i, doesn’t necessarily take Az(U)
into Az (as it does for separated quasi-compact ordinary schemes.) To get around
such obstacles we need properties of sheaves on formal schemes established in [DFS].

1An Ox-complex is K-flat if its tensor product with every exact Ox-complex remains exact,
cf. [Spn, pp. 139-140]. For example, any hi>n of bounded-above flat complexes is K-flat (cf. e.g.,
[Lpm, Example (2.5.4)]).
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In outline, we proceed as follows. After setting up some preliminaries on Cech
functors in Section 1, we show in Section 2 that the completion functor A;|k. has
a left-derived functor, for which the property corresponding to the last assertion
in Theorem 0.1 holds. Then in Section 3 we identify this left-derived functor with
the pair (RHom®*(RI;Oy, —), (), in such a way that Theorem 0.1(ii) is satisfied.
In so doing we describe only the modifications needed in the corresponding proof
in [AJL], referring to loc. cit. for the remaining details.

It must be noted that the main results in [AJL] are inadequately packaged, at
least for non-affine X. There X is an ordinary scheme. The completion functor A,
is said to have a left-derived functor (denoted LAz, where Z = Supp(Ox/Z)) on
D¢(X) = Dy(X). However, that holds only on some equivalent subcategory D, (X),
among whose objects are all the quasi-coherent complexes. (The error lies in the
unduly facile paragraph preceding (1.2) on page 10 of [AJL]. To fill the gap we
have had to work with the functor ¢ of Section 1.2 below.) Thus the map

F — LAz F (F € Dge(X), k: X,z — X the completion map)

and its factorization via F — k.k*F, which play an important role in Theorem (0.3)
and Proposition (0.4.1) of loc. cit., make sense, as defined there, only on D (X).
But they can be extended to all of Dy(X), by means of its equivalence with D, ()
or (better) as described above in Theorem 0.1, and then the rest is okay.

0.3. The oft-used Proposition 6.2.1 in [DFS] follows from Theorem 0.1. In fact we
will use Theorem 0.1 to show that a certain A-bifunctorial map, more general than
the one in loc. cit., is an isomorphism. To wit:

Suppose Z is open, i.e., contains an ideal of definition of X. Let

K= Kg: §CI —-X

be the completion by Z. Thus jCI is the topological space Supp(Oy /Z) together with
the sheaf of topological rings lim Oy /I"; and k is the obvious ringed-space map.
By [GD, p.412, Proposition (10.6.3)], §CZ is a formal scheme, and by [GD, p. 422,
Corollaire (10.8.9)], [DFS, Lemma 7.1.1], and [Brb, p. 103, Corollaire], the map
is flat. (Both assertions are local, so need only be verified for affine X.)

In particular, if Z itself is an ideal of definition then X; = X and & is the identity.

Denote by D. C Dz the A-subcategory having as objects the complexes whose
homology sheaves are all coherent. The following proposition is proved in Section 4.

Proposition 0.3.1. (i) For each pair £, F € D the map induced by the canonical
map RI;E — £ factors uniquely as
RHom*(E, F) 22 Rom® (€, kuk*F) 2E&A, RHom*(RI;E, F).
(ii) If F € D, then A(E,F) is an isomorphism.

Remark. Explicitly, A\(€, F) is the composition st in the following natural com-
mutative diagram, where the isomorphisms p and p’ can be established by imitating
[DFS, Corollary 5.2.3], and r (hence s) is an isomorphism by Lemma 4.1:

RHom*(€, kuw*F) — RHom*(RIZE, kw™F) <—— RHom*(RIZE, RITk.K"F)
RHom*(E, F) — RHom*(RI;E,F) <+— RHom*(RI;E RIIF)
p
This description makes it clear that A(€, F) is A-bifunctorial.
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1. PRELIMINARIES ON CECH FUNCTORS AND LEFT-DERIVABILITY

1.1. Let U = (Ua)1<a<t be an open cover of the separated formal scheme X. Let
B: be the set of subsets of {1,2,...,t}. For ¢ € P, set

uiI: m ua, and Oz = Oui.

aci
For ¢ O 7 in P, let A;;: U; — U, be the inclusion. Set A;:= Ajy: U; — X.
A U-module is a family F = (F;)ieq, such that F; is an O;-module, together
with a family of sheaf homomorphisms
i NpFr = F; (D k)
such that ¢, is an O;-homomorphism, ¢;; is the identity map of F;, and whenever
t D j D k we have the transitivity relation y;;, = ¢;; (80]‘1@|ui), i.e., @i factors as

AL (eie) |
5Fe = AARTr ——25 M F;

We say that the U-module F is quasi-coherent (resp. flat, resp. ... ) if each
one of the O;-modules F; is such. So, for example, Az(U) denotes the category of
U-modules F such that F; € A:(U;) for all i € ;.

The U-modules and their morphisms (defined in the obvious manner) form an
abelian category A(U) having liny's and lim’s. For instance one checks that the lim

of a direct system (F™, ¢} )mer in AU) is (Lim F;", lim 7).

The Cech functor C* from the homotopy category K(U) to K:= K(X) is defined
as follows. With

|i| := (cardinality of i) — 1 (i € Py),
set, for F € A(U),
C’S(.T) = P N\ JF; if 0 < s < t, and 0 otherwise.
li]=s

Whenever k is obtained from j = {j, < j; < -+ < j1} € B¢ by removing
a single element j,, set €j; := (—1)*; and otherwise set €, := 0. (Thus if k
is fixed then €j; = 0 for all but finitely many j.) We specify the differential
6°: C*(F) — C**(F) by requiring its restriction to A\w.Fi (Jk| = s) to be the
natural composition

J

& AT

ljl=s+1

Then 6°t10¢* = 0 for all s, and so we get a functor C* from U-modules to Ox-
complexes. Next, for a complex F* € K(U), C*(F*) is defined to be the total
complex associated to the double complex C?(F?):

C’S(f.)3: DPptq=s CYp(]:q),
and the differential C*(F®) — C*+1(F*) restricts on CP(F9) to
(C2(n) ® (~1pd): CHFY) — (CHF) @ O

where d? (resp. d?) is the differential in the complex F* (resp. C*(F9)). One checks
that C'* commutes with translation and with forming mapping cones, so that C'* can
(and will) be regarded as a A-functor from K (i) to K.
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For instance, if M is an Oy-module and M* is the “pulled-back” U-module such
that M7 := A\JM and pjy, is the identity map of M} = A5 M for all j D k, then
C*(M?*) is the usual U-Cech resolution of M [Gdm, p. 206, Théoreme 5.2.1]. More
generally, composing C* with the pullback functor K — K (U) gives the functor
sending each Oy-complex & to its U-Cech resolution &&.

