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Abstract. We study functors underlying derived Hochschild cohomology,
also called Shukla cohomology, of a commutative algebra S essentially of

finite type and of finite flat dimension over a commutative noetherian ring K.

We construct a complex of S-modules D, and natural reduction isomorphisms
Ext∗

S⊗L
K

S
(S |K;M ⊗L

K N) ' Ext∗S(RHomS(M,D), N) for all complexes of

S-modules N and all complexes M of finite flat dimension over K whose ho-

mology H(M) is finitely generated over S; such isomorphisms determine D
up to derived isomorphism. Using Grothendieck duality theory we establish

analogous isomorphisms for any essentially finite-type flat map f : X → Y of

noetherian schemes, with f !OY in place of D.
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Introduction

We study commutative algebras essentially of finite type over some commutative
noetherian ring K. Let σ : K → S denote the structure map of such an algebra.
When S is projective as a K-module, for example, when K is a field, the Hochschild
cohomology HH∗(S |K;−) allows one to investigate certain properties of the homo-
morphism σ in terms of properties of S, viewed as a module over the enveloping
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algebra Se = S ⊗K S. This comes about via isomorphisms

HHn(S |K;L) = ExtnSe(S,L) ,

established by Cartan and Eilenberg [10] for an arbitrary S-bimodule L.
In the absence of projectivity, one can turn to a cohomology theory introduced

by MacLane [21] for K = Z, extended by Shukla [28] to all rings K, and recognized
by Quillen [26] as a derived version of Hochschild cohomology; see Section 3.

A central result of this article is a reduction of the computation of derived
Hochschild cohomology with coefficients in M ⊗L

K N to a computation of iterated
derived functors over the ring S itself; this is new even in the classical situation.

We write D(S) for the derived category of S-modules, and P(σ) for its full sub-
category consisting of complexes with finite homology that are isomorphic in D(K)
to bounded complexes of flat K-modules. As part of Theorem 4.1 we prove:

Theorem 1. When S has finite flat dimension as a K-module there exists a unique
up to isomorphism complex Dσ ∈ P(σ), such that for each M ∈ P(σ) and every
N ∈ D(S) there is an isomorphism that is natural in M and N :

RHomS⊗L
KS

(S,M ⊗L
K N) ' RHomS(RHomS(M,Dσ), N) .

The complex Dσ is an algebraic version of a relative dualizing complex used in
algebraic geometry, see (6.2.1). A direct, explicit construction of Dσ is given in
Section 1. When S is flat as a K-module, M and N are S-modules, and M is flat
over K and finite over S, the theorem yields isomorphisms of S-modules

ExtnSe(S,M ⊗K N) ∼= ExtnS(RHomS(M,Dσ), N)

for all n ∈ Z; they were originally proved in the first preprint version of [5].
Our second main result is a global version of part of Theorem 1. For a map of

schemes f : X → Y , f−1
0 OY is a sheaf of commutative rings on X, whose stalk at

any point x ∈ X is OY,f(x) (see Section 6). The derived category of (sheaves of)

f−1
0 OY -modules is denoted by D(f−1

0 OY ). Corollary 6.5 of Theorem 6.1 gives:

Theorem 2. Let f : X → Y be an essentially finite-type, flat map of noetherian

schemes; let X
π1←− X×Y X

π2−→ X be the canonical projections; let δ : X → X×Y X
be the diagonal morphism; and let M and N be complexes of OX-modules.

If M has coherent cohomology and is isomorphic in D(f−1
0 OY ) to a bounded

complex of f−1
0 OY -modules that are flat over Y , and if N has bounded-above quasi-

coherent homology, then one has an isomorphism

δ!(π∗1M ⊗L
X×YX π∗2N) −→∼ RHomX(RHomX(M,f !OY ), N) .

When both schemes X and Y are affine, and f corresponds to an essentially
finite-type ring homomorphism, Theorem 2 reduces to a special case of Theorem 1,
namely, where the K-algebra S is flat and N is homologically bounded above. In
Section 6 we also obtain global analogs of other results proved earlier in the paper
for complexes over rings. A pattern emerging from these series of parallel results
is that neither version of a theorem implies the other one in full generality. This
intriguing discrepancy suggests the existence of stronger global results.

