LECTURES ON LOCAL COHOMOLOGY AND DUALITY

JOSEPH LIPMAN

ABSTRACT. In these expository notes derived categories and functors
are gently introduced, and used along with Koszul complexes to develop
the basics of local cohomology. Local duality and its far-reaching gen-
eralization, Greenlees-May duality, are treated. A canonical version of
local duality, via differentials and residues, is outlined. Finally, the fun-
damental Residue Theorem, described here e.g., for smooth proper maps
of formal schemes, marries canonical local duality to a canonical version
of Grothendieck duality for formal schemes.
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2 JOSEPH LIPMAN

INTRODUCTION

This is an expanded version of a series of lectures given during the Local
Cohomology workshop at CIMAT, Guanajuoto, Mexico, Nov. 29-Dec. 3,
1999, and at the University of Mannheim, Germany, during May, 2000. I am
grateful to these institutions for their support.

Rings are assumed once and for all to be commutative and noetherian
(though noetherianness plays no role until midway through §Z31) We deal
for the most part with modules over such rings; but almost everything can
be done, under suitable noetherian hypotheses, over commutative graded
rings (see [BS, Chapters 12 and 13]), and globalizes to sheaves over schemes
or even formal schemes (see [DES]).

In keeping with the instructional intent of the lectures, prerequisites are
relatively minimal: for the most part, familiarity with the language of cat-
egories and functors, with homology of complexes, and with some basics of
commutative algebra should suffice, theoretically. (Little beyond the flatness
property of completion is needed in the first four sections, and in §5 some use
is made of power-series rings and exterior powers of modules of differentials.
The final section 5.6, however, involves formal schemes.) Otherwise, I have
tried to make the exposition self-contained, in the sense of comprehensibility
of the main concepts and results. In proofs, significant underlying ideas are
often indicated without technical details, but with ample references to where
such details can be found.

These lectures are meant to complement foundational expositions which
have full proofs and numerous applications to commutative algebra, like
Grothendieck’s classic [Gr2], the book of Brodmann and Sharp [BS], or the
notes of Schenzel [Schi.

For one thing, the basic approach is different here. One goal is to present a
quick, accessible introduction—inspiring, not daunting—to the use of derived
categories. This we do in §1, building on the definition of local cohomology.
Derived categories are a supple tool for working with homology, arising very
naturally when one thinks about homology in terms of underlying defining
complexes. They also foster conceptual simplicity. For example, the ab-
stract Local Duality Theorem (Z3]) is a framework for several disparate
statements which appear in the literature under the name “Local Duality.”
The abstract theorem itself is almost trivial, following immediately from
derived Hom-Tensor adjunction and compatibility of the derived local coho-
mology functor with derived tensor products. The nontrivial fun comes in
deducing concrete consequences—see e.g., §2.4 and §5.3.

Section Bl shows how the basic properties of local cohomology, other than
those shared by all right-derived functors, fall out easily from the fact that
local cohomology with respect to an ideal I is, as a derived functor, iso-
morphic to tensoring with the direct limit of Koszul complexes on powers
of a system of generators of I. A more abstract, more general approach is
indicated in an appendix.
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Section Hl deals with a striking generalization of local duality—and almost
any other duality involving inverse limits—discovered in special cases in the
1970s, and then in full generality in the context of modules over rings by
Greenlees and May in the early 1990s [GMI]. The derived-category formu-
lation, that left-derived completion (= local homology) is canonically right-
adjoint to right-derived power-torsion (= local cohomology), is conceptually
very simple, see Theorem LTl One application, “Affine Duality,” is discussed
in 3t others can be found in §§5.4 and 5.5. While we stay with modules,
the result extends to formal schemes [DGM], where it plays an important
role in the duality theory of coherent sheaves (§5.6).

Further, it is through derived functors that the close relation of local du-
ality with global Grothendieck duality on formal schemes is, from the point
of view of these lectures, most transparently formulated. The latter part
of Section H aspires to make this claim understandable, and perhaps even
plausible. As before, however, the main challenge is to negotiate the passage
between abstract functorial formulations and concrete canonical construc-
tions. The principal result, one of the fundamental facts of duality theory,
is the Residue Theorem. The final goal is to explain this theorem, at least
for smooth maps (§56l). A local version, which is a canonical form of Local
Duality via differentials and residues, is given in Theorem Then the
connection with a canonical version of global duality is drawn via flat base
change (§od)—for which, incidentally, Greenlees-May duality is essential—
and the fundamental class (§o.0l), developed first for power-series rings, then,
finally, for smooth maps of formal schemes.

1. LOCAL COHOMOLOGY, DERIVED CATEGORIES AND FUNCTORS

1.1. Local cohomology of a module. Let R be a commutative ring and
M(R) the category of R-modules. For any R-ideal I, let I} be the I-power-
torsion subfunctor of the identity functor on M(R): for any R-module M,

LM ={m e M | for some s >0, °m = 0}.

If J is an ideal containing I then I, C I}, with equality if J* C I for
some n > 0.

Choose for each M an injective resolution, i.e., a complex of injective
R-moduled]

E}; - —>0—>0—>E&—>EM—>EJ\2/[—>

1A complex C* = (C*, d*) of R-modules (R-complez) is understood to be a sequence
of R-homomorphisms

qt—2

. i—1 . k3 . i+1
crLl Lo Lot (ien)
such that d*d*~* =0 for all . The differential d® is often omitted in the notation. The
i-th homology H'C® is ker(dl)_/im(dlfl). The translation (or suspension) C[1]* of C*
is the complex such that C[1]* := C**' and whose differential depy: C1" — C[1)™* is
—dé“: ot o2,
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together with an R-homomorphism M — E]?J such that the sequence

is exact. (For definiteness one can take the canonical resolution of [Brbl
p. 52, §3.4].) Then define the local cohomology modules

HiM:=H (TEY) (i €7).

Each HY can be made in a natural way into a functor from M(R) to M(R),

sometimes referred to as a higher derived functor of 1;. Of course HY =0 if

i < 0; and since I is left-exact there is an isomorphism of functors H? =1;.
To each “short” exact sequence of R-modules

(): 0-M —-M-—M"—-0
there are naturally associated connecting R-homomorphisms
Si(o): HiM" — HU M (i € Z),
varying functorially (in the obvious sense) with the sequence (o), and such
that the resulting “long” cohomology sequence

- — H{M' — H{M — HyM" — HP' M — M — -
is exact.

A sequence of functors (H);>q, in which H? is left-exact, together with
connecting maps 0’ taking short exact sequences functorially to long exact
sequences, as above, is called a cohomological functor. Among cohomological
functors, local cohomology is characterized up to canonical isomorphism
as being a universal cohomological extension of I;—there is a functorial
isomorphism H(I] = I3, and for any cohomological functor (H,6%), every
functorial map ¢°: H? — HY has a unique extension to a family of functorial
maps (¢': Hy — H.) such that for any (o) as above,

. 67" o .
my (M) 219 g )

st | |
HY(M) — o HE ()
commutes for all i > 0.
Like considerations apply to any left-exact functor on M(R), cf. |Grll
pp-139ff]. For example, for a fixed R-module N the functors

Exth(N, M):= HHompg(N,E}) (i >0)
with their standard connecting homomorphisms form a universal cohomo-
logical extension of Hompg(N, —).
From I7 £}, = lim,s Hompg(R/I°, E}/) one gets the canonical identifica-
tion of cohomological functors
(1.1.1) HiM = lim Extp(R/I°, M).

s>0
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1.2. Generalization to complexes. Recall that a map of R-complexes
Y (C%d°) — (CF,d7)

is a family of R-homomorphisms (¢': C? — C%);cz such that die’ = ' *+1d!
for all . Such a map induces R-homomorphisms H!C®* — H!C?. We say
that 1 is a quasi-isomorphism if every one of these induced homology maps
is an isomorphism.

A homotopy between R-complex maps ¥1: C®* — Cf and ¥y: C* — Cf
is a family of R-homomorphisms (h?: C* — Ci~!) such that

Y — b = dR 4+ RN (i e 7).

If such a homotopy exists we say that 7 and w9 are homotopic. Being
homotopic is an equivalence relation, preserved by addition and composition
of maps; and it follows that the R-complexes are the objects of an additive
category K(R) whose morphisms are the homotopy-equivalence classes.

Homotopic maps induce identical maps on homology. So it is clear what a
quasi-isomorphism in K(R) is. Moreover, H can be thought of as a functor
from K(R) to M(R), taking quasi-isomorphisms to isomorphisms.

An R-complex C* is q-injectiveE if any quasi-isomorphism ¢: C* — C?
has a left homotopy-inverse, i.e., there exists an R-map v¢,: C? — C*® such
that 41 is homotopic to the identity map of C'*. Numerous equivalent
conditions can be found in [Spnl p.129, Prop. 1.5] and in [Lp3}, §2.3]. One
such is
(#): for any K(R)-diagram C? & X 2 O with 1) a quasi-isomorphism,

there exists a unique K(R)-map ¢,: Cg — C*® such that ¢, = ¢.

For example, any bounded-below injective complex C*® (i.e., C? is an in-
jective R-module for all 4, and C* = 0 for i < 0) is g-injective [Hall, p.41,
Lemma 4.5]. And if C* vanishes in all degrees except one, say C7 # 0, then
C* is g-injective iff this C/ is an injective R-module [Spnl, p. 128, Prop. 1.2].

A g-injective resolution of an R-complex C*® is a g-injective complex E°
equipped with a quasi-isomorphism C* — E°. Such exists for any C*®, with
E* the total complex of an injective Cartan-Eilenberg resolution of C* [EG3|
p.32, (11.4.2)]B

An injective resolution of a single R-module M can be regarded as a g-
injective resolution of the complex M*® such that M° = M and M’ = 0 for
all 7 # 0.

2K-injective in the terminology of [Spnl. (“q” connotes “quasi-isomorphism.”)

31t has been shown only recently that a g-injective resolution exists for any complex
in an arbitrary Grothendieck category, i.e., an abelian category with exact direct limits
and having a generator [AJS| p.243, Thm.5.4]. Injective Cartan-Eilenberg resolutions
always exist in Grothendieck categories; and their totalizations—which generally require
countable direct products—give g-injective resolutions when such products of epimor-
phisms are epimorphisms (a condition which fails, e.g., in categories of sheaves on most
topological spaces), see [Wh2l p. 1661].
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After choosing for each R-complex C*® a specific g-injective resolution
C* — E¢,, we can define the local cohomology modules of C* by:

(1.2.1) HiC*:= H([;E) (i € 7).
It results from (#) that for any K(R)-diagram

° 1 °
Cl EC 1

‘|

3 —— B,

with 1 and 19 g-injective resolutions, there is a unique ¢, : E(.h — E(.Jz
such that ¢.1py = 12¢. From this follows that the HY can be viewed as
functors from K(R) to M(R), independent (up to canonical isomorphism)
of the choices of E¢,, and taking quasi-isomorphisms to isomorphisms.

It will be explained in L4 in the context of derived categories, how a
short exact sequence of complexes in M(R)—a sequence C7 — C*®* — (3
with 0 — C — C* — C4 — 0 exact for every i—gives rise functorially to a
long exact cohomology sequence

- — H{CY — HYC® — HCs — HOp — HC® — -
Similar considerations lead to the definition of Ext functors of complexes:
(1.2.2) Exth(D® C*):= H'Homp(D®*, E8) (i € Z)
where for two R-complexes (X°*, d%), (Y*,dy ), the complex Homp(X®, Y*)
is given in degree n by
Homp(X®, Y*®):= {families of R-homomorphisms f = (f;: XI - Yj+")jez}

with differential d”: Homp(X*®, Y*) — Homt (X, Y*) specified by
df:= <d§}+n°fj - (—1)"fj+1°d§<>. :
JEZL
There is a functorial identification, compatible with connecting maps,
(1.2.3) H;C* = lim Exti(R/I°, C*)
s>0
where R/I® is thought of as a complex vanishing outside degree 0.

1.3. The derived category. An efficacious strategy in studying the be-
havior of and relations among various homology groups is to regard them
as shadows of an underlying play among complexes, and to focus on this
more fundamental reality. From such a point of view arises the notion of the
derived category D(R) of M(R).

When our basic interest is in homology, we needn’t distinguish between ho-
motopic maps of complexes, so we start with the homotopy category K(R).
Here we would like to regard the source and target of a quasi-isomorphism
as isomorphic objects because they have isomorphic homology. So we for-
mally adjoin to K(R) an inverse for each such . This localization procedure
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produces the category D(R), described roughly as follows. (Details can be
found, e.g., in [Wh1l, Chap. 10].)

The objects of D(R) are simply the R—complexesﬂ A D(R)-morphism
C — C' is an equivalence class ¢/ of K(R)-diagrams C <% X £, ¢’ with
1) a quasi-isomorphism, the equivalence relation being the least such that
®/Y = ¢tpy /11y for all such ¢, 1 and quasi-isomorphisms 1, : X3 — X. The
composition of the classes of €/ <2 X' 25 C" and C <% X 25 ' is given
by

(¢'/¢) (o)1) = &' do/ i)y
where (¢9: X9 — X', ¥y Xo — X') is any pair with 1), a quasi-isomorphism
and '¢o = ¢hy. (Such pairs exist.)

There is a canonical functor Q: K(R) — D(R) taking any complex to it-
self, and taking the K(R)-map ¢: C — C’ to the D(R)-map ¢/1¢ (where 1¢
is the identity map of C'). This @ takes quasi-isomorphisms to isomorphisms:
if ¢ is a quasi-isomorphism then the inverse of ¢/1¢ is 1¢/¢.

The pair (D(R), Q) is characterized up to isomorphism by the following
property:

(1.3.1) For any category L, composition with Q is an isomorphism of the
category of functors from D(R) to L (morphisms being functorial maps) onto
the category of those functors from K(R) to L taking quasi-isomorphisms to
isomorphisms.

(If F: K(R) — L takes quasi-isomorphisms to isomorphisms then the
corresponding functor Fj,: D(R) — L satisfies Fj,(¢/v) = F(¢)o F(1)7L.)

D(R) has a unique additive-category structure such that @ is an additive
functor. For instance, to add two maps ¢1 /11, ¢2/12 with the same source
and target, rewrite them with a common denominator—which is always
possible, because of [Hall, pp. 35-36, proof of (FR2)]—and then just add the
numerators. The characterization (1.3.1) of (D(R), @) remains valid when
restricted to additive functors into additive categories.

The homology functors H? are then additive functors from D(R) to M(R).
One shows easily that—in accordance with the initial motivation—a D(R)-
map « is an isomorphism if and only if the homology maps H'(a) (i € Z)
are all isomorphisms.