1.2. There is a functorial quasi-isomorphism x.: & — ¢€ (€ € K), giving rise to

an inductive system of functors (Xém: M — ém+1)m>0. Set

¢%°:= lim ¢™.
m

There is then a functorial quasi-isomorphism
xe: €& = ¢xE (€ € K).
Since X is noetherian, the functor ¢* commutes with h_)m, and hence is idempotent—

Xiseg: C°E — ¢>°¢™€ is an isomorphism of complexes for all £.

Lemma 1.2.1. A (x) is a quasi-isomorphism. In other words, q(A;(x%)) is a
D-isomorphism.

Proof. The question is readily seen to be local; and over any member U of the
open covering U, x&° is, by the following Corollary 1.2.3, a homotopy isomorphism,
whence so is A7(x%°). (Observe that (¢€)Jy is the Cech resolution of &y with
respect to the cover (UNU,)1<a<: 0f U, a cover of which U itself is a member). O

Lemma 1.2.2. Let U = (Uy, Uy, ..., U;) be an open cover of X, with U; = X.
Then for any Ox-complex &, the natural map x = x¢: € — ¢€ has a left inverse
whose kernel is homotopically trivial (i.e., its identity map is homotopic to 0).

Proof. Let £* be the pullback of £ to a U-complex, so that ¢€ = C*E* Then
CE = EDMNED - DANE C"E*/C’;OS*

where O, £* is the total complex associated to the double complex CP(£*7),~0. 4ez.-

Composing the natural map C*E* — C’g&'* and the projection 6’55* — £ we get a

left inverse m = m¢ of x.

Furthermore, 7 is a right homotopy inverse of x. Indeed, if h: ¢€ — ¢E[—1] is
the map of graded sheaves defined on the summand A\ A;EP (i € Py, p € Z) by:

if 1 € 4, and i':= ¢ — {1}, then the restriction of h to A\; AfEP is

Aihig? T N AEP = M\ NEP,

and otherwise the restriction is 0,

then one calculates, with d the differential in ¢&, that hd +dh =1 — x7.
As 7y is the identity map of £, we have a functorial direct-sum decomposition

(1.2.2.1) cE=E D GE
where ¢y€ is the kernel of 7g. If v: ¢€ — ¢£ is the inclusion, then in K,
v=(xm)ov=xo(mv) =0,

and since v has a left inverse therefore ¢y&€ is homotopically trivial. U
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Corollary 1.2.3. With U as in Lemma 1.2.2 the natural map of complexes
Xe: € = ¢*E:=1limc"E

has a left inverse whose kernel is homotopically trivial.

Proof. From (1.2.2.1) we deduce via induction that

EE2ED P G(emE).
m=0
Then we need only note that any direct sum of homotopically trivial complexes is
homotopically trivial. O

1.3. The category K2 in Theorem 0.1 satisfies ¢*K2 C K2 (Corollary 2.2.5).

Let K% be the essential image of éoo\Kg, i.e., the full subcategory of K% whose
objects are those complexes which are isomorphic to one of the form ¢*€ (€ € K32).
Then K2 is a A-subcategory of Ke. For if T is a Ke-triangle, with summit &,
whose base is a map & — & with & € K2, then £ € K2 (Remark 2.1.1(4)); and
considering the map of triangles x7°: T'— ¢>°T" in light of the idempotence of xg’
(see §1.2), we find that x° is a K-isomorphism, whence £ = ¢°& ¢ K&.

The functorial quasi-isomorphism x*°: 1 — ¢* shows that the additive func-
tor ¢*: K& — K% takes quasi-isomorphisms to quasi-isomorphisms, so induces
a A-functor p: D — ]f)fg‘ between the corresponding derived categories. Let
j: D& — D2 be the natural A-functor. Then x> induces a functorial isomorphism
from the identity of D2 to jp, and from the identity of D2 to pj (see [Hrt, p.33,
Proposition 3.4]), so that p and j are quasi-inverse equivalences of A-categories.

We have then the natural commutative diagram of functorial maps:

J P =
¢ —= D¢ —— D¢

o

j r:=¢

U(

(1.3.1)

¢
—

=
ol

1.3.2. In the next section, we will identify a A-subcategory Lg C Kg such that:

(a) for every exact complex P in L2, the complex A;P is exact (Lemma 2.1.2),

(b) every complex & in K2 is the target of a quasi-isomorphism with source in L2
(Proposition 2.1.3), and

(c) if £ is a K-flat Az-complex then ¢*€ € L2 (Corollary 2.3.5).

From (a) and (b) it follows that A:= A;|k. has a left-derived functor LA: D2 — D
such that the canonical map LAE — qAé is an isomorphism for all £ € i% [Hrt,
p. 53, Theorem 5.1]. In view of (c), the following formal lemma shows then? that
A= Af|ga has a left-derived functor LA: D% — D such that the canonical map
LAF — qu]—" is an isomorphism for every K-flat Az-complex F, thereby complet-
ing the first main step in the proof of Theorem 0.1.

2This point was overlooked in [AJL] (p.10, just before §1.2). The resulting deficiency can
be corrected by the arguments in this paper, which apply mutatis mutandis to any separated
quasi-compact scheme.
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Lemma 1.3.3. With reference to diagram (1.3.1), if the restriction A := Az|ga
has a left-derived functor (LA, &) then the functor (LA)p: D2 — D together with
the A-functorial map
a6 x b))
¢ (LA)pg* = (LA)Gr 5 gAr ﬁ 9]k
is a left-derived functor of Az|ka.