The proofs of Theorems 1 and 2 follow very different routes. The first one is based
on isomorphisms in derived categories of differential graded algebras; background
material on the topic is collected in Section 2. The second one involves fundamental
results of Grothendieck duality theory, systematically developed in [15, 11, 19]; the
relevant notions and theorems are reviewed in Section 5.
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1. Relative dualizing complexes

In this section σ : K → S denotes a homomorphism of commutative rings.
For any K-algebra P and each n ∈ Z we write ΩP |K for the P -module of Kähler

differentials of P over K, and set ΩnP |K =
∧n
PΩP |K for each n ∈ N.

Recall that σ is said to be essentially of finite type if it can be factored as

(1.0.1) K ↪→ K[x1, . . . , xe]→ V −1K[x1, . . . , xe] = Q� S ,

where x1, . . . , xe are indeterminates, V is a multiplicatively closed set, the first two
maps are canonical, the equality defines Q, and the last arrow is a surjective ring
homomorphism. We fix such a factorization and set

(1.0.2) Dσ = Σe RHomP (S,ΩeQ|K) in D(S) ,

where D(S) denotes the derived category of S-modules. Any complex isomorphic
to Dσ in D(S) is called a relative dualizing complex of σ. To obtain such complexes
we factor σ through essentially smooth maps, see 1.3.

Theorem 1.1. If K → P → S is a factorization of σ, with K → P essentially
smooth of relative dimension d and P → S finite, then there exists an isomorphism

Dσ ' Σd RHomP (S,ΩdP |K) in D(S) .

The isomorphism in the theorem can be chosen in a coherent way for all K-
algebras essentially of finite type. To prove this statement, or even to make it
precise, we need to appeal to the theory of the pseudofunctor ! of Grothendieck
duality theory; see [19, Ch. 4]. Canonicity is not used in this paper.

We write P(σ) for the full subcategory of D(S) consisting of complexes M ∈ D(S)
such that H(M) is finite over S and M is isomorphic in D(K) to some bounded
complex of flat K-modules.

The name given to the complex Dσ is explained by the next result.

Theorem 1.2. When fdK S is finite the complex Dσ has the following properties.

(1) For each M in P(σ) the complex RHomS(M,Dσ) is in P(σ), and the biduality
morphism gives a canonical isomorphism

δM : M ' RHomS(RHomS(M,Dσ), Dσ) in D(S) .

(2) One has Dσ ∈ P(σ), and the homothety map gives a canonical isomorphism

χD
σ

: S ' RHomS(Dσ, Dσ) in D(S) .

The theorems are proved at the end of the section. The arguments use various
properties of (essentially) smooth homomorphisms, which we record next.

1.3. Let κ : K → P be a homomorphism of commutative noetherian rings.
One says that κ : K → P is (essentially) smooth if it is (essentially) of finite type,

flat, and the ring k ⊗K P is regular for each homomorphism of rings K → k when
k is a field; see [14, 17.5.1] for a proof that this notion of smoothness is equivalent
to that defined in terms of lifting of homomorphisms.

When κ is essentially smooth Ω1
P |K is finite projective, so for each prime ideal p

of P the Pp-module (Ω1
P |K)p is free of finite rank. If this rank is equal to a fixed

integer d for all p, then K → P is said to be of relative dimension d; (essentially)
smooth homomorphism of relative dimension zero are called (essentially) étale.
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1.3.1. Set P e = P ⊗K P and I = Ker(µ : P e → P ), where µ is the multiplication.
There exist canonical isomorphisms of P -modules

Ω1
P |K
∼= I/I2 ∼= Tor

P e

1 (P, P ) .

As µ is a homomorphism of commutative rings, TorP
e

(P, P ) has a natural structure
of a strictly graded-commutative P -algebra, so the composed isomorphism above
extends to a homomorphism of graded P -algebras

λP |K :
∧
PΩ1

P |K −→ TorP
e

(P, P ) .