4As a rule we will no longer use ® in denoting complexes. But the degree-n differential
of a complex C will still be denoted by d": C" — C™*1.
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Ezample. When R is a field, any R-complex (C*®, d*®) splits (non-canonically)
into a direct sum of the complexes im(d*~1) — ker(d’) (concentrated in degrees
i — 1 and 7), whence (exercise) C' is canonically D(R)-isomorphic to the complex

L Yatie Lo L atte L
Consequently, the functor C' +— ©;cz H'C' from D(R) to graded R-vector spaces is

an equivalence of categories.

Ezxample. A common technique for comparing the homology of two bounded-
below complexes C' and C’ is to map them of them into a first-quadrant double
complex as (respectively) the vertical and horizontal zero-cycles. Thus if Y is the
totalized double complex, then we have K(R)-maps £: C — Y, ¢:C' - Y. If
the appropriate spectral sequence of the double complex degenerates then & is
a quasi-isomorphism, and so one has the D(R)-map (1¢//&)0(¢/1¢): C — C,
from which one gets homology maps H’C' — H!C’. In some sense, the role of the
spectral sequence is taken over here by the conceptually simpler D(R)-map. The
real advantage of the latter becomes more apparent when one has to work with a
sequence of comparisons involving a variety of homological constructions—as will
happen later in these lectures.

It follows at once from definitions that for any R-complexes D, E,

HHom (D, E) = Homy gy (D, E).

Furthermore, (#) in §1.2 implies that for g-injective E the natural map
Homg gr)(D, E) — Hompgy(D, E) is bijective. Hence, with C' — E:= E¢
the previously used g-injective resolution and [i] denoting i-times-iterated
translation (see footnote in §L),

Exth(D,C) = HHomp (D, E)
(1.3.2) = HHomp, (D, E[i])
= Homp ) (D, Eli]) = Hompg) (D, Ci).
The following illustrative Proposition will be useful. For any R-module M

and any m € Z, M[—m] is the R-complex which is M in degree m and
vanishes elsewhere.

Proposition 1.3.3. If C is an R-complex such that H'C =0 for all i > m
then for any R-module M, the homology functor H™ induces an isomorphism

Homp gy (C, M[-m]) =~ Homg(H™C,H"(M[-m])) = Homg(H™C, M).

If, moreover, H'C = 0 for all i < m, then the D(R)-map corresponding in
this way to the identity map of H™C' is an isomorphism

C = (H"C)[—m].
Proof. Let C<,, C C be the “truncated” complex

..._>Cm—2ﬁ>cm—1ﬂker(cmﬂcm+1)_>o_>o_>...
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The inclusion C<,, — C' is a quasi-isomorphism, so we can replace C by
C<pm, i.e., we may assume that C" = 0 for n > m. Then for any injective
resolution 0 — M — I® — I' — ... we have natural isomorphisms

Hompg)(C, M[—m]) = Hompg)(C, I*[-m])
«~ Homgg)(C, I*[-m]) =~ Homg(H"C, M).

(Bijectivity of the second map follows, as above, from (#) in §1.2. Showing
bijectivity of the third map—induced by H™—is a simple exercise.) The
first assertion follows. The second results from the above characterization
of D(R)-isomorphisms via their induced homology maps. (More explicitly,
the D(R)-map in question is represented by the natural diagram of quasi-
isomorphisms C < C<,, - (H"C<p,)[—m].) O

Corollary 1.3.4. The functor taking any R-module M to the R-complex
which is M in degree zero and O elsewhere, and doing the obvious thing to
R-module maps, is an equivalence of the category M(R) with the full sub-
category of D(R) whose objects are the complexes with homology vanishing
i all nonzero degrees. A quasi-inverse for this equivalence is given by the
functor HO.

For a final example, we note that as the above-defined local cohomology
functors Hy: K(R) — M(R) (i € Z) take quasi-isomorphisms to isomor-
phisms, they may be regarded as functors from D(R) to M(R). In view
of (L32), (CZ3)) yields an interpretation of these functors in terms of D(R)-
maps, viz. a functorial isomorphism

H:C = h%l Homp ) (R/I°,Cli])  (C € D(R)).
8>

1.4. Triangles. As we have seen, exact sequences of complexes play an
important role in the discussion of derived functors. But D(R) is not an
abelian category, so it does not support a notion of exactness. Instead,
D(R) carries a supplementary structure given by certain diagrams of the
form F — F — G — E[1], called triangles, and occasionally represented in
the typographically inconvenient form

E/;\F

Specifically, the triangles are those diagrams which are isomorphic (in the
obvious sense) to diagrams of the form

(1.4.1) X5y —C, - X[1]

where « is an ordinary map of R-complexes and C,, is the mapping cone of a:
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as a graded group, C, := Y @ X[1], and the differential C? — C"*! is the
sum of the differentials of dy and d%; plus the map antl. xntl _ yntl
as depicted:
C«n-‘,—l — Yn—i—l oy Xn+2
(0%

o] o] Ne T
cr = yn oy Xn+1
a
For any exact sequence

(1) 0-x%y 2Lz -0

of R-complexes, the composite map of graded groups C, — Y s, Z turns
out to be a quasi-isomorphism of complexes, and so becomes an isomorphism
in D(R). Thus we get a triangle

X =Y —>Z7Z—- X[1];

and up to isomorphism, these are all the triangles in D(R). (See e.g., [Lp3,
Example (1.4.4)].)

The operation E +— FE[1] extends naturally to a functor on R-complexes,
which preserves homotopy and quasi-isomorphisms, and hence gives rise to
a functor T: D(R) — D(R), called translation, an automorphism of the
category D(R).

Applying the i-fold translations 7" (i € Z) to a triangle

AN:E—F— G— E[l]
and then taking homology, one gets a long homology sequence
(1.4.2) - -»HE—-HF - HG—-HE1 =H"E - ...

This sequence is ezxact, as one need only verify for triangles of the form ([CZT]).

If A is the triangle coming from the exact sequence (7), then this homol-
ogy sequence is, after multiplication of the connecting maps H'G — H't!E
by —1, precisely the usual long exact sequence associated to (7).

This is why one can replace short exact sequences of R-complexes by
triangles in D(R). And it strongly suggests that when considering functors
between derived categories one should concentrate on those which respect
triangles, as specified in the following definition.

Let Ay, Ay be abelian categories. In the same way that one constructs
the triangulated category D(R) from M(R), one gets triangulated derived
categories D(A;), D(Az)H Denote the respective translation functors by
Ty, Ts.

Definition 1.4.3. A A-functor ®: D(A;) — D(As) is an additive functor
which “preserves translation and triangles,” in the following sense:

Smodulo some set-theoretic conditions which we ignore here. (See [Whil, p. 379, 10.3.3].)
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® comes equipped with a functorial isomorphism
0: Ty = THLd
such that for any triangle
ELFLGS EN=TE
in D(A;), the corresponding diagram
oF 2% oF 2% oG 2% (0B)[1] = THhOE
is a triangle in D(Az). These A-functors are the objects of a category whose

maps, called A-functorial, are those functorial maps which commute (in the
obvious sense) with the supplementary structure.

In what follows, those functors between derived categories which appear
can always be equipped in some natural way with a § making them into A-
functors; and any noteworthy maps between such functors are A-functorial.
For our expository purposes, however, it will not be necessary to fuss over
explicit descriptions, and 6 will usually be omitted from the notation.

In summary: if ®: D(A;) — D(Ay) is a A-functor, then to any short
exact sequence of complexes in A;

(11) 0-x%y 2L z-0
there is naturally associated a long exact homology sequence in As
. — H(®X) - H(®Y) — H(®Z) —» HFT(®X) — -,

that is, the homology sequence of the triangle in D(.As) gotten by applying ®
to the triangle given by (7).

We will also need the notion of triangles in the homotopy category K(R).
These are diagrams isomorphic in K(R) to diagrams of the form ([CZT]). Up
to isomorphism, K(R)-triangles come from short exact sequences of com-
plexes which split in each degree as R-module sequences: for such sequences,
the quasi-isomorphism following (7) (above) is a K(R)-isomorphism, see e.g,
[Lp3, Example (1.4.3)]. (One might also think here about the common use
of such a sequence of complexes to resolve an exact sequence of modules—
see e.g., [WhIl p.37)] for the “dual” case of projective resolutions). The
canonical functor @Q: K(R) — D(R) is a A-functor: it commutes with
translation and takes K(R)-triangles to D(R)-triangles. Any additive func-
tor from M(R) into an additive category extends in an obvious sense to a
A-functor between the corresponding homotopy categories.

1.5. Right-derived functors. RHom and Ext. Here is how in dealing
with higher derived functors we lift our focus from homology to complexes.
The g-injective resolutions ¢, : C'— E¢ being as in L2, set

(1.5.1) RL,C:= T, Ec.
Then by Definition [CZT], H;C' = H'RIC.
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The point is that RI; can be made into a A-functor from D(R) to D(R).

For, the characterization (#) (§L2) of g-injectivity implies that any quasi-
isomorphism between g-injective complexes is an isomorphism, and then
that any K(R)-diagram C & X 25 O with 1) a quasi-isomorphism embeds
uniquely into a commutative K(R)-diagram, with ¥—and hence I} ¥—an
isomorphism: .

C’LX—>C"

N

E. ¥ Ey _®, Ecr

Furthermore, the equivalence class (see §L3)) of the K(R)-diagram
L Lo
LiEc — ITEx — [T Ec
depends only on that of C' <% X 25 C’. Thus we can associate to the D(R)-
map ¢/¢: C — C' the map I}®/I;¥: RI;C — RI;C’. This association
respects identities and composition, making RI; into a functor. And with
Q: K(R) — D(R) as before, a A-structure on RI is given by the functorial
isomorphism
0(C): RI;(C1]) = (RI;CO)[]
obtained by applying QI to the unique isomorphism ¢: Ecpy = Ec[1]
such that ¢oqq; = (go)[1]. (For details, cf. [Lp3, Prop. (2.2.3)]).

There is a functorial map ¢(: QI; — RI;Q such that for each C, {(C) is
the obvious map I;C' — I} Ec. The pair (RI},() is a right-derived functor
of I}, characterized up to canonical isomorphism by the property that ¢ is
an initial object in the category of all functorial maps QI; — I' where I
ranges over the category of functors from K(R) to D(R) which take quasi-
isomorphisms to isomorphisms. In other words, for each such I' composition
with ¢ maps the set [RI;Q,I'] of functorial maps from RI;Q to I' bijectively
onto the set [QI},T"]. Moreover, (L3l1) gives a unique factorization I' = I'Q
for some I': D(R) — D(R), and a bijection [RI},I'] =~ [RI;Q,T.

Similarly, one has via g-injective resolutions a right-derived A-functor RI’
of any A-functor I on K(R). The characteristic initial-object property holds
with “A-functor” in place of “functor.” Such I" arise most often as extensions
of additive functors from M(R) to some abelian category (see end of §L4).

For example, for any R-complex D one has the functor RHomg (D, —)
with
RHomy,(D, C) = Homfy (D, Ec M
and then, as in Definition [CZ2],

(1.5.2) Exth(D,C) = H'RHompy(D, C).

6which, with some caution regarding signs, can also be made into a contravariant A-
functor in the first variable, see e.g., [Lp3, (1.5.3)].
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To illustrate further, let us lift the homology relation (CZ3]) to a re-
lation among complexes in D(R). A first guess might be that RI;C =
limg~o RHom(R/I%,C); but that doesn’t make sense, because the lim of a
s?iuence of complexes in D(R) doesn’t always exist. It is however_f)ossi-
ble to replace lim—thought of naively as the cokernel of an endomorphism
of an infinite direct sum—by the summit of a triangle based on such an
endomorphism, thereby expressing RI; as a “homotopy colimit.”

For this purpose, let hy: D(R) — D(R) be the functor described by

h,C:= RHomg(R/I° C) (s>1, C € D(R)).

There are natural functorial maps ps: hy — hyi1 and gs: hy — RI, satis-
fying gs4+1ps = ¢s. The family

(1, =pm): by = hyy @ by C Gszrhs (M2 1)

defines a D(R)-map
p: EBSZlhs — @821118-

(Details, including the interpretation of infinite direct sums in D(R), are left
to the reader.)

Proposition 1.5.3. Under these circumstances, there is a triangle

Be>1hC 2 B> h C 2, RI;C — (@s>1 s C)[1]

Proof. Replacing C' by an isomorphic complex, we may assume C' g-injective,
so that hyC = Homp(R/I°,C) and RI;C = I;C. Since (> ¢s)ep = 0,
it follows, with C}, the mapping cone of p, that there exists a map of R-
complexes

7: Cp = (®s>1 hSC)EB (®s>1 b O)[1] = ;O

restricting to ) ¢s on the first direct summand and vanishing on the second;
and it suffices to show that ¢ is a quasi-isomorphism. But from the (easily-
checked) injectivity of H’p and exactness of the homology sequence of the
triangle (LZJ) with « replaced by p, one finds that the homology of C), is

H,C), = li>_1})1)H"hsC = 11>_I})l) H'Homy,(R/I°, O)
= H'lim Homp(R/I°, C) = H'T;C,

s>0

whence the conclusion. O
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2. DERIVED HOM-TENSOR ADJUNCTION; DUALITY

2.1. Left-derived functors. Tensor and Tor. Dual to the notion of
right-derived functor is that of left-derived functor:

Let v: K(R) — K(R) be a A-functor. A left-derived functor of ~ is
a pair consisting of a A-functor Ly: D(R) — D(R) and a functorial map
& LyQ — Qv which is a final object in the category of all A-functorial
maps [' — Qv where I" ranges over the category of A-functors from K(R)
to D(R) which take quasi-isomorphisms to isomorphisms. In other words,
for each such T composition with £ maps the set [[', Ly Q)] of functorial maps
from T' to Ly@ bijectively onto the set [I',@Qv]. Moreover, ([L3l1) gives a
unique factorization I' = I'Q) for some I': D(R) — D(R), and a bijection
[T, Ln] = [ Iy Q].

Ezxample. Recall that the tensor product C @z D of two R-complexes is
such that (C ®g D)" = ®;4+j—n C* @g D7, the differential ": (C ®g D)" —
(C ®g D)"*! being determined by

"(x®y) :dica:®y+(—1)ix®d{)y (x € C' ye D).

Fixing D, we get a functor v, := ... ®r D: K(R) — K(R), which together
with 6 = identity is a A-functor. To make 7/ := C ®p ... (C fixed) a A-
functor, one uses the unique 6’ (# identity) such that the R-isomorphism
C®prD = D®xrC taking r®@y to (—1)Yy®@x is A-functorial [Lp3, (1.5.4)].
One gets a left-derived functor ... ®rD of 7, as follows (see [Spn, p. 147,
Prop. 6.5], or [Lp3, §2.5]).

An R-complex F is g-flat if for every exact R-complex E (i.e., H'E = 0 for
all i), F' ®r F is exact too. It is equivalent to say that the functor F ®pg ...
preserves quasi-isomorphism, because by the exactness of the homology se-
quence of a triangle, a map of complexes is a quasi-isomorphism if and onl
if its cone is exact, and tensoring with F' “commutes” with forming conesﬁ,

Any bounded-above flat complex is g-flat (see, e.g., [Lp3, (2.5.4)]).