Proof. The assertion is that for any A-functor S: D% — D, with “Hom” denoting
the group of morphisms of A-functors, and with A:= Az|k., the composed map

a: Hom(S, (LA)p) Jatural, Hom(S¢* (LA)pg*) AL Hom(Sq? gA)
is bijective. §
In fact, (LA, ) being a left-derived functor of A, the composition
~v: Hom(Sj, LA) 222 Hom(Sj¢, (LA)§) via €, Hom(S75¢, qA)
is bijective; and we show now that the following natural composition, denoted J,
is an inverse of a:
Hom(S¢? gA) — Hom(Sq¢%j, ¢Aj)

— Hom(S35¢, gA)
ﬁ Hom(Sj,LA) < Hom(S, (LA)p).

(The last isomorphism reflects the fact that j and p are quasi-inverse equivalences.)
First, we claim, Sa = identity, i.e., the following natural diagram commutes:

Hom(S, (LA)p) —*— Hom(Sq* gA) —— Hom(Sq?j, qAj)

- |

Hom(S7, LA) - » Hom(S73¢, ¢A)

gl
Indeed, going from the top left corner to the bottom right corner either clockwise or
counterclockwise has the same effect on any ¢ € Hom(S, (LA)p), as can be verified
in a mechanical way with the aid of the commutative diagram:

Sq*j % (LA)pg?j == (LA)grj —=% qArj
| P L
814~ (LA)pjg — (LA)g v gA

To see now that § and a are inverse to each other we need only check that
0 is injective. But this injectivity clearly follows from the fact that any functorial
map €: S" — g\ which vanishes on K% must itself vanish, a fact resulting from
the commutative diagram (where gA(x2°) is an isomorphism, see Lemma 1.2.1):

se 95 gas
S/(X?)J NJqA(x?’) (€ € K2).
S'ré —— qAr€ ]

e(r&)=0
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2. AFFINE-ACYCLICITY

The purpose of this section is to establish that AI|Ka has a left-derived functor,
by showing that the full subcategory La C Ka whose obJects are the K-flat, locally
Z-acyclic complexes in K2 (Definition 9. 1) is a A-subcategory (Remark 2 1.1(4))
satisfying the conditions in Section 1.3.2.

Notation remains as before. Denote by q: K(2(b) — D(24b) the natural functor
from the homotopy category of complexes of abelian groups to its derived category.

Definition 2.1. An Oy-complex & is affine-acyclic if for each affine open U C X
the natural map is a D(2b)-isomorphism

aD(U, €) —~ RO, E).

€ is affine-Z-acyclic if for all n > 0, &, := £/Z"E is affine-acyclic and for any
affine open U C X the natural map is a surjection

oW, é&,) —» IT'(WU,E-1).

€ is locally Z-acyclic if X has an open cover U = (U,) such that the restric-
tion £y, is an affine-Z|y -acyclic Oy, -complex for every a.

Remarks 2.1.1. (1) Affine-acyclicity is affine-Z-acyclicity for Z = (0).

(2) If £ and F are K-isomorphic complexes and £ is affine-acyclic then so is F.

(3) An Oyx-module £ (considered as an Ox-complex concentrated in degree 0)
is affine-acyclic iff for each affine open U C X, HY(U, &) = 0 for all i > 0. In
particular, any flasque Oy-module is affine-acyclic.

(4) The cone C, of any map u: & — &’ of locally Z-acyclic complexes is itself
locally Z-acyclic—an appropriate cover consisting of all intersections U, NUj; where
(Uq) (resp. (Uj)) is a cover over which £ (resp. £') is affine-Z-acyclic.

(Proof. Let u,: &, — &), be the map induced by u, and consider the map of
D(21b)-triangles obtained by applying qI'(U, —) — RI'(U, —) (U C U, NUj) to the
standard K-triangle £ — & — C,/I"C, — E,[1], ...)

Hence if K is a A-subcategory of K, then the full subcategory of locally Z-acyclic
complexes in K, is also a A-subcategory of K.

Similarly, the full subcategory K C K, whose objects are the affine-acyclic com-
plexes is a A-subcategory of K. For example, as was noted in the Introduction,
the inclusion K& — K induces an equivalence of derived categories DE < Dy.

Lemma 2.1.2. If £ is an exact K-flat locally Z-acyclic complex then AzE is exact.

Proof. Since &€ is K-flat the complexes &, := £/Z"E (n > 0) are all exact ([Spn,
p. 140, Proposition 5.7]), and being affine-acyclic, remain exact after application of
any functor I'(U, —) with U an affine open subset of any U, as in Definition 2.1.
Moreover, the natural maps I'(U, &,) — ['(U, E,_1) are surjections. So by [EGA,
p. 66, (13.2.3)], the complex

LU, AE) =1lim I'(U, &,)
A
is exact for any such U, whence the assertion. O

This takes care of condition (a) in Section 1.3.2. Condition (b) is given by the
following proposition.
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Proposition 2.1.3. Any & € Kg admits a quasi-isomorphism Pg — & where
Pe € K2 is flat, K-flat and locally Z-acyclic.

The proof will occupy the rest of section 2.
2.2. We need various examples of affine-acyclic and affine-Z-acyclic complexes.

Examples 2.2.1. (a) If £ € Az, then "€ € Az for all n > 0: this results from
[DFS, Proposition 3.2.2|, because Z"€ is the image of the natural map 7" ® € — £
whose source and target are both in Az [DFS, Proposition 3.2.2] shows further that
ImEJI™E € Az whenever 0 < m < n. It follows then from [DFS, Corollary 3.1.8]
that & is affine-Z-acyclic.

(b) Any h_r)n of affine-acyclic complexes with Az-homology is affine-acyclic and,
of course, has Agz-homology.