1.3.2. Let X
'−→ P be a projective resolution over P e. The morphism of complexes

δ : X ⊗P e P → HomP e(HomP e(X,P e), P )

δ(x⊗ p)(χ) = (−1)(|x|+|p|)|χ|χ(x)p

yields the first map in the composition below, where κ is a Künneth homomorphism:

H(X ⊗P e P )
H(δ)

// H(HomP e(HomP e(X,P e), P ))

κ
// HomP e(H(HomP e(X,P e)), P )

HomP (H(HomP e(X,P e)), P ) .

Thus, one gets a homomorphism of graded P -modules

τP |K : TorP
e

(P, P ) −→ HomP (ExtP e(P, P e), P ) .

1.3.3. The composition below, where the first arrow is a biduality map,

ExtP e(P, P e) // HomP (HomP (ExtP e(P, P e), P ), P )

HomP (τP |K ,P )
// HomP (TorP

e

(P, P ), P ) .

is a homomorphism of graded P -modules

εP |K : ExtP e(P, P e) −→ HomP (TorP
e

(P, P e), P ) .

The maps above appear in homological characterizations of smoothness:

1.3.4. Let K → P be a flat and essentially of finite type homomorphism of rings,
and set I = Ker(µ : P e → P ). The following conditions are equivalent.

(i) The homomorphism K → P is essentially smooth.
(ii) The ideal Im is generated by a regular sequence for each prime ideal m ⊇ I.
(iii) The P -module Ω1

P |K is projective and the map λP |K from 1.3.1 is bijective.

(iv) The projective dimension pdP e P is finite.

The equivalence of the first three conditions is due to Hochschild, Kostant, and
Rosenberg when K is a perfect field, and to André [1, Prop. C] in general. The
implication (ii) =⇒ (iv) is clear, and the converse is proved by Rodicio [27, Cor. 2].

In the next lemma we use homological dimensions for complexes, as introduced
in [3]. They are based on notions of semiprojective and semiflat resolutions, recalled
in 2.3.1. The projective dimension of M ∈ D(P ) in defined by the formula

pdP M = inf

{
n ∈ Z

∣∣∣∣∣ n ≥ sup H(M) and F 'M in D(P ) with F

semiprojective and Coker(∂Fn+1) projective

}
.
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The number obtained by replacing ‘semiprojective’ with ‘semiflat’ and ‘projective’
with ‘flat’ is the flat dimension of M , denoted fdP M .

For the rest of this section we fix a factorization K → P → S of σ, with K → P
essentially smooth of relative dimension d and P → S finite.

Lemma 1.4. For every complex M of P -modules the following inequalities hold:

fdKM ≤ fdP M ≤ fdKM + pdP e P .

In particular, fdP M and fdKM are finite simultaneously.
When the S-module H(M) is finite one can replace fdP M with pdP M .

Proof. The inequality on the left is a consequence of [3, 4.2(F)].
For the one on the right we may assume fdKM = q <∞. Thus, if F →M is a

semiflat resolution over P , then G = Coker(∂Fq+1) is flat as a K-module. For each
n ∈ Z there is a canonical isomorphism of functors of P -modules

TorPn (G,−) ∼= TorP
e

n (P,G⊗K −) ,

see [10, X.2.8], so the desired inequality holds. Since K → P is essentially smooth
one has pdP e P < ∞, see 1.3.4, so they imply that fdP M is finite if only if so is

fdKM . In case H(M) is finite over P one has fdP M = pdP M ; see [3, 2.10(F)]. �

Lemma 1.5. The canonical homomorphisms λ
P |K
d , τ

P |K
d , and εdP |K defined in

1.3.1, 1.3.2, and 1.3.3, respectively, provide isomorphisms of P -modules

ExtnP e(P, P e) = 0 for n 6= d ;(1.5.1)

HomS(λ
P |K
d , P ) ◦ εdP |K : ExtdP e(P, P e) ∼= HomP (ΩdP |K , P ) ;(1.5.2)