Every R-complex C' admits a g¢-flat resolution, i.e., there is a g-flat com-
plex F' equipped with a quasi-isomorphism F' — C. This can be constructed
as a lim of bounded flat resolutions of truncations of C' (loc. cit., (2.5.5)).

After choosing for each C' a ¢-flat resolution Fo — C, one shows there
exists a left-derived functor, as asserted above, with

CorD=Fc®rD
(loc. cit., (2.5.7)). Taking homology produces the (hyper)tor functors
Tor;(C, D) = H*(C ®@r D).
If Fp — D is a g-flat resolution, there are natural D(R)-isomorphisms

C®rFp «— Foc®rFp — Foc®grD,

"Ezercise: An R-complex E is g-injective iff Homg (—, F) preserves quasi-isomorphism.
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so any of these complexes could be used to define C @ D. Using Fc ®r Fp
one can, as before, make C'®@r D into a A-functor of both variables C' and D.
As such, it has a final-object characterization as above, but with respect to
two-variable functors.

2.2. Hom-Tensor adjunction. There is a basic duality between RHomp,
and ®, neatly encapsulating a connection between the respective homologies
Ext and Tor (from which all other functorial relations between Ext and Tor
seem to follow As we’ll soon see, this duality underlies a simple general
formulation of Local Duality.

Let ¢: R — S be a homomorphism of commutative rings. Let £ and F' be
S-complexes and let G be an R-complex. There is a canonical S-isomorphism
of complexes:

(2.2.1) Hom},(E ®g F, G) -~ Hom%(E, Homp,(F,G)),

which in degree n takes a family (fi;: E' @g FV — Gt to the family
(fi: E' — Hom'"(F,G)) such that for a € E?, f;(a) is the family of maps
(g;: Fj — G*H1) with g;(b) = fij(a®b) (b € F7).

This relation can be upgraded to the derived-category level, as follows.

Let ¢, : D(S) — D(R) denote the obvious “restriction of scalars” functor.
For a fixed S-complex E, the functor Homp(E, G) from R-complexes G to
S-complexes has a right-derived functor from D(R) to D(S) (gotten via
g-injective resolution of G), denoted RHomp (¢ E, G).

If we replace G in (ZJ]) by a g-injective resolution, and F' by a g-flat
one, then the S-complex Homp(F,G) is easily seen to become g-injective;
and consequently ([ZZT]) gives a D(S)-isomorphism
(2.2.2)

a(E, F,G): RHomp(p.(E ®s F), G) = RHomyg(E, RHomp (¢, F, G)),

of which a thorough treatment (establishing canonicity, A-functoriality, etc.)
requires some additional, rather tedious, considerations. (See [Lp3., §2.6].)
Here “canonicity” signifies that « is characterized by the property that it
makes the following otherwise natural D(S)-diagram (in which H® stands
for Hom®) commute for all £, F' and G-

H(E©F.G) — RHYw(E@F),G) — RHy(@(ES F),C)
D |~ ~|a
He(B, Hyy(F, G)) — RHY(E,H4(F,G)) — RHY(E, RHY(0.F,G))
Application of homology H° to (2222 yields a functorial isomorphism

(2.2.3)  Hompg)(p«(E®s F), G) =~ Hompg)(E, RHomp(p. F, G)),

see (C22) and (C3Z). Thus the functors ¢.(... ®s F): D(S) — D(R) and
RHomp (o F,—): D(R) — D(S) are adjoint.
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2.3. Consequence: Trivial Duality. The following proposition is a very
general (and in some sense trivial) form of duality .

Proposition 2.3.1. With ¢: R — S, p.: D(S) — D(R) as above, let
E € D(9), let G € D(R), and let T': M(S) — M(S) be a functor, with
right-derived functor RI': D(S) — D(S) (see §LO). Then there exists a
natural functorial map

EZ31h) E @sRI'S — RI'E,
whence, via the isomorphism ZZ2) with F' = RIS, a functorial map
23Ib) RHomp,(p.RI'E, G) — RHom%(E, RHomyp, (o, RIS, G)),
whence, upon application of the homology functor H°, a functorial map
Z3Tc) Hompg)(psRIE, G) — Homps)(E, RHomp (. RIS, G)).
This being so, and E being fized,
([ZZ3Z1k) is an isomorphism <= (ZZ1b) is an isomorphism for all G
< (Z3Fk) is an isomorphism for all G.
Proof. For fixed E’, the functor RHom%(I'E’, RI'—): K(S) — D(S) takes
quasi-isomorphisms to isomorphisms. So the initial-object characterization

of right-derived functors (§I0]) gives a unique functorial map vg making the
following otherwise natural D(S)-diagram commute for all S-complexes E:

Hom%(FE', E) RHomZ(E', E)

| |

Hom$(T'E/,TE) —— RHom%(I'E/,TE) —— RHom%(I'E’, RT'E)

Taking E’ to be a g-injective resolution of S, one has the map
v (E): E = RHomg(S, F) — RHomg(RI'S, RT'E)

which gives, via [ZZ3) (with R = S and ¢ = identity), the natural map

It is clear then that for any F, G:

[((Z3Ih) is an isomorphism] = [[Z3b) is an isomorphism]
— [[Z3Ik) is an isomorphism].
Conversely, if (Z37k) is an isomorphism for all G then using ([ZZ3)) one
sees that (Z3Jh) induces for all G an isomorphism
HomD(R)(gp*RFE, G) = HomD(R)(gp* (E®sRI'S), G),

whence ¢, ([Z3Th) is an isomorphism. Thus ([Z3Ih) induces homology iso-
morphisms after, hence before, restriction of scalars, and this means that

(3Th) itself is an isomorphism (§I3) 8 O

S(E:B:'[h) is an isomorphism iff RI" commutes with direct sums, see Prop.B20l below.
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The map [Z3Ih) is the obvious one when I' is the identity functor 1;
and it behaves well with respect to functorial maps I' — I", in particular
the inclusion I'; < 1 with J an S-ideal. For noetherian S it follows that
([23Ih) is identical with the isomorphism (S, E) in Corollary B3] below
(with I C R replaced by J C S), whence [Z3Jb) and ([Z3Jk) are also
isomorphisms. Thus:

Theorem 2.3.2 (“Trivial” Local Duality). For ¢: R — S a map of com-
mutative rings with S noetherian, J an S-ideal, and ¢,: D(S) — D(R) the
restriction-of-scalars functor, there is a functorial D(S)-isomorphism

RHom}, (¢ RIGE, G) =~ RHom%(E, RHomp,(p RIS, G))
(E € D(S), G € D(R)); and hence with ¢} : D(R) — D(S) the functor
ot (—):= RHom$ (. RIS, —) = RHom$ (RIS, RHomf (S, —))
there is a natural adjunction isomorphism

Hompg) (<RI E, G) —~~ Hompg) (E, ol Q).

Now with (S,J) and ¢: R — S as above, let ¢: S — T be another
ring-homomorphism, with 7" noetherian, and let ¢,.: D(T) — D(S) be the
corresponding derived restriction-of-scalars functor. Let K be a T-ideal con-
taining ¢ (J). Then ¥,Dg(T) C D;(S), and therefore by Corollary B2l
below, the natural map is an isomorphism RI’;¢,RI}, = 9,RI}, giving
rise to a functorial isomorphism

e« RE Y, RIG — PRI = (¢‘P)* RIy
whence a functorial isomorphism between the right adjoints (see Thm.ZZ32):

(2.3.3) (Welie = vk

2.4. Nontrivial dualities. From now on, the standing assumption that all
rings are noetherian as well as commutative is essential.

“Nontrivial” versions of Theorem 232 convey more information about ¢f.

Suppose, for example, that S is module-finite over R, and let G € D.(R),
by which is meant that each homology module of G € D(R) is finitely
generated. (Here “c” connotes “coherent”.) Suppose further that Ext’(S, G)
is a finitely-generated R-module for all i € Z, i.e., RHom% (¢S, G) € D¢(R).
(This holds, e.g., if H'G = 0 for all i < 0, cf. [Hall p.92, Prop.3.3(a)].)
Then Greenlees-May duality (Corollary EETTl below, with (R, I) replaced
by (S, J)—so that S denotes J-adic completion of S—and F replaced by
RHom% (445, G)) gives the first of the natural isomorphisms

RHom%(¢.S,G) ®5 S = RHom%(RI;S, RHom% (.S, G))

(24.1) ~, RHom$%(¢. RIS, G) = oG
— o % ,G) = .
) R J /



18 JOSEPH LIPMAN

More particularly, for S = R and ¢ = id (the identity map) we get
id*G=GerR (G eD.(R)).

Specialize further to where R is local, ¢ = id, J = m, the maximal ideal
of R, and G € D¢(R) is a normalized dualizing complezl] so that in D(R),
RI,,G = 7 with 7 an R-injective hull of the residue field R/m [Hall p. 276,
Prop. 6.1]. Then there are natural isomorphisms

RHom%(RILE,G) = RHomy(RILLE,RI,G) = RHom%(RI,E,T)

Substitution into Theorem gives then a natural isomorphism
(24.2)  RHom%(RI,E,Z7) = RHom}(E,G®rR) (E € D(R)).

For E € D(R) this is just classical local duality [Hall, p. 278 |, modulo Matlis
dualization '
Applying homology H™" we get the duality isomorphism

(2.4.3) Hompg(H E,T) > Ext;'(E,G ®r R).

If R is Cohen-Macaulay, i.e., there is an m-primary ideal generated by an
R-regular sequence of length d:= dim(R), then by Cor.BL4, H:{ R = 0 for
i > d; and in view of [GrZ, p. 31, Prop. 2.4], (L)) gives H, R = 0 for i < d.
(Or, see [BS, p.110, Cor. 6.2.9].) Since R is R-flat, Z3)) now yields

0=Extp (R,GerR) =H (GorR)=(H'G)@rR  (i#d).

Hence the homology of GG vanishes outside degree —d, so by Proposition [[33]
there is a derived-category isomorphism G = w[d] where w := H7¢G (a
canonical module of R). In conclusion, ([ZZ3]) takes the form

Hompg(H:.E,T) = Extls (B, ).

Another situation in which ¢} can be described concretely is when S is a
power-series ring over R, see §o.1l below.
For more along these lines, see [AJI pp.7-9, (¢)] and [DES, §2.1].

3. K0OSzZUL COMPLEXES AND LOCAL COHOMOLOGY

Throughout, R is a commutative noetherian ring and t = (¢1,...,t,,) is
a sequence in R, generating the ideal I := tR. The symbol ® without a
subscript denotes ®p, and similarly for ®.

9which exists if R is a homomorphic image of a Gorenstein local ring [Hall p.299].
10which is explained e.g., in [BS, Chapter 10]. For more details, see [AILl p.8§].
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3.1. RI; = stable Koszul homology. Before proceeding with our explo-
ration of local cohomology, we must equip ourselves with Koszul complexes.
They provide, via Cech cohomology, a link between the algebraic theory and
the topological theory on Spec(R)—a link which will remain implicit here.
(See [Gr2, Exposé I1].)

For t € R, let K(t) be the complex --- — 0 — R % R, — 0 — --- which
in degrees 0 and 1 is the natural map from R =: K%(¢) to its localization
R; =: K!(t) by powers of ¢, and which vanishes elsewhere.

For any R-complex C| define the “stable” Koszul complexes

Kt)=K(t1)® - @ K(tm), K(t,C)=K(t)®C.

Since the complex KC(t) is flat and bounded, the functor of complexes IC(t, —)
takes quasi-isomorphisms to quasi-isomorphisms (apply [Hall p.93, Lemma
4.1, b2] to the mapping cone of a quasi-isomorphism), and so may—and
will—be regarded as a functor from D(R) to D(R). '

Given a g-injective resolution C' — E¢ (§L2) we have for E = E7, (j € Z),

B = ker (KUt E) = E — &7, E, = K¢, E)),
whence a D(R)-map
0(C): RIC = IEc — K(t,Ec) 2 K(t,0),

easily seen to be functorial in C, making the following diagram commute:

R,c 2 kt,0)=K(t) 2 C
(311) naturall lW(C)
C = ReC

where 7(C) is obtained by tensoring the projection KC(t) — K°(t) = R
(which is a map of complexes) with the identity map of C.
The key to the store of properties of local cohomology in this section is{

Proposition 3.1.2. The D(R)-map §(C) is a functorial isomorphism
RI;C = K(t,C).

Proof. (Indication.) We can choose E¢ to be injective as well as g-injective
(see footnote in L2), and replace C' by E¢; thus we need only show that if C'
is injective then the inclusion map I} ,C — K(t,C) is a quasi-isomorphism.
Elementary “staircase” diagram-chasing (or a standard spectral-sequence ar-
gument) allows us to replace C by each C? (i € Z), reducing the problem to
where C' is a single injective R-module. In this case the classical proof can
be found in [Gr2, pp.23-26] or [WhIl, p. 118, Cor.4.6.7] (with arrows in the
two lines preceding Cor. 4.6.7 reversed).

There is another approach when C' is a bounded-below injective complex
(applying in particular when C'is a single injective module). Every injective

HBut see 83.5 for a Koszul-free, more general, approach.



20 JOSEPH LIPMAN

R-module is a direct sum of injective hulls of R-modules of the form R/P
with P C R a prime ideal, and in such a hull every element is annihilated
by a power of P [Mtl]. It follows that for every t € R, the localization
map C — C; is surjective]d so that the inclusion LrC — K((t),C) is a
quasi-isomorphism; and that the complex I, ,C is injective, whence I} ,C' is
bounded-below and injective, therefore g-injective (§L2).

Moreover, K(t, (') is bounded-below and injective, hence g-injective, since
for any flat R-module F' and injective R-module E, the functor

Hompr(M,F ® F) = F ® Homg (M, E)
of finitely-generated R-modules M is exact, i.e., F' ® E is injective.

One shows now, by induction on m > 2, that with t':= (¢2,...,t,), the
top row of

LrC —= L phirC —— LpKt,.0) —— K((t),K(t,C))
RI,C RL, zRI,C RIT, zK(t',C) K(t,C)
is a D(R)-isomorphism. O

For R-ideals I and I’ there is, according to the initial-object characteriza-
tion of right-derived functors (§[1]), a unique functorial map x making the
following otherwise natural D(R)-diagram commute

l |

R, —— RIRI,
X

+1'

+I'
Corollary 3.1.3. The preceding natural functorial map is an isomorphism
X: RPI+I’ = RF]RI}/.