For, by [DFS, Proposition 3.2.2], Ag is plump in A, and by [DFS, Proposi-
tion 3.4.3], the functor RI'(U, —) is bounded-above on Dz(U) for any open U C X.
One can, then, adapt the proof of [Lpm, Corollary (3.9.3.2)], mutatis mutandis, to
show that for any small directed system &, of Ox-complexes with Az-homology,
and each ¢ € Z, the bottom row of the natural commutative diagram

lim HT(W, &) —— HT(U, lim &,)

lim H'RI(U, £,) — HRI(U, lim £,)

is an isomorphism.> Thus if every &, is affine-acyclic, so that each y; is an isomor-
phism, then each v; is an isomorphism, and so h_m) &, is affine-acyclic, as asserted.
(¢) Any complex € in Az is affine-Z-acyclic.
Indeed, for all n > 0 and affine open U C X one sees as in (a) above that
HY (U, Z"1E/I"E) = 0, whence the natural map is a surjection

T(W, &) = DU Euy)  (Eni= E/TE);

and that each component 7 (m € 7Z) of &, is affine-acyclic. To see that &, is affine-
acyclic when & is bounded below, represent the complex RI'(U,E,) as T'(U, T,),
where 7T, is the total complex associated to a Cartan-Eilenberg resolution of &,;
and use standard arguments to deduce from affine-acyclicity of £ that the natural
map I'(U, &,) — I'(U,T,) is a quasi-isomorphism. Then for the unbounded case
let &, , be the complex

e 0= 0= T T (n € N).
and apply (b) to &, = lim &£,

In particular, as quasi-coherent Oy-modules are locally in Az ([DFS, Corollary 3.1.4]),
any bounded quasi-coherent Oy-complex is locally Z-acyclic.

The next intermediate goal is Lemma 2.2.7, a generalization of Example (c).

3Roughly, boundedness of RT'(U, —) enables reduction to where the &, are uniformly bounded
below, and then RI'(U, hﬁn}l &y) can be represented via @)1’8 of canonical flasque resolutions ...
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Lemma 2.2.2. Let v: V < X be an open immersion with V affine. Then for any
affine-acyclic Oy-complex F the natural map is a D-isomorphism.

0: v, F = Ry F.

Proof. Let p: F — J be a K-injective resolution (a quasi-isomorphism from F to a
K-injective Oy-complex). Then 6 can be identified with the map v,p: v, F — v, J.
A D-map being an isomorphism if and only if it induces homology isomorphisms,
Lemma, 2.2.2 just asserts that for all ¢ € Z, the resulting map ©° of presheaves
O (W): HT (v 'U,F) = HT (U, v, F)
— HT(U,nJ) =HT(r U, J) (U open in X)

induces an isomorphism of the associated sheaves. When U is affine, v~U is affine
(since X is separated), so by Definition 2.1 the natural map is a D-isomorphism

(v, F) = RI(v'U,F) =T U, J),
i.e., ©(U) itself is an isomorphism, whence the conclusion. O

Corollary 2.2.3. If v: V — X is an open immersion with V affine, then for any
affine-acyclic Oy-complex F, v, JF is also affine-acyclic.

Proof. For the inclusion A: U < X of an affine open subset, we have a commutative
diagram of open immersions where, X being separated, v~ 1U is affine:

v~ U L> v

UT>DC

Let p: F — J be a K-injective resolution. Since v, has an exact left adjoint
(namely v*), therefore v, J is K-injective; and so by Lemma 2.2.2, v,p: v, F — v, J
is a K-injective resolution. As F is affine-acyclic, the map

T, v, F) =T U, F) 25 T U, J) = T(U,n.J)
is a quasi-isomorphism; and the conclusion follows. O

Lemma 2.2.4. Let U = (U,)1<a<t be a finite affine open cover of X, and let
C* be the corresponding Cech functor from U-complezes to Ox-complezes. If F
is a U-complex such that F; 1s an affine-acyclic Oy;-complex for all j € P; then
C*F is an affine-acyclic Ox-complex. Moreover, if F is exact then so is C*F.

Proof. The complex C*F has a finite filtration
CF=CyDC,DCy---DC, =0,

with C; the total complex associated to the double complex CP(F?),.. ,cz. Since
Cs11 is, as graded module, a direct summand of C;, we have triangles in K(X)

Cop1 — Cs — Cs/Csyq = Bjl=s AjuFj — Coya[1] (0<s<t)

(see e.g., [Lpm, Example (1.4.3)]).

Since A, F; is affine-acyclic (Corollary 2.2.3), descending induction on s, starting
with s = ¢t — 1, yields that each C, is affine-acyclic. Thus C*F (= Cp) is affine-
acyclic.
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If F is exact then for k € P;, Lemma 2.2.2 shows that \,,.F}, is exact. Hence
for p > 0, the complex CPF is exact. The family (CPF)o<,<; contains all the non-
vanishing columns of the double complex of which C*F is the total complex, and
the assertion results. O

Corollary 2.2.5. Let U = (Ua)1<a<t be a finite affine open cover of X. Let ¢:= ¢,
and ¢ := lim ¢™ be the corresponding functors (see §1.2). If € € Ke(X) is an
affine-acyclic Ox-complez, then so are ¢E and ¢>E&.

Proof. Affine-acyclicity of ¢& is given by Lemma 2.2.4, applied to the U-pullback F
of & (Fj:=XNE forall j € P, ... ; and ¢& = C*F).

By induction, ¢™€ is affine-acyclic for all m > 0. Being the target of a quasi-
isomorphism from &, ¢™€ is in K¢(X). It results then from Example 2.2.1(b) that
¢ & is affine-acyclic. O

Lemma 2.2.6. Let \: U — X be an affine map of locally noetherian formal
schemes. Then for any F € Az(U) the natural map is an isomorphism

Tg: MF ®0. G 2 M(F R0, M'G) (G € Ape(X)).
Proof. The map 7g is, by definition, adjoint to the natural map
N (AF @0y G) == NAF Qoy NG = F Qo A'G.

It follows that mg “commutes” (in the obvious sense) with open immersions into X.
Hence we may assume that X and U are affine, and that there is an exact sequence

Go—6G —+G—=0

with G, and G; direct sums of copies of Ox.

Then both F®A*G; and F ® A*G,, being direct sums of copies of F, are in Az(U).
So [DF'S, Proposition 3.2.2] yields that the kernels of the maps a and b in the natural
exact sequence

FONG B FONG BFONG =0

are in Az(U). From [DFS, Lemma 3.4.2] it follows then that the bottom row in the
natural commutative diagram

MFRG — MNFRG —— AMNFRG — 0

o) -

MFROING) —— M(FRNG) — M(FRIXNG) —— 0

is exact, and of course the top row is exact.
Since U is noetherian, the functor A\, commutes with direct sums, whence g,
and 7g, are isomorphisms; so mg is an isomorphism too. O

Lemma 2.2.7. Let U = (Uy)1<a<: be a finite affine open cover of X, and let C*
be the corresponding Cech functor from U-complexes to Ox-complexes. Let F be a
U-complex such that for every j € B, F; is a direct sum of complexes of the form
Nij«Fij (i D j) with Fyj an Az(U;)-complex. Then C*F is affine-I-acyclic; and
EXC*F is locally T-acyclic.
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Proof. Lemma 2.2.6 (with A = A\;;, F = F; and G = Oy, /I"Oy,) provides an
isomorphism
NijsFig /T NiguFig =+ Nige(Fig /T Fiy)-

Hence F;/I"F; = @isj\ij(Fij/I"Fij). As in Example 2.2.1(a), F;;/Z"F; is an
Az(U;)-complex for all n > 0, so that by Example 2.2.1(c), F;;/Z"F;; is affine-
acyclic. By Corollary 2.2.3, then, F; /I"F; is an affine-acyclic Op,-complex; and
so by Lemma 2.2.4, C*(F/I"F) is an affine-acyclic Ox-complex.

Now the natural map C*F/(Z"C*F) — C*(F/I"F) is an isomorphism, since it
is a direct sum of maps of the form

)\j*)\ij*fij/zn)\j*)\ij*]:;j = )\z*]:z]/-,[n)\z*]:z]

= N Fi [T F5) = Mg (Fig /T Fig)-

2.2.6

So C*F/(Z"C*F) is affine-acyclic.
Also, for any affine open U C X and n > 0, the natural map is a surjection

I'(U,C°F /(T C*F)) - (U, C*F/(T"C*F)),
because it is isomorphic to a direct sum of surjective maps of the form
DU, X (Fiy /T Fyg) ) = DU, Fiy /T Fy)
= D\, Fy /T Fy5) = D(U, N (Fig /T Fyy)),
surjectivity holding by [DFS, Lemma 3.1.8], since Z"F;;/I" "' F;; € A(U;) (see
Example 2.2.1(a)). Thus C*F is indeed affine-Z-acyclic.
Next, the pullback of C*F to a U-module F* is such that for every ¢ € P, F/ is

a direct sum of complexes of the form Mg Fy, (K D £) with F}, an Az(Uy)-complex:
that follows from the relation

NN dieFij = Aauoes Ao Fig (125 € P, L€ Py).

Hence ¢C*F = C*F* is again affine-Z-acyclic. And as above, the natural map is
an isomorphism

CC°F)(I"¢CF) = C°F*/(I"C*F*) = C*(F*/I"F*) = &(C°FJI"C"F).
By induction, we find that é"C*F = ¢ 'C*F* is affine-Z-acyclic for all m > 0.
So for all n > 0 and any affine open U C X, the natural map is a surjection

LW, & C*F /T C*F) — T(U, & C*F/I"¢"C°F);
and applying li_m), we get the same with oo in place of m.
By induction again, there is a natural isomorphism
EMCOF (T COF) = &I COFT (T COF )
= TN CUFICOFY) = M (C°F/I"C F).
So for all n > 0, the restriction to any U, of
¢XCOF(TMe=CF) = lim ¢"C*F /("¢ C*F) = lim é™(C*F /I"C*F)

is homotopy-isomorphic to the restriction of C*F/I"C*F (cf. end of Section 1.2),
so that (¢*C*F/I"¢*°C*F )|y, is affine-acyclic (Remark 2.1.1(2)).
Thus ¢*°C*F is locally Z-acyclic (over the cover U), as asserted. O
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2.3. We also need a few results concerning flatness of complexes.

Lemma 2.3.1. Let \: U — X be a flat affine map of locally noetherian formal
schemes. If F € Az(U) is Oy-flat, then N\.F is Ox-flat.

Proof. The question being local, we may assume that U = Spf(B) and X = Spf(A)
where A and B are noetherian adic rings, and that A = Spf(¢) where ¢: A — B
is a continuous ring homomorphism. Then by [DFS, Proposition 3.1.1], there is
a B-module F such that F = x*F, where x: Spf(B) — Spec(B) is the canonical
map and F is the quasi-coherent sheaf on Spec(B) corresponding to F'.

We claim that F' is B-flat. Indeed, if J is any B-ideal and N is the kernel of
the natural map 7;: J Q@p ' — F, then k*N is the kernel of the induced map
K*J J Qoy K K*E — /1*F a map which is 1n3ect1ve since K*F =~ F is flat, so that

k*N = 0, whence by [DFS, Proposition 3.1.1], N = 0, and so N = 0. Thus 7, is
injective for all J, i.e., F'is B-flat.

Now for each f € A, with ss: Spf(Bys) — Spec(B{y}) the natural map, and for
any Bysj-module M with corresponding quasi-coherent OSpec(B{ f})—module M=, it
follows from [DFS, Proposition 3.1.1] (since the “quasi-coherator” @ = Qspec(B(fy)
can be taken to be I'(Spec(Byy), —)~) that

L(Spf(Byyy), £3(M~)) =T (Spec(Byyy), Qryew3(M~)) = T(Spec(Bysy), M) = M.