Proof. Let I = tR (t:= (t1,...,ty)) and I' =t'R (t':= (t},...,t])), so that
I+1I'=@VtR (t vVt = (t,...,tm,t},...,t))). It is a routine exercise
to deduce from Proposition an identification of x(C') with the natural
isomorphism K(t vV t',C) == K(t,K(t/,C)). O

We see next that the functor RI; is “bounded”—a property of consider-
able importance in matters involving unbounded complexes

Corollary 3.1.4. Let C' be an R-complex such that H'C =0 for all i > iy
(resp. i <'ig). Then H'RI;C =0 for all i > iy +m (resp. i < ip).

12T here are easier ways to prove this.

13This boundedness property, called “way-out in both directions” in [Hall, often enters
via the “way-out” lemmas [loc. cit., p.69, (iii) and p. 74, (iii)]. See, for instance, the proof
of Corollary B2l below.
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Proof. It H'C = 0 for all @ > 4y, then replacing C* by 0 for all 4 > i; and
C* by the kernel of Cr — C1H! produces a quasi-isomorphic subcomplex
(' C C vanishing in all degrees above 1. There are then isomorphisms

RF]C e RP101 — IC(t,Cl),

and H'AC(t, C1) (indeed, K(t, Cy) itself) vanishes in all degrees above i1 + m.

A dual argument applies to the case where H!C' = 0 for all i < .
(More generally, without Prop.BI2 there is in this case a surjective quasi-
isomorphism C' — Cjy with Cy vanishing in all degrees below i, and a quasi-
isomorphism Cy — Ej into an injective Ej vanishing likewise [Hall p.43];
and so HiRFIC = HZTIEO vanishes for all i < i.) O

3.2. The derived torsion category. We will say that an R-module M is
I-power torsion if Iy M = M, or equivalently, for any prime R-ideal P 2 I
the localization Mp = 0. (Geometrically, this means the corresponding sheaf
on Spec(R) is supported inside the subscheme Spec(R/I).) For any R-
module M, I7M is I-power torsion.

Let D;(R) C D(R) be the full subcategory with objects those complexes C
whose homology modules are all I-power torsion, i.e., the localization Cp is
exact for any prime R-ideal P p I. For any R-complex C, (LEI) implies
that RI;C € D;(R).

The subcategory D;(R) is stable under translation, and for any D(R)-
triangle with two vertices in D;(R) the third must be in D;(R) too, as
follows from exactness of the homology sequence ([LZ2).

Corollary 3.2.1. The complex C is in D;(R) if and only if the natural map
((C): RI;C — C is a D(R)-isomorphism.

Proof. (<) Clear, since RI;C € D;(R).

(=) The boundedness of RI} (BI4) allows us to apply [Hall, p. 74, (iii)]
to reduce to the case where C' is a single I-power-torsion module. But then
K(t;)® C =C for i =1,...,m, whence (by induction on m) K(t,C) = C,
and so by Proposition and the commutativity of @I, «(C) is an
isomorphism. O

We show next that RI; is right-adjoint to the inclusion D;(R) — D(R).
Proposition 3.2.2. The map «(G): RI;G — G induces an isomorphism
RHom*(F, RI;G) = RHom®(F,G) (F € D;(R), G € D(R)),
whence, upon application of homology H, an adjunction isomorphism
o(F,G): Homp (g (F, RI}G) = Homp g, (F, R[}G) = Hompg)(F, G).

Proof. Since D(R)-isomorphism means homology-isomorphism (§L3]), and

since (see (L32))
H'RHom*(F',G') = Hompg)(F,G'[i]))  (F',G' € D(R)),
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we need only show that o(F,G) is an isomorphism for all F' € D;(R) and
G € D(R). Referring then to

HOIHD(R) (F, G) T) HOIHD(R) (RFIF, RFIG) % HOHID(R) (F, RFIG)
where v is the natural map and where p is induced by the isomorphism
((F): RIJF == F (Corollary B2ZTl), let us show that p~'v is inverse to o.

That gp~'v(a) = a for any o € Hompg)(F, G) amounts to the (obvious)
commutativity of the diagram

RI,
RI,F — RI,G

) | = |ue

That p~tve(B) = 3 for g € Homp gy (F, RI}G) amounts to commutativ-
ity of
RIT;
RILF 7, ROLRI,G

L(F)l: lRFIL(G)

and so (since ¢ is functorial) it suffices to show that RI;¢«(G) = «(RI;G).
We may assume that G is injective and g-injective, and then the second
paragraph in the proof of Prop.BT2 shows that I;G is injective and that
II;G — K(t,[;G) = RIJRI[;G

is a D(R)-isomorphism. It follows that RI}¢(G) and ((RI;G) are both
canonically isomorphic to the identity map I[}I7G < I;G, so that they are
indeed equal. O
3.3. Local cohomology and tensor product.
Corollary 3.3.1. There is a unique bifunctorial isomorphism

Y(C,C"): RI;C @ C" =5 RIG(C @ C) (C, C" e D(R))
whose composition with the natural map RI;(C ® C') — C ® C' is the nat-
ural map RI;C @ C' — C @ C".

Proof. Replacing C and C’ by g-flat resolutions, we may assume that C' and
(' are themselves g-flat. Existence and bifunctoriality of the isomorphism 1)
are given then, via Prop.BIL2 and commutativity of (BI1l), by the natural
isomorphism

Kt,C)oC' =Kt)oC)ol = Kt)® (CeC')=Kt,CxC").

It follows in particular that RI;C' @ C’ € DI(R)E and so uniqueness of 1)
results from Proposition O

Mpis is easily shown without using K.
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Here is a homological consequence. (Proof left to the reader.)

Corollary 3.3.2. For any R-complex C and flat R-module M there are
natural isomorphisms

H{(C)o M = HY(C® M) (icZ).

Here is an interpretation of some basic properties of the functor RI; in
terms of the complex RI;R = K(t). (Proof left to the reader.)

Corollary 3.3.3. Via the isomorphism (R, —) of the functor RIyR @ (—)
with RI}(—) the natural map RI;C" — C" corresponds to the map

(R)@1: RR®C' - R C' =,
and the above map 1»(C,C") corresponds to the associativity isomorphis
RORC)®C" = RR® (C®C).

3.4. Change of rings. Let ¢: R — S be a homomorphism of noetherian
rings. The functor “restriction of scalars” from S-complexes to R-complexes
preserves quasi-isomorphisms, so it extends to a functor ¢,: D(S) — D(R).

As in §ZT1 we find that the functor M — M ®p S from R-modules
to S-modules has a left-derived functor ¢*: D(R) — D(S) such that af-
ter choosing for each R-complex C a g-flat resolution Fo — C we have
p*C = Fo®gr S. If S is R-flat, then the natural map is an isomorphism
p'C = C®RgS.

There are natural functorial isomorphisms

(34.1)  B®rp.D = . (0*B@g D) (B € D(R), D € D(S)),
(342) ¢"(B®rC) = ¢"Bs¢™C (B, C € D(R)).

Proofs are left to the reader. (In view of [Lp3| (2.6.5)] one may assume that
all the complexes involved are g-flat, in which case ® becomes ®, and then
the isomorphisms are the obvious ones.)

For example, there are natural isomorphisms (self-explanatory notation):

(,D*]CR(t) = ]CR(t) Rpr S = Ks((pt).

So putting B = K(t) in the isomorphisms ([BZ1]) and [BZ2) we obtain, via
Propositions and B2Z2 and commutativity of (BT]), the following two
corollaries.

Corollary 3.4.3. There is a unique D(R)-isomorphism

whose composition with the natural map RI; o, D — . D is the natural map
xR gD — oo D. Thus there are natural R-isomorphisms

o HigD — Hip,D (i € Z).

154erived from associativity for tensor product of R-complexes as in, e.g., [Lp3, (2.6.5)].
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Corollary 3.4.4. There is a unique D(S)-isomorphism

whose composition with the natural map RI;¢p*C — ¢*C is the natural
map @*RI;C — ¢*C. Consequently, if S is R-flat then there are natural
S-isomorphisms

HiC®S = Hig(C®S) (icZ).

If M is an I-power-torsion R-module, for example, M = HéC (see §32),
and R is the I-adic completion of R, then the canonical map v M —-M QR
is bijective: indeed, since this map commutes with lim we may assume that
M is finitely generated, in which case for large n the natural map

M®R— M®(R/I"R) =M @ (R/I")

as well as its composition with v is bijective, so that « is too. Thus putting
S = R in the preceding Corollary we get:

Corollary 3.4.5. For C € D(R) the local cohomology modules H.C (i € Z)
depend only on the topological ring R and C ® R, in that for any defining
ideal J (i.e., ViI=v IR) there are natural isomorphisms

H;C = HY(C ® R) = Hj(C @ R).

Remark. For (R,J) as in B3, the functor T, = HY on R-modules M
depends only on the topological ring R : I';M consists of those m € M
which are annihilated by some open R-ideal.

Exercise. (a) Let F be a g-injective resolution of the S-complex D. Show that
applying H'I} to a g-injective R-resolution p.F — G produces the homology maps
in Corollary

(b) Suppose that S is R-flat. Let C — FE be a g-injective resolution of the R-
complex C and n: £ ® S — F a g-injective S-resolution. Show that the homology
maps in Corollary BZ4 factor naturally as

HiC®S =2 HTE®S — H([;E®S) = HI;4(E®S)
Hhsn, giny, JF > HEy(C®8).

3.5. Appendix: Generalization. In this appendix, we sketch a more general ver-
sion (not needed elsewhere) of local cohomology, and its connection with the theory
of “localization of categories.” In establishing the corresponding generalizations of
the properties of local cohomology developed above, we make use of the structure
of injective modules over a noetherian ring together with some results of Neeman
about derived categories of noetherian rings, rather than of Koszul complexes.

At the end, these local cohomology functors are characterized as being all those
idempotent A-functors from D(R) to itself which respect direct sums.

Let R be a noetherian topological ring. The topology 4 on R is linear if there is
a neighborhood basis N of 0 consisting of ideals. An ideal is open iff it contains a
member of N.
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We assume further that the square of any open ideal is open. Then il is deter-
mined by the set O of its open prime ideals: an ideal is open iff it contains a power
product of finitely many members of O. Thus endowing R with such a topology is
equivalent to giving a set O of prime ideals such that for any prime ideals p C p/,
p € O = p’ € 0. The case we have been studying, where N consists of the powers
of a single ideal I, is essentially that in which O has finitely many minimal members
(namely the minimal prime ideals of I, whose product can replace I).

Let I = I] be the left-exact subfunctor of the identity functor on M(R) such
that for any R-module M,

I'"'M = {z € M | for some open ideal I, [z =0 }.

The functor I commutes with direct sums. If p is a prime R-ideal and I, is the
injective hull of R/p, then I""I, = I, if p is open (because every element of I, is
annihilated by a power of p), and I""I, = 0 otherwise. Thus I determines the
set of open primes, and hence determines the topology . Moreover, IV preserves
injectivity of modules, since every injective S-module is a direct sum of I,’s, and
any such direct sum is injective.

Conversely, every left-exact subfunctor I' of the identity which commutes with
direct sums and preserves injectivity is of the form Ij. Indeed, since I, is an
indecomposable injective, the injective module I'(I,) must be I, or 0. If p C p/,
then by left-exactness, I'(I,) C I'(I,); and hence the set of p such that I'(I,) = I,
is the set of open primes for a topology 4. One checks then that I" = I{ by applying
both functors to representations of modules as kernels of maps between injectives.

Lemma 3.5.1. If F is an injective complex, then the natural D(R)-map is an
isomorphism (C): I'"F -~ RI'F.

Proof. The mapping cone C' of a g-injective resolution F' — Ef is injective and
exact, and as RI"F = I"Ep, it suffices to show that I"C' is exact. To this end,
consider for any ideal I = (¢1,...,t,)R the topology &I, for which the powers of I
form a neighborhood basis of 0, so that with previous notation, 1}1’1 = I. Then
P =g =lm T},
I open

which reduces the problem to where 4 = ;; and I} = ['p I} p--- I  gives a
further reduction to where I = tR (¢t € R). Finally, exactness of the complex C and
of its localization C in the exact sequence 0 — I[;C — C — Cy — 0 (see proof of
Proposition BT2) imply that I,’;C' is exact. O

Since any direct sum of g-injective resolutions is an injective resolution, and since
I'" commutes with direct sums, one has:

Corollary 3.5.2. For any small family (E,) in D(R), the natural map is an iso-
morphism
Do RI'E, = RI(®a Ey).

From Lemma B0l and the fact that I'” preserves injectivity of complexes, one
readily deduces the (“colocalizing”) idempotence of RI™:

Proposition 3.5.3. (i) For an R-complex E, with g-injective resolution E — Ig,
the maps L(RI"E) and RI"(E) from RI"RI'E to RI'E are both inverse to the
isomorphism RI'E -~ RI'RI'E given by the identity map of I'lp = I''I" I,
and so are equal isomorphisms.
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(ii) For E, F € D(R) the map «(F): RI"F — F induces an isomorphism
HOHID(R) (RF’E, RF/F) - HomD(R) (RF/E,F),
with inverse

natural
_—

Homp,(g)(RI"E, F) Homp,(g)(RI"RI"E,RI"F)

= Hompy #(RI'E,RI'F).

The properties given in Corollary and Proposition BO3(i) characterize
functors of the form RI{{ among A-functors from D(R) to itself. This will be
shown at the end of this appendix (Proposition B5T).

Next we generalize 824 Let My (R) = I M(R) be the full abelian subcategory
of M(R) whose objects are the i-torsion R-modules—those R-modules M such
that "M = M, i.e., the localization M, = 0 for every non-open prime R-ideal p.
The subcategory My(R) C M(R) is plump, i.e., if My — My — M — M3 — M,
is an exact sequence of R-modules such that M; € Mg(R) for i = 1,2,3,4, then
also M € Mg (R). (To see this one reduces to the case where My = My = 0, and
uses that the product of two open ideals is open.) One can think of I as a functor
from M(R) to My (R), right-adjoint to the inclusion functor My (R) — M(R).

Upgrading to the derived level, let Dy (R) C D(R) be the full subcategory with
objects those complexes C' whose homology modules are all in My(R), i.e., the
localization C), is exact for every non-open prime R-ideal p. The exact homology
sequence (CZ2) of a triangle, together with plumpness of Mg(R), entails that
Dy(R) is a triangulated subcategory of D(R), that is, if two vertices of a D(R)-
triangle lie in Dy((R) then so does the third. In fact Dy (R) is a localizing subcategory
of D(R) (= full triangulated subcategory closed under arbitrary D(R)-direct sums).

If C — Ec¢ is a g-injective resolution then RIVC = I"Ec € Dg(R), and so
RI"D(R) C Dy(R). Thus (i) in the following Proposition implies that Dy is the
essential image of the functor RI" (i.e., the full subcategory whose objects are the
complexes isomorphic to one of the form RIC); and (ii) says that RI" can be
thought of as being right-adjoint to the inclusion functor Dy (R) — D(R).