Taking M = F ®p Byy—so that with i;: Spec(Bys) — Spec(B) the natural map,

M? = i} F—we conclude that

L(Spf(Agsy), Auk"F) = T(Spf(Byyy), £°F) = T(Spf(Byyy), £3(M™)) = F @5 Byy).

Hence, since Byjy is Agp-flat ([DFS, Lemma 7.1.1]), T(Spf(A¢fy), \w*F) is flat

over Ay = F(Spf(A{f}), Ox) for any f € A; and so \,x*F = A\ F is Oy-flat. [
From the definitions of C'* and ¢™ it follows now that:

Corollary 2.3.2.va U is a finite affine open cover of X and P is a flat Az(U)-
complezx, then ¢™C*P (0 <m < 00) is a flat Ox-complez.

If A: U <= X is the inclusion of an open subset then since X is noetherian,
A preserves lim. Hence C* and ¢™ (0 <m < o0) preserve lim, and so:

Corollary 2.3.3. If U is a finite aﬂine open cover of X and P is a hm of bounded-
above flat Ae(U)-complexes, then é™C*P (0 < m < 00) is a lim of bounded-above
flat Ox-complexes, and hence is flat and K-flat.

Corollary 2.3.4. (i) If an Ox-complex & is K-flat then so is ¢™E (0 < m < o0).
(ii) If an Az(X)-complex & is flat then so is ¢™E (0 <m < o0).
Proof. (i) The restriction of a K-flat complex to an open subset is still K-flat, as one

sees using “extension by 0.” Thus for K-flatness the question is local, and we need
only recall that ¢™€ is locally homotopy-isomorphic to £ (cf. end of Section 1.2).

(ii) Apply Corollary 2.3.2 with P the pullback to U of £. O
Applying Lemma 2.2.7 to the U-pullback F of £, we get (c) in Section 1.3.2:
Corollary 2.3.5. For any K-flat Az-complex €, ¢>°E is K-flat and locally Z-acyclic.
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Lemma 2.4.1. Let Qx be right-adjoint to the inclusion functor Az — A (see
[DFS, Proposition 3.2.3]). If X is affine then for any affine-acyclic £ € Kg the
canonical map Q& — £ is a quasi-isomorphism.

Proof. Let A be a noetherian adic ring such that X = Spf(A) (e.g., A:=I'(X, Oy)),
and let K: X — X := Spec(A) be the canonical map. Then with ~ denoting the
usual functor from A-modules to Ox-modules, [DFS, Proposition 3.2.3] yields

Qx€ = K (Qxr&) = K (T(X, 5.:E)™) = 6*(T(X, E)™).

By assumption, any K-injective resolution i: £ — J induces a quasi-isomorphism
['(X,E) — I(X,J); and so since k* and ~ are exact, Qy(i): Q€ — QyJ is a
quasi-isomorphism.

Furthermore, [DFS, Corollary 3.3.4] implies that the natural map QJ — J is
a quasi-isomorphism. Conclude via the natural commutative diagram

QrE — &

Qx(i)l lz

Qv — J O

Proposition 2.4.2. Let U = (U,)1<a<t be an affine open cover of X. Let G be
a U-complex with Az(U)-homology such that for each k € By, Gy, is affine-acyclic.
Then G receives a quasi-isomorphism from a h_rI)l of bounded-above flat complezes

of Az(U)-modules.

Proof. If i O j are in Py, then Aj;Qy G; is an Az(U;)-complex, and so the natural
composition

i@, 95 — N9 — Gi
factors naturally as
NiQu,Gi 25 QG — Gi.

The maps ¢;; make the family (Qy, Gr)rep, into an Ag(U)-complex. Lemma 2.4.1
lets us replace G by this complex, i.e., we may assume that G is an Az(U)-complex.

After noting that if U is an affine noetherian formal scheme then, by [DFS,
Corollary 3.1.4], any Az(U)-module is a homomorphic image of a free Oy-module,
we can conclude as in the proof of [AJL, p.11, Corollary 1.2.2]. O

2.5. We can now complete the proof of Proposition 2.1.3.

Let U = (Uy)1<a<¢ be an affine open cover of X. For any £ € K2, the pull-
back is a U-module G satisfying the hypotheses of Proposition 2.4.2; so there is
a quasi-isomorphism P — G with P a hi>n of bounded-above flat complexes of
Az(U)-modules. Since Az-complexes are affine-acyclic (Example 2.2.1(c) and Re-
mark 2.1.1(1)), the (exact) mapping cone F of this quasi-isomorphism satisfies
the hypotheses of Lemma 2.2.4, so C*F is exact, and hence the induced map
C*P — C*G = &€ is a quasi-isomorphism, as is the resulting map

Pe:= ¢XC*P — ¢°¢E = ¢>E.
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Since C*P, ¢€, and & have isomorphic homology, therefore C*P € Kz(X); and
C*P is affine-acyclic (Lemma 2.2.7, with Z=0), so P € K2. (Look at the actual
construction of P—as given in [AJL, p.11, Corollary 1.2.2]—to see that the hy-
potheses of Lemma 2.2.7 are satisfied.) By Lemma 2.2.7, furthermore, P is locally
Z-acyclic. From Corollary 2.3.3, it follows that Pg is flat and K-flat.

Finally, since £ € Kg(f)C) the natural map of complexes & — ¢>°€ has an inverse,
which can be composed with the preceding quasi-isomorphism Pz — ¢>*& to give
the desired quasi-isomorphism Pe — £. O

3. A FUNCTORIAL ISOMORPHISM

Denote by A the restricted completion functor A;|g., and by LA: D¢ — D
its left-derived functor, whose existence has now been proved according to Sec-

tion 1.3.2. The proof shows we may assume LAP = AP for any K-flat locally
Z-acyclic P € K&.

3.1. We first construct a A-functorial map
®: LAE — RHom®*(RI; Oy, E) (€ € D3).

Using the equivalence p: D2 — D2 (Section 1.3), we can replace D% by its
A-subcategory [v)(‘;j‘ Because of Proposition 2.1.3, we can further restrict to the
equivalent A-subcategory of Dg whose objects are the flat, K-flat, locally Z-acyclic
complexes in Kg(f)C)—this is the derived category of the homotopy category H
of such complexes. Thus, with ¢: K — D the natural functor and ¢’ the natu-
ral functor from H to its derived category, [Hrt, p.33, Proposition 3.4] shows it
sufficient to construct a map of functors

(LA)¢'P = gAP — RHom®*(RI; Oy, ¢'P) (P € H).
Hence if Oy — R is a K-injective resolution, it will suffice to construct a map
(3.1.1) AP — Hom* (IR, P ®R) (P e H)

between functors from H to K.
For any Oy-complexes P, Q, R, the natural map

(P®Q)® (Hom*(Q,R)) 2P (Q®Hom*(Q,R)) - PR
induces (via @Hom adjunction) a functorial map
P®Q— Hom*(Hom*(Q,R),P®R).

Letting Q run through the inverse system Oyx/Z™ (n > 0) one gets the desired
natural map

AP =lim (P ® Ox/I") - lim Hom®(Hom*(Ox/I",R), P ® R)
=~ Hom* (lim Hom*(Ox/I", R), P ® R)
o ’Hom'(l}'R, P® R)

Now comes the principal result.
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Proposition 3.2. The A-functorial map ® is an isomorphism.

Before describing its proof, we note that Proposition 3.2 allows us to complete
the proof of Theorem 0.1, as follows.

There is a canonical functorial map £: LA — gA. With ¢:= £®~! property (i) in
Theorem 0.1 results. The functorial map F — ¢gAF (F € D2) factors uniquely as

F 5 LAF §—f> gAF (thanks to the defining property of “left-derived functor”), and
Theorem 0.1(ii) says that ®o¢(F) is the natural map F — RHom*(RI; Oy, F).
One checks that this comes down to the straightforward verification (left to the
reader) that the following natural diagram commutes for all P € H:

P — AP

| =

Hom* (R, PR®R) —— Hom*(I;R,PRR)
Finally, for the last assertion in Theorem 0.1 see Section 1.3.2.

Proof of Proposition 3.2. The proof is similar to that of the main Theorem (0.3)
in [AJL]. We just indicate the non-trivial modifications.

Everything in sight commutes with restriction to open subsets, so we may assume
that X is affine and that Z is generated by a finite number of global sections
t1,...,tm. Recalling that every sheaf in Az is then a homomorphic image of a free
Oyx-module ([DFS, Corollary 3.1.4]), we have a “way-out” reduction, as in [AJL,
p. 15], to the case where £ is a single flat Ox-module, denoted P, in Az.

This case is dealt with as in [AJL, §4]. Let R be the adic ring I'(X, Ox) (topolo-
gized by the global sections of a defining ideal of X), so that X = Spf(R). Since R
is noetherian, the sequence t:= (¢y,...,t,) in R is proregular (see [AJL, p. 16|, Ex-
ample (a) following Definition (3.0.1)). Throughout [AJL, §4], replace the scheme
(X, Ox) by the noetherian affine formal scheme (X, Oxy), and interpret “quasi-
coherent” to mean “lim of coherent.” Also, replace RI,Ox by RI;Ox, which is
D(X)-isomorphic to the complex

ICo(t): 1T1T1>(r)1 Ko (t")
where K°*(t") is the Koszul Ox-complex determined by the sequence (t7,...,t ),
see [AJL, p. 18, Lemma (3.1.1)].

To validate the sequence of isomorphisms (4.1.3) of [AJL, p.28] in the present
context, use the following observations:

(i) If P — J is an injective resolution, then the resulting map I'(X, P) — I'(X, J)
is a quasi-isomorphism.

This is because P is affine-acyclic (Example 2.2.1(a)).

(ii) If € is any complex in Ag, then the natural maps

HT(X,E) = T(X,HE) (i€Z)

are all isomorphisms.

This is because the functor I' := I'(X, —) on the abelian category Az is eract
([DFS, Proposition 3.2.2], [DFS, Corollary 3.1.8]). In particular, since K*(t") is a
free, finite-rank Oy-complex and R = 'Oy, we have natural isomorphisms

H'Hom},(PK*(t"), T'P) == H'Homg, (K*(t"),P) = TH'Homg, (K*(t"),P).
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The rest of the translation of [AJL, §4] to the present context is straightforward,
except for the last half of the proof of Lemma (4.3) in loc. cit. For that, one needs
[DFS, Corollary 3.3.4] (to replace the reference to [BN]), and [DFS, Corollary 3.1.8]
(for imitating the proof of [Spn, p. 134, Proposition 3.13]); and one needs to keep
in mind that Az-complexes are affine-acyclic (Example 2.2.1(c)). O

4. PROOF OF PROPOSITION 0.3.1.

Refer to Section 0.3 for notation, and for the statement of Proposition 0.3.1.

Lemma 4.1. The canonical map F — k.k*F induces an isomorphism
RIF = R k.*F (F € D).

Proof. The question being local, we may assume that X is the completion of an
affine scheme X = Spec(A) along a closed subscheme Z, and that §CI is the comple-
tion of X along a closed subscheme Y C Z, so that there is a natural factorization
of the completion map ky : §CI — X as

X, 2 X 25 X

Now let Z' C Z be an ideal of definition of X. Then for any Ox-module £ such
that RI7.€ = &, we have £ = k} E for some Ox-module E [DFS, Proposition 5.2.4].
In particular, since RI;, RI;F = RIZF (cf. [AJL, p. 20, Corollary 3.1.3]), therefore
RI;F = k3, F for some Ox-module F.

By [DFS, Proposition 5.2.4] again, the natural maps are isomorphisms

Homy(E, F) =+ Homy(kyE, ky F) = Homy(E, RI;F),
Homy (E, F) =~ Homg (ky E, ky F') = Homg, (k" K"RIZF).