Proposition 3.5.4. (i) An R-complex C is in Dy(R) if and only if the natural
map +(C): RI'C — C is an isomorphism.
(ii) For all E € Dy(R) and F € D(R) the natural map «(F): RI'F — F

induces an isomorphism
HOHlD(R) (E, RF/F) = HOHlD(R) (E, F)

Proof. (i) “If” is clear since, as noted above, RI"C' € Dy(R).

As for “only if,” by Corollary those £ € Dgy(R) for which «(E) is an
isomorphism are the objects of a localizing subcategory L C Dy (R). Now [NmTl
p.- 528, Thm. 3.3] says that any localizing subcategory L'’ C D(R) is completely
determined by the set of prime R-ideals p such that the fraction field x, of R/p is
in L. As kp € Dy(R) < k) is U-torsion < p is open, it follows that L = Dg(R) if
only ¢(k,) is an isomorphism for any such p, which in fact it is because x, admits a
quasi-isomorphism into a bounded-below complex of U-torsion R-injective modules,
as follows easily from the fact that if an Y-torsion module M is contained in an
injective R-module J then M is contained in the $-torsion injective module I"J.

(ii) In view of (i), the assertion results from Proposition BR3(ii). O
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To generalize the results of §83—details left to the reader—one can use the next
Proposition (cf. Brown representability [Nm2, p. 223, Thm.4.1].)
Proposition 3.5.5. Let T': K(R) — K(R) be a A-functor, with right-derived func-
tor RT': D(R) — D(R). Then the following conditions are equivalent.

(i) RT' commutes with direct sums, i.e., for any small family (Ey) in D(R), the
natural map is an isomorphism

Do RTE, =5 RI'(®y Fao).

(ii) For any E € D(R) the natural map @3Ih) is an isomorphism
E@RI'R = RI'E.

(iii) RT has a right adjoint.

Proof. One verifies that the map ([Z30h) respects triangles and direct sums. Hence
if (i) holds then the E for which (ii) holds are the objects of a localizing subcategory
E C D(R). Since R € E (easy check), therefore by [Nm2, p.222, Lemma 3.2],
E = D(R). Thus (i) = (ii).

Derived adjoint associativity ((Z3)), with ¢ the identity map of R) gives a
bifunctorial isomorphism, for E, F' € D(R),

Homp(g)(E ® RT'R, F) -~ Homp(g)(E, RHom®(RI'R, F)).
Hence (ii) = (iil); and the implication (iii) = (i) is straightforward. O

We conclude this appendix with a remarkably simple characterization of derived
local cohomology (Proposition B27), of which a more general form—for noetherian
separated schemes—can be found in [Soul §4.3].

Definition 3.5.6. An R-colocalizing pair is a pair (I',¢) with I' a A-functor from
D(R) to D(R) respecting direct sums and ¢: I' — 1 a A-functorial isomorphism
(Def.[LZ3) which is “symmetrically idempotent,” i.e., the two maps I't and ¢(I")
are equal isomorphisms from I'l' to I' =TI'1 = 1T".

For example, if ¢ : RI{{ — 1 is the natural map, then (RI{, ¢,) is a colocalizing
pair (see Corollary and Proposition BA3(1)).
This is essentially the only example:

Proposition 3.5.7. Every R-colocalizing pair (I';t) is canonically isomorphic to
one of the form (RI], ty) for exactly one topology $% = Ur. More precisely,
¢ factors (uniquely, by Proposition BXA(ii)) as ¢yir where ip: I' = RI{ is
a A-functorial isomorphism.

Remarks. The set of topologies on R is ordered by inclusion, so may be regarded
as a category in which Hom (4, 20) has one member if { C U and is empty otherwise.
The colocalizing pairs form a category too, a morphism (I',¢) — (I'',¢') being a
functorial map v : I' — I" such that ¢+ = +. Proposition B2 can be amplified
slightly to state that the functor taking 4 to (RI, ¢, ) is an equivalence of categories.

It follows from Propositions B257 and B0 that by associating to a colocalizing
pair (I',¢) the pair (I'(R), t(R)) one gets another equivalence of categories, between
colocalizing pairs and pairs (A,¢) with A € D(R) and ¢: A — R a D(R)-map such
that 1®¢ and ¢ ® 1 are equal isomorphisms from A® A to A. The quasi-inverse
association takes (A,¢) to the functor I'(—):= — ® A together with the functorial
map ¢t:=1®¢.
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Proof of Proposition B2 There is at most one 4, since a prime R-ideal p is
Y-open iff with I, the R-injective hull of the fraction field x, of R/p, RI{I, # 0.

Let us first construct Up. Since I' is a A-functor commuting with direct sums
and ¢ is A-functorial, therefore the complexes F for which I'E = 0 are the objects
of a localizing subcategory Lo C D(R) and the complexes F' for which ¢(F') is an
isomorphism are the objects of a localizing subcategory Ly C D(R).

If 'k, # 0 then t(kp) # 0, since I'i(kp): I'l'kp, — I'k, is an isomorphism; and
so the natural commutative diagram, with bottom row the identity map of xp,

Ity =Tk, @ R —— TI'k, @ Ky

Lm)l Mﬁp)@l

Kp =hkp @R ——— Kp@hp —— Kp @Ky = Ky,
shows that I'k, ® k), # 0. Idempotence of ¢ gives that I'x, € Li, whence, as in
the proof of [NmTl, p.528, (1)] (with X = I'kp), kp € Li. But &, € Ly (resp. Lo)
implies the same for I, ([NmIl p.526, Lemma 2.9]). So we have

(%) [Ikp #0] = [kp €] = [, € h] = [I'], #0] = [I'k, #0].

If p C p’ are prime ideals and I'T, # 0 (so that I, € Ly), the natural surjection
R/p — R/p’ extends to a non-zero map v: I, — I, and the commutative diagram

ri, . ri,

wmlz lwlm

I, —— Iy

shows that I'T,y # 0. Thus those p satisfying the equivalent conditions in (x) are
the open prime ideals for a topology 4 = iy on R.

Now, keeping in mind that every injective R-module is a direct sum of I,’s, one
sees that for any injective complex E, the I,’s appearing as direct summands (in
any degree) of the injective complex I{E correspond to open p’s—so that by [NmTl,
p.527, Lemma 2.10], I[E € Ly; and that the I,’s appearing as direct summands
of E/I{E correspond to non-open p’s, i.e., p’s such that x, € Lo—so that by loc. cit.
again, E/IJE € Lg. From this follows that the maps ¢(I{F): I'l[JE — I{E and
I'uy(E): T'IJE — I'E are both isomorphisms.

Thus ¢(F) factors in D(R) as I'E 'L(LES IEIEZ‘(_’E) E, with i(FE) functorial to the
extent that if v: E — F' is a homomorphism of iﬁjective g-injective complexes then
the following D(R)-diagram commutes:

't —— I[[E=RIJE —— E
i(E)

nl el |
I'F —— [F=RIJF —— F
i(F)
(For the right square and for the outer border, commutativity is clear; and then

Proposition BERAI(ii) gives it for the left square.) One finds then that the g-injective
resolutions ¢o: C — E¢ of Y2 give rise to the desired A-functorial isomorphism

ir(C): IC o I'Ec 5= IjEc =RIC  (C€D(R)). O
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4. GREENLEES-MAY DUALITY; APPLICATIONS

This section revolves about a far-reaching generalization of local dual-
ity, first formulated in the 1970s by Strebel [Sti, pp. 94-95, 5.9] and Matlis
IMt2), p. 89, Thm. 20] for ideals generated by regular sequences, then proved
for arbitrary ideals in noetherian rings—and somewhat more generally than
that—by Greenlees and May in 1992 [GMI]. While we approach this topic
from the point of view of commutative algebra and its geometric global-
izations, it should be noted that Greenlees and May came to it motivated
primarily by topological applications, see [GM?2].

The main result globalizes (nontrivially) to formal schemes [DGM], where
it is important for the duality theory for complexes with coherent homology.
Brief mention of such applications is made in Sections B4l and below.

Here we confine ourselves to the case of a noetherian commutative ring R
and an ideal I C R, to which as before we associate I}, the I-power-torsion
subfunctor of the identity functor on R-modules M, such that

;M = lim Hompg(R/I°, M).
s>0
Dually, the I-completion functor is such that
A[M = (hﬂ (M R (R/IS))
s>0
These functors extend to A-functors from K(R) to itself. With 1 the identity
functor, there are natural A-functorial maps I} — 1 — Aj.

The basic result is that A; has a left-derived functor (§21I) which is natu-
rally right-adjoint to the local cohomology functor RI;. In brief: left-derived
completion is canonically right-adjoint to right-derived power-torsion.

We know from Prop.230] (with S = R and ¢ the identity map) that
RI; has the right adjoint RHom% (RI} R, —), which Greenlees and May call
the “local homology” functor. So local homology = left-derived completion.

Throughout §4, Hom® (resp. ®) with no subscript means Hom$ (resp. ®g).
Theorem 4.1. With Q:K(R) — D(R) as usual, there exists a unique A-
functorial map

C(F): RHom®*(RL}R,QF) — QA;F  (F € K(R))
such that
(i) the pair (RHom®*(RI}R,—), () is a left-derived functor of Aj, and
(ii) for any R-complex F the D(R)-composition

p(F)
via RI;—1

¢(F)

F =Hom*(R, F) RHom®*(RIG R, F) —= ArF

s the canonical completion map F — ArF.
Moreover, ((F) is an isomorphism whenever F' is a q-flat complex.

For a complete proof—which plays no role elsewhere in these lectures—
see [ALJL]. (The generalization to formal schemes is in [DGM].) The mildly
curious reader can find a few brief indications at the end of this subsection.
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Duality statements in which inverse limits play some role are often con-
sequences of the following Corollary of Thm.EJl Two such consequences,
Local Duality and Affine Duality, are discussed in succeeding subsections.
(For more, see [A.LL §5].)

We write D for D(R) and let D, C D be the full subcategory whose
objects are those R-complexes all of whose homology modules are finitely
generated. (Here “c” signifies “coherent.”) The I-adic completion R of R
being R-flat, we can identify the derived tensor product F' ® R (§Z10) with
the ordinary tensor product F ® R.

Corollary 4.1.1. (i) There exists a unique functorial map

0(F): F® R — RHom*(RIJR,F) = RHom®*(RI;R,RI}F) (FeD)

whose composition with the natural map x(F): RHom®*(R,F) = F — FQR
is the map p(F') induced by the natural map RI;R — R.
(ii) If F € D, then 0(F) is an isomorphism.

Proof. (i) Extension of scalars gives a functorial R-map #(F): FQ R — A;F
such that #(F)k(F) is the completion map Ap: F — A;F. Since R is R-
flat, the functor __ ® R takes quasi-isomorphisms to quasi-isomorpisms, so
by Theorem EI)i) and the definition of left-derived functors there exists a
unique functorial map 6(F): F ® R — RHom®(RI}R, F) such that in D,
R(F) = C((F)0(F). Then
C(EVO(F)R(F) = R(E)R(F) = Ap_= C(F)p(F),
B Thii)
and therefore—by the definition of left-derived functors—6(F)x(F) = p(F).
For uniqueness, note that «(F') induces an isomorphism

RIJR® F ~ RI;R@ (F® R).

(apply the isomorphism ¢ (R, —) of Cor.B3l and then use Cor.BZH or just
combine the remarks preceding it with Prop.BI2), whence the top row of
the following commutative diagram must be an isomorphism:

Homp(F ® R, RHom®*(RI}R, F)) 2%, Homp(F, RHom®*(RI}R, F))
3 |~ ~|ez3
Homp((F ® R) @ RT)R,F) ——  Homp(F @ RI}R, F)

(ii) To show that §(F') is an isomorphism whenever F' € D., use the
fact (nontrivial, cf. [AJT) Lemma (4.3)]) that the functor RHom®(RI} R, —)
is bounded to get a reduction to the case where F' is a single finite-rank
free R-module [Hall, p.68, Prop.7.1]. In this case #(F) = ((F)0(F) is an
isomorphism, whence, by the last statement in Theorem ET], so is 6(F). O
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Here is an outline of the proof of Theorem Il For details, see [A.JTL §4].

Uniqueness of . Set AjF:= RHom®*(RI}R, F). If (': A;Q — QAj is such that
(A1,{’) is a left-derived functor of Ay then by definition (§21I) there is a functorial
map ¥: Ay — Ay inducing J5: A;Q — A;Q such that ("J, = ¢; and if ¢ also
satisfies (ii), so that ('p = (p = ("Ugp, then p = Jgyp. But p(F): F — A[F induces
a bijection from Homp (A F,A;F) to Homp (F, A F). (This, and other relations
involving RI; and Ay, all following formally from adjointness and from “idempo-
tence” of R}, are given in [DES, §6.3].) Thus 9, = identity and ¢" = (.

As for the existence of (, one first establishes that A; has a left-derived functor
LA; such that for any R-complex C, with g-flat resolution Fo — C as in §Z11

LA;(C) = A (Fo).

This is given by [Hall p.53, Thm.5.1], for if F' is g-flat and exact then so is A;(F),
the lim of the surjective system of exact complexes F' @ (R/I°), see [EG3, p. 66,
(13.2.3)]. (If F; — R/I® is a g-flat resolution then F ® F; is quasi-isomorphic to
F ® R/I® and exact.)

Now we may assume that F is g-flat. With R — G an injective resolution (so
that in D, F @ G = F) and s > 0, the natural map

(F® R/I*) @ Hom*(R/I®, G) ¥ F ® (R/I°* ® Hom*(R/I°, G)) - F® G
corresponds under Hom-® adjunction to a functorial map
F® R/I° — Hom®*(Hom*(R/I°,G), F ® G).
So there is a natural composition, call it :

LA(F = AfF =lim (F @ R/I%)

s>0

— lim Hom®(Hom*(R/I*,G), F ® G)

s>0

= Hom®(lim Hom®*(R/I%,G), F ® G)
s>0

~ Hom*(I;G, F ® G)
= RHom*(I;G, F ® G) = RHom* (RI;G, F).

The essential problem is to show that ®(F') is an isomorphism.

The next step is to apply “way-out” reasoning (a kind of induction, [Hall p. 69,
(iii)]) to reduce the problem to where F is a single flat R-module. A nontrivial
prerequisite is boundedness (cf. BLA) of the functors LA; and RHom®(RI;G, —).

Then F' — F ® G is an injective resolution (so that ¢ is an isomorphism). With
t = (t1,...,tn) such that I = tR, one uses that IC(t) = lims~o of the ordinary
Koszul complexes K (t°) = K(t3,...,t5,) (defined by replacing R — R; in §81]
with R %5 R, the maps K(t*) — K(t’) (v > u) being derived from the maps of
complexes K (t*) — K (V) which are identity in degree 0 and multiplication by ¥~
in degree 1) to turn the basic problem into showing for all ¢ that the natural map
is an isomorphism
H'RHom*(RI;G, F) = H'limHom*(K (t%), F®G) = limH Hom® (K (t%), F®G).