Furthermore, arguing as in the proof of [DFS, Proposition 5.2.4] we get a natural
isomorphism

ko' RI;F = RIzk " F
whose composition with the natural map RI;F — k.x*RI;F is the natural map
RI;F — RI k. F.
Thus for any &€ such that RI;,€ = £, we have a composed isomorphism
Homy (€, RIZF) — Homy(E, F) = Homg_(k"E, k" RIZF)
— Homy (&, kuk"RIGF) = Homy (€, RI; kK" F)
which (one checks) is induced by F — k.x*F, whence the conclusion. U
Corollary 4.1.1. The canonical map F — k«x*F induces an isomorphism
Hom(k.x*F, RHom* (RI; Oy, F)) = Hom(F, RHom*(RI; Oy, F)).

Proof. Using that RI; is right-adjoint to the inclusion into D of the derived cat-
egory of the category of Z-torsion sheaves ([DFS, Lemma 5.2.2]), one finds that
there is a unique functorial map

(4.1.1.1) Ye: EQRLOy - RIE (€ €D)
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making the following natural diagram commute:

EQRLOy Y2 RIE

| |

EROy —— €&

It follows from [AJL, p.20, Corollary (3.1.2)] that ¢¢ is an isomorphism.
Let us also recall the basic adjoint associativity isomorphism (see, e.g., [Lpm,
Proposition (2.6.1)*]):

(4.1.1.2) RHom*(D® E,F) = RHom*(D, RHom*(E,F)) (D,&,F € D).

The isomorphism also holds with the outer RHom®’s replaced by Hom := Homp,
as one sees by applying the functor H'RI'(X, —).

Corollary 4.1.1 results then from the natural commutative diagram, in which all
the vertical arrows are isomorphisms, as is the bottom horizontal one:

Hom(k,x*F, RHom* (RI; Oy, F)) —— Hom(F,RHom*(RI; Oy, F))

“J l“

Hom(k.x*F @ RI; Oy, F) — Hom(F @ RI;Ox, F)

ﬁ }

Hom(RI;k.k*F, F) e Hom(RI;F, F)
z Lemma 4.1 * O]

In the following natural diagram, where “H” stands for “Hom,” the isomor-
phisms a and a* are obtained by adjoint associativity and multiple use of 1
(see (4.1.1.1)), and the isomorphisms b and b* are obtained by imitating [DF'S,
Remark 5.2.10](4). The diagram commutes, so ¢ is an isomorphism.

Assertion (i) in Proposition 0.3.1 results.

H(RHom®(&, ker*F), RHom®*(RI;E, F)) — H(RHom* (&, F), RHom*(RI;E, F))

o= o

HRIZRHom® (&, kuk*F) @ €, F)) —— HRIZRHom®* (&, F) ® €, F))

|~ ~|o

HRLRHom® (€, RIw"F) € €, F))  —  HRILRHom® (£, RI;F) © €, F))

4.2. What remains to be shown is that A(£, F) is an isomorphism for all F € D,.
We can reduce the problem to the case £ = Oy by factoring A(E, F) as

RHom* (&, ko™ F) 27, Ratom® (€, RHom* (RI; Oy, F))

—— RHom*(£ @ RI;Ox, F) ——— RHom*(RIZE, F).
(4.1.1.2) = (4.1.1.1)
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To check that this composition is in fact A(E, F), using the characterization in
Proposition 0.3.1(i), consider the following natural diagram:

RHom* (&, F) — RHom* (&, ke F)

~ via A(Ox, F)

RHom*(E, RHom*(Ox, F)) —— RHom*(E, RHom*(RI; O, F))
(4.1.1.2) | ~ ~|(4.1.1.2)

RHom*(£ ® Oy, F) — RHom* (£ ® RI;Ox, F)

1

~ | (4.1.1.1)
RHom*(E, F) — RHom*(RI;E, F)

The top rectangle commutes by the characterization of A\(Ox, F), the middle one
commutes by functoriality, and commutativity of the bottom one is given by the
commutative diagram following (4.1.1.1). It suffices then to verify that the com-
position of the vertical maps on the left is the identity, which is easy to do after
assuming (as one may) that F is K-injective, so that each RHom® can be replaced
by Hom®.

To show that A\(Ox, F) is an isomorphism when F € D, we may assume, after
replacing F by a K-injective complex into which F maps quasi-isomorphically,
that F € D2. For such an F we will now give another construction of A(Ox, F),
adapted to application of Theorem 0.1.

For any Oy-complex F, we have the canonical completion map

F = A F = wlim ((F/T"F)ls, ),

whence a natural factorization F — k.k*F 2z, A;F. The exact functor k.k*
induces a functor D2 — D, so for F € D2 Theorem 0.1(i) yields a factorization
Yr = (roAo(F), as depicted:

F — v F 25 Rypfom* ROy, F) 5 A,F  (F e Da).

In view of Theorem 0.1, (i) and (ii), the composition of \o(F) with the canonical
map F — k«k*F is the natural map F — RHom®*(RI; Oy, F), since both this
composition and the natural map give the same result when composed with (.
Proposition 0.3.1(i) shows then that A\g(F) = A(Ox, F).

The question of whether A\(Ox, F) is an isomorphism is local. One can there-
fore assume that X is affine, so that every coherent Oy-module is a homomorphic
image of a finite-rank free one [GD, p.427, Théoreme (10.10.2)]. Now the exact
functor k.k* is bounded on Dg, and so is the functor RHom* (RI1; Oy, —), by [AJL,
p. 30, Lemma (4.3)], suitably modified (see discussion at the end of Section 3 above).
Hence we have a “way-out” reduction [Hrt, p. 68, Proposition 7.1] to the case where
F is a single finite-rank free Oy-module. In this case it is straightforward to see
that 77 = (xA\o(F) is an isomorphism; and by the last assertion in Theorem 0.1, so
is (z. Thus A(Ox, F) = Xo(F) is an isomorphism, and Proposition 0.3.1 is proved.
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[AJL]

[DFS]
[BN]

[Brb]

[Gdm]
[EGA]

[Lpm]
[Kmp]

[Spn]
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