=0 0
(This is used to show that a certain map ¥(t, F): RHom®(RI;G, F) — LA F de-
pending a priori on t is an isomorphism. One must also show that ® = W(t, F)~1)
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Treating such questions about the interchange of homology and inverse limits re-
quires some nontrivial “Mittag-Leffler conditions,” see [EG3| p. 66, (13.2.3)].

4.2. Application: local duality, again. In §4 Greenlees-May duality
was used to relate a form of classical local duality ZZZ) to “Trivial” lo-
cal duality [Z3.2)). More directly (and more generally), for £ € D(R) and
F € D.(R), and with R the I-adic completion of R, apply the functor
RHom®(E, —) to the isomorphism in Corollary EETT], and then use the iso-
morphisms [ZZ2) (with R = S, ¢ = identity) and (B3] to get a natural

isomorphism

RHom*(E, F® R) = RHom®*(RI}E, F) = RHom®(RI}E, RI}F).

4.3. Application: affine duality. For any R-complexes F' and G there is
a natural D(R)-map

o(F,G): F — RHom*(RHom*(F, G), G)
corresponding via (ZZ3)) to the natural composition
F @ RHom*(F,G) = RHom®(F,G) @ F - G

where 1 corresponds via [ZZ3)) to the identity map of RHom®(F, G), and
7 is the map (clearly an isomorphism) determined by the following property:
replacing F' by a g-flat resolution and G by a g-injective resolution, one can
change ® to ® and drop the R’s, and then for z € F' and ¢ € Hom’ (F,Q),
T(r ® ¢) = (—1)Y(¢ ® ). (Proving the existence of such a 7—by means,
e.g., of the general technique for constructing functorial maps in derived
categories given in [Lp3, Prop. (2.6.4)]—is left as an exercise.)

With ¢ = (¢, : F™ — G™"),cz, we have then

[0(F.G)(@)](¢) = (1) ¢i(z) € G™.

Let D be a bounded injective R-complex such that for any F' € D.(R),
o(F,D) is an isomorphism. For example, D could be a dualizing complex
([Hall, pp. 257-258]), which exists il R is a homomorphic image of a finite-
dimensional Gorenstein ring [Hall, p.299]. Define the I-dualizing functor D,
by

D;(F):= RHom*(F,RI}D) (F € D(R)).

The following result “double-dual=completion” is called Affine Duality.
([Ha2, p.152, Thm.4.2]; see also [DES, p.28, Prop.2.5.8] for a formal-
scheme-theoretic version).

Theorem 4.3.1. Let R be the I-adic completion of R. Then there is a
functorial isomorphism

F®R = D;D,F  (F € De(R))
whose composition with the natural map F — F Qg R is o(F,RI}D).

16and only if—[Kwk), Cor. 1.4].
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FEzample. When R is local with maximal ideal I and D is a normalized du-
alizing complex of R then RI} D is an R-injective hull of the residue field R/I
(see §ZA), and Theorem B3l is a well-known component of Matlis Duality
IBY, p. 194, Thm. 10.2.19(ii)].

Proof of Theorem EEZZTl. One checks (see below) that o(F, RI}D) is the
following natural composition:

F — F®r R =5 RHom®*(RI}R, F)
@)

—~ RHom®(RI;R, RHom*(RHom*®(F, D), D))

Vvia o

—~, RHom*(RI}R @ RHom*(F, D), D))
w )

(
(
(
—~, RHom®*(RLRHom*(F, D), D))
(i)
— RHom®(RI;RHom*(F, D), RI};D
=, Rifon* (R, ). RID)
(

—~, RHom*(RHom®(F,RI}D), RI}D)) = D,;D;F

via v

where v is the isomorphism given by:

Lemma 4.3.2. There is a unique map
v: RHom®(F,RI;D) — RIJRHom®(F, D)

whose composition with the natural map RIyYRHom®(F, D) — RHom®(F, D)
is the map induced by the natural map RI;D — D; and this v is an iso-
morphism.

Proof. By Prop.BT2 RI;D is D(R)-isomorphic to a complex K(t) ® D,
which is bounded and injective; and hence

(4.3.3) RHom*(F, RI}D) 2 Hom*(F, K(t) ® D) € D;(R),

as one sees by “way-out” reduction to the simple case where F' is a finite-
rank free R-module [Hall, pp. 73-74, Prop. 7.3]. Then Prop.BZZ ensures the
existence of v.

For v to be an isomorphism it suffices that for an arbitrary A € D;(R),
the image of v under application of the functor Hompg)(A, —) be an iso-
morphism. By [Z2Z3) and Prop.B22 this amounts to the natural map

HOHID(R) (A @ F, RFID) — HOHID(R) (A @ F, D)

being an isomorphism, so, by Prop.BZZ it suffices that A ® F' € D7(R), i.e.,
(Cor.BZT)) that the natural map RI;(A® F) - A® F be an 1som0rph1sm
which it is, by Cor.B3T], since RI; A A (Cor.BZT], again). O

The patient reader may apprehend more of the functorial flavor of our overall
approach by perusing the following details of the check mentioned at the outset of
the proof of Theorem EE3T1
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Consider the following natural diagram, in which D is the dualizing functor
RHom®(—, D) and the functorial map D; — D is induced by the canonical map
RI; — 1, as are the horizontal arrows preceding the right column, which along
with the top row is as in the sequence of maps near the beginning of the proof of

Theorem BTl
r - RHom*(R, F) — RHom*(RI}R, F)

: ! l

DDF — RHom*(R,PDF) —— RHom®(RI}R, DDF)

l l

(A)  RHom*(R® DF, D) — RHom*(RI;R @ DF, D)

I o]

DDF —— RHom*(DF,D) —— RHom®(RI}DF, D)
| © |
DD,F —— RHom*(D,F,D) «— RHom*(D,F,RI}D)

4

The unlabeled squares obviously commute. To verify commutativity of subdia-
gram (A) one checks (exercise) that the isomorphism ZZ2) for £ = S = R and
¢ = identity is naturally isomorphic to the identity map of RHom%(F, G). Com-
mutativity of (B) follows from Corollary B33 Commutativity of (C) follows from
Lemma FETA as one sees by drawing the arrow induced by v from the upper right
to the lower left corner. Thus the whole diagram commutes.

Since D, F € D(R) (see [E33), Proposition gives that the map p in the
diagram is an isomorphism. It remains only to show that the left column followed
by 07! is o(F, RI}D), and this is straightforward.

5. RESIDUES AND DUALITY

This section begins with a concrete interpretation of the duality func-
tor ¢f of Theorem EZZ2 for ¢ the inclusion of a noetherian commutative
ring R into a power-series ring S := R|[[t]] := R|[[t1,...,tn]|] and J the
ideal tS = (t1,...,tm)S. The resulting concrete versions of Local Dual-
ity lead to an introductory discussion of the residue map, its expression
through the fundamental class of a map of formal schemes, and hence to
canonical versions of, and relations between, local and global duality—at
least for smooth residually separable maps.

Henceforth we omit “p,” from the notation for derived functors when

the context makes the meaning clear. For example, for G € D(R) we write
RHom% (RIS, G) in place of RHom®% (¢RI} S, G), and G ®r w¢[m] in place
of G @r pewi|[m].
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5.1. The duality functor for power series rings. ¢: R — S = RJ[[t]]
and J = tS are as above. We first give some concrete representations of the
duality functor ¢%: D(R) — D(S) (see Theorem EZ37).

Using the definition of the stable Koszul S-complex K(t) (§81]), one finds
that

vy = HK(t) = coker[K™H(t) = O Sy, ity = Stitat = K™ (8)]

m

is a free R-module with basis {¢;™--- ¢, | ny > 0,...,ny, > 0}, and
an S-submodule of Sy t,..4,,/S. Since the sequence t is regular, K(t) is
exact except in degree m [EG3| p.83, (1.1.4)]. Hence by Propositions
and there are natural D(.S)-isomorphisms

(5.1.1) RIS = K(t) = wn[-m];

and so there is a functorial D(S)-isomorphism
(5.1.2)
©fG = RHomp (RIS, G) —= RHomp(ri[-m],G) (G € D(R)).

Since vy is R-free the functor Homp(v¢[—m], —) preserves exactness, and
so takes quasi-isomorphisms to quasi-isomorphisms (as quasi-isomorphisms
in K(R) are just those maps whose cones are exact), so that it may be
regarded as a functor from D(R) to D(S). Replacing G in (EI2) by a
quasi-isomorphic g-injective complex, we see then that the canonical map is
a functorial D(.S)-isomorphism

(5.1.3) Homp(v¢[—m|,G) =~ RHomp(1t[—m], G).
Thus we have a functorial D(S)-isomorphism
(5.1.4) ©fG == Homp([—m],G) (G € D(R)).
Here is another interpretation of ¢fG, for G € D¢(R) (i.e., the homology
modules of G are all finitely-generated). Set
(5.1.5) w = wf:= Homg (v, R),

a “relative canonical module.” This wy is a free rank-one S-module generated
by the R-homomorphism ~¢: vy — R such that

1 ifng=--=mny =1,

5.1.6 7MY =
( ) ’Yt(l m") {O otherwise.

That’s because the map (Zm>0 Tnl...nmt?l_l oo ttm= D)y takes ¢ - - -t
to Tny -
For any R-complex G there is a unique map of S-complexes

Xm(G): G ®g wt[m] — Homp (ve[—m|, G),
whose degree-n component x, satisfies

X (g @ w)(v) = w(v)g (g € G™™ w € wy, vE ).
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Since wy is S-flat, the functor ... ®p wy takes quasi-isomorphisms to quasi-
isomorphisms, so may be viewed as a functor from D(R) to D(.S), and then
Xm(G) is a functorial D(S)-map. “Way-out” reduction to the trivial case
where G is a finite-rank free R-module ([Hall p.68, 7.1(dualized)], with
A" C A:= M(R) the category of finitely-generated R-modules), shows that
for G € D.(R), x,,(G) is a D(S)-isomorphism.

In conclusion, for G € D¢(R) we can represent ¢fG concretely via the
functorial D(S)-isomorphisms

# — ° _ —~
(5.1.7) 0] G —— Homp(1[—m], G) —>Xm(G)’1 G QR wg[m).

5.2. Functors represented via relative canonical modules. We con-
tinue with a nontrivial instantiation of Trivial Local Duality Z32).
Set, as above, wy:= Homp (14, R), so that there is an “evaluation” map
ev: wy ®g vy — R.

Moreover, vy being R-free, if F' is a finitely-generated R-module then the
natural map is an isomorphism (see also above)

(5.2.1) Xo(F): F®pwy = F ®r Hompg (1, R) = Homp(, F).

The local cohomology functor H'}' on the category M(S) of S-modules
can be realized through the functorial S-isomorphism

(5.2.2) e(E): HJE = Foswy  (E e M(9)),
defined to be the composition

H7E = H"RI,E =5 H™(E @5 RI}S) =5 H™(E ®@su[—m]) = E ©g 1.

Via (BE2Z1]) and ([(2Z2), the natural isomorphism
Hompg(E ®@r n, F) =~ Homg(E, Hompg (1, F))

(see (ZZT))) gets transformed into the following down-to-earth duality, whose
substance comes then from Proposition and the structure of H™/C(t).
(Details are left to the reader.) Insofar as this duality involves a choice of
power-series variables t it lacks canonicity, a deficiency to be remedied in
Theorem

Proposition 5.2.3. For any finitely-generated R-module F there is a func-
torial isomorphism

Homp(HTE,F) = Homg(F,F ®p wt) (E € M(9))
which for E = F Qg wy takes the composite map

ne(F): HF (F @ wy) FQrwt@swvy —— F

o~
e, (F®Rr wt) 1®ev

to the identity map of F ®@prwy. In other words, the functor Homg(H7E, F)
of S-modules E is represented by the pair (F ®p wg, n¢(F)).
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Complement. By means of BZH and B-Z3] Proposition [ extends as follows
(exercise). Let T be an R-algebra, u:= (uy, ..., un) a sequence in T, I:= uT, T
the I-adic completion of T, and & = (41, .. um) the image of u in 7. T is an
S(= R[[t]])-algebra via the continuous R-homomorphlsm taking t; to 4; for all .
As above, set J:= tS, so that for any T-module E considered as a T-module and
S-module, respectively, H'"E = H'E.

Let ev’ HomS(T F ®R wt) — F ®p wy be the S-homomorphism “evaluation
at 1.” Then for any finitely-generated R-module F', the functor Homg(HE, F) of
T-modules E is represented by the pair (HomS(T, F ®@Rrwy), ne(F)oHT (ev')).

The next Proposition provides a canonical identification of the duality
isomorphism of Proposition with the one coming out of Theorem E23.2)
namely

Homp(H}'E, F) -~ Hompg)(E, ¢f F[—-m]).

Proposition 5.2.4. For any S-module E and any R-module F the following
sequence of natural isomorphisms composes to the map given by ([Z2ZJ)):

Homp(E ®g 1, F') ﬁ Homgz(HTE,F)

ﬁHomD(R RI;E, F[-m]) (see Cor.BIZ)

)(
ﬁ Homps)(E, ¢ F[-m])
o’ Hombgs) (B, Homp (ve[-m], F[-m]))
(

—— Hompg)(E, Homp (1, F))

ﬁ Homg(E, Hompg (1, F)).

Proof. The proof, left to the reader as an exercise in patience, is a matter of
reformulating the assertion as the commutativity of a certain diagram, which
can be verified by decomposing the maps involved into their elementary
constituents, as given by their definitions, thereby expanding the diagram in
question into a patchwork of simple diagrams all of whose commutativities
are obvious. d

5.3. Differentials, residues, canonical local duality. Let Q) s/r bean S-
module equipped with an R-derivation d: S — g /g such that (dty, ..., dtp)
is a free S-basis of QS/R Then for any u = (ul,ug,.A. s U such that
S = R[[u]], it holds that (dus,...,duy) is a free basis of Qg/p. This follows
e.g., from the fact that the pair (9 S/R,d) has a universal property which
characterizes it up to canonical isomorphism: for any finitely-generated S-
module M and R-derivation D: S — M there is a unique S-linear map
0: Qg — M such that D = dd. R

Let Q™ (m > 0) be the m-th exterior power of Qg/g, a free rank-one
S-module with basis dt1 Adts--- A dty,. Let ¢y : Om =~ wt be the isomor-
phism which takes dt; A dty - -+ A dt,, to the generator 44 of wy (see (LH)).
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Let res¢ be the composition

(5.3.1) H O™ Y% g, % R.
For any u as above, resy is similarly defined. Moreover, if 6 is a bicontinuous
R-automorphism of S (t-adically topologized) and u = 0t, then H{y = Hg
(see remark following Corollary BiZH]).
Proposition 5.3.2. The R-linear map resy: %Qm — R depends only
on the R-algebra S = R[[t]] and its t-adic topology: if a bicontinuous R-
automorphism of S takes t to u (so that S = R[[u]], the t-adic and u-adic
topologies on S coincide, and Hig = H7g) then resy = resy.

The proof of this key fact will be discussed below.

In summary, there is given a complete topological R-algebra S having an
ideal J such that:

(i) The topology on S is the J-adic topology, and

(ii) J generated by an S-regular sequence t = (t1,...,t,,), and

(iii) the natural map is an isomorphism R - S/J.
It follows that the continuous R-algebra homomorphism from the power-
series ring R[[T1, ..., T),]] to S taking T; to ¢; (1 <14 < m) is an isomorphism.
Then the S-module Q™ and the local cohomology functor H'}' depend only
on the R-algebra S and its topology, as does the R-linear residue map

resgp = resg: H7QO™ — R.

This being so, and by the definition (B3l) of resy, Cor.BZ3] gives the
following canonical version of local duality for power-series algebras:
Theorem 5.3.3. In the preceding situation, the functor Hompgr(H}'E, R) of
S-modules E is represented by the pair (2™, reSS/R).

Remark. Again, J = tS. Recall that the stable Koszul S-complex K(t) is the di-
rect limit of ordinary Koszul complexes K (t]*, ..., ) (cf. paragraph immediately
preceding §L2). So we can specify any element of

grom B2 lim HK (£, ¢, Q™)

'Y m

by a symbol (non-unique) of the form

14
|:tn1 tnm:| = Rng,oonmTng,.oonm YV
19yl

for suitable v € Q™ and positive integers ny, ..., n,;,, with 7 and x the natural maps
oy e Q™ = K™, e Q) — HPE (87 . e, QM)
5.3.4 . R
Bngooooman s HPEK (7Y . 0, Q™) — HTQ™.

Then, recalling that ¢¢v € wy = Hompg (14, R) and that ¢;™ --- ¢t "™ € vy, we get

14 — —
reSs/R {tnl t"m] = (per) (7™ -+ t,"m).
1 s-++2m
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In particular, since ¢¢dt; - - - dt,,, = v, we have

dty---dt,, 1 ifng=---=n, =1,
5.3.5 res n no | =
( ) S/’ [tll, e 1t'an:| {O otherwise.

When m =1, H}Ql is the cokernel of the canonical map Q! — Q;} (localization
w.r.t. the powers of ¢ := t;), and [}] = m(dt/t") with 7: Q} — HLQ' the nat-
ural map. Then (E3H) yields the formula YeS i)/ R T((Xeg rit)dt/t") = 11,
which has an obvious relation to the classical formula for residues of one-variable
meromorphic functions.

Ezercise. (i) Using Prop.BIL2 or otherwise, establish for R-modules F' and S-
modules G a bifunctorial isomorphism

E(F,G): Fop B} (G) = HY(F@n G)
such that, with notation as in Proposition B2,
Et(F Rr wt)O§(F,wt) =1Q®g st(wt): F®r Hf,”(wt) — F®pws ®g 14.

(ii) Show that for any finitely-generated R-module ', the functor Hompg(H' E, F?)
of S-modules E is represented by the pair (F @ Q™, (1 ® resS/R) o&(F,Qam~1)).

Next, let ¢: R — S be any flat (hence injective) local homomorphism of
complete noetherian local rings with respective maximal ideals m and 90,
such that S/mS is a Cohen-Macaulay local ring with residue field S/91 finite
over R/m. Then any sequence t:= (t1,...,t,,) in S whose image in S/mS
is a system of parameters is S-regular, and P:= S/tS is a finitely-generated
projective R-module. (See [EG4, p.18, Prop.(15.1.16)]) and [ZS, p.259,
Cor.2].) After ¢(R) isidentified with R, it follows that the R-homomorphism
from the formal power-series ring R[[T1,...,T,,]] to S taking T; to t; is an
isomorphism onto RI[[t]] C S, and that S is R[[t]]-module-isomorphic to
P& R[t] (see L2, §3)). A

To such a ¢ there is associated a finitely-generated S-module 2, together
with an R-derivation d: S — €, which has the universal property that for
any finitely-generated S-module M, composition with d maps Homg(2,, M)
bijectively onto the S-module of R-derivations from S into M (see [SS, §1]).
There is also a trace map

see [Knz, §16], [Hil, §4]. The definition of this map is somewhat subtle.
However, in the special case when 9t = mS + tS and in addition S/9 is a
finite separable field extension of R/m (so that S is formally smooth over R
[EG4, p.102, (19.6.4) and p. 104, (19.7.1)]), and P is a finite flat unramified
(= étale) R—algebra, it follows e.g., from [EG4, p. 148, (20.7.6)] that

(5.3.6) Qp = S gyt Lrfe/r = P Or Lo/

a free S-module with basis (dt1, ..., dt,,). (In other words every R-derivation
of R[[t]] into a finitely-generated S-module extends uniquely to S.)
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So QZL = P®p Q%{[t]] /R and correspondingly 7 becomes the map induced
by the usual trace map tr: P — R.
Now define Resy: Hypf)! — R to be the composite map

mA&m nhatural mAam m Am viaT m Am res
Hoplly' — HegQg @) er[ie) <o R :

E3D)
Proposition 5.3.2'. This map Rest does not depend on the choice of t.

Thus we have a residue map

Res,: HpQl' — R.

There are several approaches to the proofs of Propositions and (.3.21
For BE321 the most elementary one, brute-force calculation, is rather tedious
(cf. e.g., [Lpll pp. 64-67]), and not particularly illuminating,.

It is more satisfying first to find an a priori intrinsic definition of the
residue map, and then to show that it agrees with the above one. For ex-
ample, such a definition via Hochschild homology is the foundation of [Lp2].
(See [ibid., §4.7], or [Hiil, §7], for the connection between residues and traces.)

Another, richly-textured, intrinsic approach is undertaken in [HiiK]. In
fact Hiibl and Kunz prove Theorem in a more general situation, for
maps R — S factoring as R — R[[t1,...,tn]] L. § with f a finite generic
complete intersection. In such a situation, it is easy to generalize Corol-
lary BZ3, with the representing object wy replaced by Hom gy (S, wt); but
the trick is to find a canonical representing object, not depending on t.
For this Hiibl and Kunz use the module of “regular differential forms,” con-
structed via the theory of traces of differential forms.

For example, if ¢p: R — S as above makes S formally smooth and residu-
ally separable over R then the trace map tr: P — R gives rise, via (B3.0]), to
an R[[t]]-isomorphism QZL -~ Hom gy (S, Qg[[t” /g)- In the non-separable
case the same isomorphism obtains by means of the general trace map
for differential forms. There results a canonical local duality theorem for
formally smooth local algebras:

Theorem 5.3.3". If ¢: (R,m) — (S,M) is a formally smooth local homo-
morphism of complete noetherian local rings making S/9M finite over R/m,
and m := dim.S/mS, then the functor Homg(Hg,E, R) of S-modules E
is represented by (€2}, Res,,).

We will now outline yet another approach to residues, which is perhaps
the “least elementary,” but has the advantage of connecting immediately
with the global theory of duality on formal schemes [DES], through the
fundamental class of certain flat maps of formal schemes. There result
canonical realizations of, and relations between, local and global duality,
summarized by the Residue Theorem. The introductory discussion here will
be confined to smooth maps.
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5.4. Flat base change. Our definition of the fundamental class makes use
of a basic property of duality, having to do with its behavior under flat base
change, (Proposition [(.4.2).

Henceforth ring homomorphisms will be continuous maps between noe-
therian topological rings, mostly adic. That is, we work in the category of
pairs (R,I) with R a commutative noetherian ring and I an R-ideal such
that R is complete and separated with respect to the I-adic topology, mor-
phisms ¢: (R,I) — (S, J) being ring homomorphisms ¢: R — S such that
o(I) CV/J. (Pairs (R, I;) and (R, I) are considered identical if I; and I
define the same topology, i.e.,/I1 =v/Iz.) For such a ¢, we simply write ¢*
for the functor ¢} of Theorem 232, because it depends only on the J-adic
topology, which is a part of (the target of) .

Consider then a coproduct square in this category, i.e., a commutative
diagram of morphisms

(R, I) —2— (S,J)

3l |

U, L) —— (V, M)

such that the resulting map into V' from the complete tensor product S ©p U
(the completion of Vp:= S ®r U with respect to My:= LV, + JV}) is an
isomorphism, and where M := LV + JV.

(For simplicity we proceed as if V) were noetherian. Usually this is not so,
and a more complicated approach is needed, cf. [DFS| p. 76, Definition 7.3;
p. 86, Theorem 8.1].)

Let k: Vo — V, §: U — Vy, and v5: S — Vp be the natural maps, so
that £ = k€, and v = k1. Suppose pu, hence v, and v, to be flat. Then
the functor ...®pg U from R-modules to U-modules is exact, so takes quasi-
isomorphisms to quasi-isomorphisms, and consequently extends to a functor
p:D(R) — D(U) (cf. §84). Similarly we have vj: D(S) — D(1}) and
v = k*if: D(S) — D(V). For any A-functor I': K(R) — K(S), and
K(R)-quasi-isomorphism C' — E¢ with E¢ g-injective, there is an isomor-
phism yiRI'(C) = vjT'(E¢); hence yiRI': D(R) — D(1}) is a right-derived
functor of I'(—) @ r U : K(R) — K(Vp) (see gLH).

The base-change map (3: v p* — £**, that is, the functorial map
B(G): v*" RHomp (RIS, G) — RHomg (RI,V, u*G) (G € (D(R)),

is defined as follows.

First, as noted above, vyRHomp (RIS, —) is a right-derived functor of
Homp (RIS, —) ®g U; so by the characteristic universal property of right-
derived functors (§LH)), there exists a unique functorial map §'(G) making
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the following otherwise natural D(Vj)-diagram commute:

Hom$,(RI;S,G) ®p U —— Homy (RIS @r U, G @ U)

! |

vy RHomp (RIS, G) VN RHomg; (vgRIS, p*G);

and the natural composition

RFMQ‘/O — RPJVQ‘/O — VSRFJS

combines with 3'(G) to give a functorial map
50(G): v50*G = viRHomp (RIS, G) — RHom{ (RI, Vo, 1*G) = u'G.
Second, for any F' € D(Vp), we have a natural isomorphism

keRL K F = gk R, F.

Also, the natural map is an isomorphism RI,, F == k"R F: to ver-
ify this, since the functors k, and k* are both exact and isomorphism means
“homology isomorphism” (§L3l), we can replace RI,, F by its homology,
and then the assertion follows because the homology is My-power torsion
(see §3.20). The resulting composition k., RI)x*F == RI}, F — F is dual

to a map (see 232
(5.4.1) L(F): k*F — K*F.
Finally, 8(G) is defined to be the composite map

H*#*G—>/€##*G o #*G.
o (50(@) §om ) §om e | §u

v o*G = k' G

Let DT(R) (resp. D™ (R)) be the full subcategory of D(R) with objects
those complexes G whose homology H'G vanishes for i < 0 (resp. i >> 0).
The full subcategories D (R) and D; (R) of D.(R) are defined similarly. (As
before, D.(R) C D(R) is the full subcategory whose objects are complexes
having finitely-generated homology modules.)

Theorem 5.4.2 (Flat Base-Change). In the preceding situation, if S/J is
(via @) a finite R-module and G € DI (R) then B3(G) is an isomorphism.

Proof. (Outline.) The finiteness of S/J over R means that ¢ = p9p; where
¢1: R — R[[t]]:= R][t1,...,tn]] is the natural map of R into a power-series
ring, which is complete for the I’ := (I,t)R[[t]]-topology, and s : R][[t]] — S
is such that J = I'S, so that @9 makes S into a finite R[[t]]-module having
the I’-adic topology ([ZS, p.259, Cor.2]). A readily-established transitivity
property of the base-change map (§ then reduces the problem to the two

cases p = 1 and ¢ = 3.
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When ¢ = @1 then ¢ is the natural map U — UJ[t]], and so (BI7) reduces
the problem to identifying G(G) with the natural isomorphism (notation as
in (6T3))

(G ®r W) Dpie Ullt] = (G ®rU) ®y wf,
an exercise in unraveling definitions.

When ¢ = 9, i.e., S is a finite R-module and J = IS, then Vj = S®QRrU is
a finite U-module with L-adic topology, and so is complete, i.e., V = V. Now
Greenlees-May duality enters crucially to yield, via ([ZZ1]), an identification
of B(G) with the natural map

#(G): RHom},(S, G)@rU — RHom{; (V, GRrU) = RHom{; (S®rU, GRRU)

whose existence is shown similarly to that of 3 (see above). That 5°(G) is
an isomorphism for any G € DV (R) becomes clear upon replacement of S
by a (finite-rank) R-projective resolution P, in view of the simple fact that
the functor Homp (P, —) takes quasi-isomorphisms to quasi-isomorphisms, a
fact whose application to an injective resolution of G shows that

RHomp (S, G) = RHomp (P, G) = Homp (P, G),
and similarly (since U is R-flat)
RHomy (S ®r U, G ®@rU) = RHomp (P @r U, G@rU)
= Homp (P ®@rU, G @rU).
g

5.5. Residues via the fundamental class. Specialize now to a coproduct
square

(R,I) —2— (S.J)

g g
with ¢ flat, and S/J finite over R—so that Theorem is applicable. Let
§:V =2 S®rS — S be the continuous extension of the map S ®r S — S
taking s1 ® s9 to s1s9. Let k: S ®r S — V be the completion map, so that
v(s) =r(s®1) and {(s) = k(1®s) (s € §), and let L be the V-ideal (closed,

since V' is assumed noetherian) generated by all the elements v(s) —£(s).

For any f € V, f —&6f € L (check this first with V' replaced by its dense
subring k(S ®pr.S), then pass to the limit); and it follows that L is the kernel
of 4.

One shows then that the S-module Qso := L/L? together with the R-
derivation d: S — Qso such that d(s) = v(s) —&(s) (mod L?) for all s € S is
universal (cf. §63)) for R-derivations of S into finitely-generated S-modules.

1T fact the noetherianness of V follows from that of R and S plus the R-finiteness of
S/J |GD) p.414, (10.6.4)].
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Let m be the least non-negative integer such that H}S = HiRFJS = 0 for
all i > m (see Corollary B.T4l). Then
H "R = H'RHom%(RI;S,R) =0 (i >m).

Set Q" = QZL = Ag”Q@. The fundamental class of ¢ is a canonical S-
linear map

(5.5.2) for om — wy=H "p*R,

defined with the assistance of flat base-change, as follows.

Since 0§ = dv = 1g, we have, clearly, .0« = 1p(g); and with 6" as in
§3.4 there is a natural isomorphism §*v* = 1pg). There results a natural
D(V)-composition

5*5(52)§#§*RFM5*S([§>E)§#§*6*RFJS = ¢* RIS
ety 5#¢*R@”*¢#R’

to which application of §* gives a natural D(S)-map

56,8 — SV "R = o*R,
whence a natural map
(5.5.2) TorY,(S,S) = H"6*0,.S — H "¢ R = w,,.
Now with L = ker(d) as above, there is a natural isomorphism

Q, = L/L* = Tor} (S, 9).
Moreover, EBZ-ZOTorZV (S, S) has a canonical alternating graded-algebra struc-
ture (for which the product arises from the natural maps
H'(S @y §) @v (S @vS) — HH((S@vs) ev (S evs)) - HH (S ey s)

where p is induced by two copies of the composition of the natural maps
S®yS — S®y S — S). The universal property of exterior algebras gives
then a canonical map

(5.5.3) Q™ — TorY (8, 5).
The fundamental class f,: Qm — w,, is the composition of (A2) and (E23).

We can now define the R-linear formal residue map py: HTQm — R to
be the canonical composition (where the unlabeled map comes from a dual
form of Proposition [L33)):

pp: HTO™ = HORI, Q™ [m)] o HRIjw,[m] — H'RI;¢*R — H°R = R.

The local Residue Theorem states that under the conditions considered
in §83 the formal residue map is the same as the residue maps defined there.

As the formal residue depends only on ¢, Theorems and B33 result.
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A complete proof of the local Residue Theorem will appear elsewhere.
For the case when S = R[[t]] is a power-series R-algebra all the necessary
definitions have been spelled out, so no further new ideas are needed, just
painstaking work.

For example, for connecting the “abstract” formal residue p, with the
“concrete” residue resg, one needs commutativity of the diagram

HORT wefm] 22, HORT,HomS3, (s [—m], R) = HORI,o*R
e | | ez
Wt ®S Vg R,

evaluation
which can be seen by detailed consideration of Proposition B2ZA with F = wy
and F' = R.

A full treatment involves more about the relation between fundamental
classes and traces of differential forms. Consider, for example, a pair of
continuous maps

R S=R[t] LT
with ¢ the canonical map, and T a finite R[[t]]-module (via v). From (ZZTI)
we find that the integer m used to define fy, is the same as that used
for f, (namely, the number of variables in t). There is then, by the above-
mentioned dual form of Proposition [[33] a natural map

wye=H (W) R — (Yp)*R £z V" R;
and as part of the proof of the local Residue Theorem one needs:

Theorem 5.5.4. The fundamental class f, is the composite isomorphism

Q7 5wy = H™G*R =: w,.
Y4 EID ’
So there is a unique S-linear map T making the following D(S)-diagram

commute: o
. Fu
(I ZL@ - Yaypy — %W@”R[—m]
| 2 | ez
9 —— we ——  ¢Rl-m];
and this T coincides with the trace map for differential forms.

5.6. Global duality; the Residue Theorem. This culminating section
introduces the connections between residues and global duality theory on
noetherian formal schemes. A key advantage of working in the category of
formal schemes—rather than its subcategory of ordinary schemes—is that
local and global duality then become two aspects of a single theory.

We first set up some notation and briefly review necessary background ma-
terial. (The prerequisite basics on formal schemes are in [GD, Chap.I, §10].)
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Let X = (|X|,Ox) be a noetherian formal scheme, with ideal of defini-
tion J. (]X| is a topological space and O is a sheaf of topological rings.)
Let A(X) be the abelian category of Oy-modules, and D(X) the derived
category of A(X). Let Dy (X) C D(X) (resp. D¢(X) € D(X)) be the full
subcategory with objects those A(X)-complexes whose homology sheaves
are quasi-coherent (resp. coherent), i.e., locally cokernels of maps of free
(resp. free, finite-rank) Ox-modules. In D (X) the homologically bounded-
below complexes—those £ whose homology sheaves H'E vanish for i < 0—
are the objects of a full subcategory denoted by D (X).

The torsion subfunctor I3 of the identity functor on A(X) is given by

INE = lim Hom%(Ox/3°, ) (€ € AX)).
s>0
I3 depends only on X, not J. It has a derived functor RIy.: D(X) — D(X),
which satisfies RIZDgc(X) C Dy (X) [DES, p. 49, Prop. 5.2.1(b)].

To any noetherian adic ring R—i.e., R is a complete noetherian topolog-
ical ring with topology defined by the powers of some ideal I—is associated
an affine formal scheme Spf(R), whose underlying space is the same as that
of the ordinary scheme Spec(R/I). Any noetherian formal scheme X has
a finite open covering by affine formal schemes, with structure sheaves ob-
tained by restricting Ox. Continuous maps ¢: R — S of noetherian adic
rings correspond bijectively to formal-scheme maps @: Spf(S) — Spf(R);
and any map f: X — Y of noetherian formal schemes is locally of this
form. The direct image functor f.: A(X) — A(Y) has a right-derived func-
tor Rf.: D(X) — D(Y); and the inverse image functor f*: A(Y) — A(X)
has a left-derived functor Lf*: D(Y) — D(X).

For any such f: X — Y, there are ideals of definition J C Oy and J C Ox
such that IOy C g [GD), p. 416,(10.6.10)]; and correspondingly there is a map
of ordinary schemes fo: (|X|,Ox/d) — (|Y], Oy/9) [GD), p. 410, (10.5.6)]. We
say f is separated (resp. pseudo-proper) if fy is separated (resp. proper), a
condition independent of the choice of (J,J). For example, a map ¢ as above
is pseudo-proper iff S/J is, via ¢, a finite R-module for some (hence any)
S-ideal .J defining the topology of S. We say f is proper if f is pseudo-proper
and for some (hence any) J, JOx is an ideal of definition of X.

We say f is flat if it is locally ¢ for some ¢ as above making S a flat
R-module. For flat f the functor f*: A(Y) — A(X) is ezxact (see [DES,
p. 72, Lemma 7.1.1]), so may be thought of as a functor from D(Y) to D(X),
naturally isomorphic to L f*.

One has then the following globalizations of Local Duality (Theorem EZ32)
and Flat Base-Change (Theorem BEZZ). (Despite the obvious formal sim-
ilarities, however, fully elucidating the connection between the global and
local versions requires more than a little work.) We note in passing that for
proper maps Greenlees-May duality plays a basic role in the proofs.
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Theorem 5.6.1 ([DES, p.64, Cor.6.1.4; p.89, Thm.8.4]). If f: X — Y is
a separated map of noetherian formal schemes then the functor

RALRIY: RIE T (Dye(X)) — D(Y)
has a right adjoint f*. Moreover, if f is proper (hence separated) then
this f* induces a right adjoint for Rf.: DS (X) — DX (Y).

Theorem 5.6.2 ([DES, p. 89, Cor.8.3.3]). Let there be given a commutative
diagram of noetherian formal schemes

v 2 X

ol
U — Y
with the induced map V — U xy X an isomorphism, f (hence g) pseudo-

proper (hence separated), and w (hence v) flat (see [DES, p. 71, Prop. 7.1]).
Then there exists a functorial base-change isomorphism

B(F): v*f*F = g*u*F (FeDfY)).

The fundamental class fr of any flat pseudo-proper map f can now be
defined, as follows: with respect to the diagram

X —2 s Ay —s X

T

X — Y

f

where ¢ is the diagonal map and 7, 72 the canonical projections (so that
m16 = 1y and 790 = 1x), there is a sequence of natural D(X)-maps

0,0x — WgRWQ*RF:)ény(S*Ox — ThRm.0,Ox
- Oy = ng*Oy(éﬁ)ﬂ'Tf#Oy,

to which application of the left-derived functor Ldé* produces
fr: L0*0,0x — Lo*n] f*Oy = f*Oy.

Let £ be the kernel of the canonical map Oxg,x — 0+Ox, and let Qf
be the coherent Ox-module 6*L, i.e., after identification of §|X| with |X|,
Qr = (L£/ £?)]x- This Q is closely related to the universal finite differential
modules Qso of 8.0 thus: if f looks locally like ¢ with ¢: R — S as above,
then T'(Spf(S), Qf) = Q.

As in §5.H1 fy determines for each integer m a map

freQp — H o f*Oy.
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When ¢ is the inclusion of R into a power-series ring R[[t]] (t:= (¢t1,...,tmn))
and f = @, one shows (with some effort) that modulo the standard corre-
spondence between modules and sheaves, f}” agrees with the fundamental
class defined in §5.01 More generally, global fundamental classes “restrict”
to local ones, as we shall now illustrate—without proof—for formally smooth
pseudo-proper maps of relative dimension m.

For a pseudo-proper map f to have these properties means that for any
closed point y € f(X) and any closed point # € f~1y, the corresponding map
of completed local rings (’jy,y —R% §:= (’jxx is formally smooth and if m
is the maximal ideal of R then the local ring S/mS has dimension m. For
simplicity, one may assume in what follows that, furthermore, .S is residually
separable over R.

For any such z, y, there is a natural commutative diagram

Spf(S) —fr X

(5.6.3) 5| |7
Spf(R) ——— Y

The maps k; and s, are flat, and both ¢ and g:= k¢ = fk, are pseudo-
proper. As the topological space [Spf(R)| consists of the single point m, the
category A(Spf(R)) can be identified with the category of R-modules, and in
particular Ogpe(r) = R. It is similar for Spf(5). One verifies that ¢ = ot
and that £3Q; = Q,—so that Q is locally free of rank m (see (3H)).

It is a consequence of Greenlees-May duality that for any F € D.(X), the
map in (BT is an isomorphism

U(F): kiF =5 KEF,
and similarly for x,. Thus (and cf. (Z33])) there are natural isomorphisms
(5.6.4) O*'R = 0%k Oy = §*kl Oy = g* Oy = K} f*Oy = K} f*Oy.
So, Kk} being exact, we have for each closed x € X the map
O =z S oy = o POy = B (R),
p — Ngef z 9= "i:cf 9= ¥ ( )7
The assertion relating global to local fundamental classes is:

Lemma 5.6.5. The preceding composite map is f, (see (BLZ)).

From this we see, first, that f}”: Q}”’ — H ™ f*Oy is an isomorphism.
Indeed, Lemma localizes the problem to showing that f, is an iso-
morphism (since then the kernel and cokernel of ff* would each have at
every closed point a stalk whose completion vanishes, and hence they would
both vanish). When ¢ = ¢4 is the inclusion of R into a power-series
ring R[[t]] (t:= (t1,...,tm)), the local assertion is given by the first part
of Theorem BBl In the general case write ¢ = Yy with ¢: R[[t]] — S
étale (see remarks preceding (B30)), and use the following diagram, whose
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top row comes from the trace (remarks preceding Theorem BE.3.31), whose
bottom row comes from (ZZJ]) applied to v, and which, as a corollary of
Theorem B2.4l, commutes:

QZL% —_ HOIIlRHt”(S, Qg:’:)

fo l ~ l via f‘Pt

H™"p*of R —— Homp (S, H " ¢¥R)
Second, note that there is a natural isomorphism
(5.6.6) (H™™f*Oy)[m] = f*Oy

resulting via Proposition from the vanishing of H’ f*Oy for all j # —m:
since k7 is exact for all z, the isomorphisms (6.4]) reduce verification of this
vanishing to the corresponding vanishing for ¢*R, which holds by (BI7)
when S is a power-series R-algebra, and then follows via (Z4.1]) in the general
case when S is an étale extension of a power-series algebra (see remarks
preceding (B36)). Using (BI7) one shows the same true with any coherent
Oy-module G in place of Oy.
So we have the D(X)-isomorphisms
Q' [m] g (H™™ f*Oy)lm] = f*Oy.
i

Hence, by Thm.E6.T], Q}” represents the functor Hompy) (R ARIYE[M], Oy)
of quasi-coherent Oy-modules £; and when f is proper, Q}” represents the
functor Hompy) (R £ F[m], Oy) of coherent Ox-modules F.

For such F, there is an n such that R/f,F:= H'Rf,F =0 for all j > n
IDES| p.39, Prop. 3.4.3(b)]. Then with G the Oy-module H"R f.F, which
is coherent [DES) p. 40, Prop. 3.5.2)], there are isomorphisms

Homp ) (F, f#g[—n])E:%:_ﬂHomD(y)(Rﬁf, g[—n])HomOy(g7g)-
But as noted above, Hif*G[-n] = HI7"f*G = 0 if j —n < —m, ie., if
j < n —m; and hence if n > m then Homp, (G,G) = 0, i.e.,, G = 0. We
conclude that RIf.F = 0 for all j > m, and therefore, by Proposition 233,

(5.6.7) Hompy) (RAF[m], Oy) = Home, (R™£.F, Oy).
In summary:

Theorem 5.6.8. Let f: X — Y be a formally smooth pseudo-proper map of
noetherian formal schemes, of relative dimension m. Then Q}” represents
the functor Homp ) (RARIYE[M], Oy) of quasi-coherent Ox-modules E. If
this f 1is proper, then Q}” represents the functor Homo, (R™f.F, Oy) of
coherent Ox-modules F.
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To complete the discussion, we review how the map R f,RI; Déﬂ}” [m] — Oy
(resp., when f is proper, the map R™f, Q}” — Oy) implicit in the proof of
Theorem is uniquely determined by residues. We need only look at
the first of these maps, since in the proper case, they correspond under the
composite isomorphism

Hompy) (RERIFQT[m], Oy) (E%) Homp ) (QF [m], f*Oy)
(E%m) Homp,y) (R£QF [m], Oy)
— Homp, (R"£}", Oy).

That first map corresponds by duality to the fundamental class
s Qm] — FFOy = (H ™ f*0y)[ml,
fr: Q[m] — f*Oy o8 (H™™ f*Oy)[m]

and so is determined by f;": Qf — H™™ f*Oy, which is in turn uniquely de-

termined by its completions /7 f" at all closed points z; and Lemma

implies that £7f" is dual to the formal residue map p,,: HipQ07 — R of §5.51
ook

The foregoing provides for formally smooth pseudo-proper maps a canon-
ical version of abstractly defined (by Theorem Bl but only up to isomor-
phism!) global duality, a version which pastes together all the canonical local
dualities—via residues—associated to closed points of X.

When Y is a perfect field and X is an ordinary variety, not necessar-
ily smooth, this is essentially the principal result in [Lpl], Theorem (0.6)
on p.24. (See loc. cit.,§11 for the smooth case, and for a deduction via
traces of differential forms of the main theorem.) A more general relative
version, Theorem (10.2), involving a formal completion, starts there on p. 87.
Another generalization, to certain maps of noetherian schemes, is given by
Hiibl and Sastry in [HiiS, p. 752, (iii) and p. 785(iii)].

These results should all turn out to be special cases of one Residue The-
orem for arbitrary pseudo-proper maps of noetherian formal schemes, for
which the constructions sketched in this section provide a foundation. (Work
in progress at the time of this writing.)
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