τ
P |K
d ◦ λP |Kd : ΩdP |K

∼= HomP (ExtdP e(P, P e), P ) .(1.5.3)

Proof. Set I = Ker(µ). It suffices to prove that the maps above induce isomor-
phisms after localization at every n ∈ SpecP . Fix one, then set T = Pm, R = P e

n∩P e

and J = In∩P e . The ideal J is generated by a regular sequence, see 1.3.4. Any such
sequence consists of d elements: This follows from the isomorphisms of T -modules

J/J2 ∼= (I/I2)n ∼= (Ω1
P |K)n ∼= T d .

The Koszul complex Y on such a sequence is a free resolution of T over R. A
well known isomorphism HomR(Y,R) ∼= Σ−dY of complexes of R-modules yields

ExtnR(T,R) = 0 for n 6= d and ExtdR(T,R) ∼= T . This establishes (1.5.1) and shows

that ExtdP e(P, P e) is invertible; as a consequence, (1.5.2) follows from (1.5.3).

We analyze the maps in (1.5.3). From 1.3.4 we know that λ
P |K
d is bijective.

By 1.3.2 one has τ
P |K
d = κd ◦ Hd(δ). The map Hd(δ) is bijective, as it can be

computed from a resolution X of P by finite projective P e-modules, and then δ
itself is an isomorphism. To establish the isomorphism in (1.5.3) it remains to show
that (κd)m is bijective. This is a Künneth map, which can be computed using the
Koszul complex Y above. Thus, we need to show that the natural T -linear map

Hd(HomR(HomR(Y,R), T )) −→ HomR(H−d(HomR(Y,R)), T )

is bijective. It has been noted above that both modules involved are isomorphic
to T , and an easy calculation shows that the map itself is an isomorphism. �

To continue we need a lemma from general homological algebra.
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Lemma 1.6. Let R be an associative ring and M a complex of R-modules.
If the graded R-module H(M) is projective, then there exists a unique up to

homotopy morphism of complexes H(M)→M inducing idH(M), and a unique iso-

morphism α : H(M)→M in D(R) with H(α) = idH(M).

Proof. One has H(M) ∼=
∐
i∈Z Σi Hi(M) as complexes with zero differentials. The

projectivity of the R-modules Hi(M) provides the second link in the chain

H(HomR(H(M),M)) ∼= H(
∏
i∈Z

Σ−i HomR(Hi(M),M))

∼=
∏
i∈Z

Σ−i HomR(Hi(M),H(M))

∼= HomR(
∐
i∈Z

Σi Hi(M),H(M))

∼= HomR(H(M),H(M))

of isomorphisms of graded modules. The composite map is given by cls(α) 7→ H(α).
The first assertion follows because H0(HomR(H(M),M)) is the set of homotopy
classes of morphisms H(M)→M . For the second, note that one has

MorD(R)(H(M),M) ∼= H0(HomR(H(M),M))

because each complex Σi Hi(M) is semiprojective, and hence so is H(M). �

Lemma 1.7. In D(P ) there exist canonical isomorphisms

RHomP e(P, P e) ' Σ−d HomP (ΩdP |K , P ) .(1.7.1)

RHomP (RHomP e(P, P e), P ) ' ΣdΩdP |K .(1.7.2)

Proof. Since K → P is essentially smooth of relative dimension d, the P -module
ΩdP |K is projective of rank one, and hence so is HomP (ΩdP |K , P ). The isomorphisms

(1.5.1) and (1.5.2) imply that H(RHomP e(P, P e)) is an invertible graded P -module.
In particular, it is projective. Now choose (1.7.1) to be the canonical isomorphism
provided by Lemma 1.6, and (1.7.2) the isomorphism induced by it. �

Lemma 1.8. When σ is finite there is a canonical isomorphism

Σd RHomP (S,ΩdP |K) ∼= RHomK(S,K) in D(S) .

Proof. One has a chain of canonical isomorphisms:

Σd RHomP (S,ΩdP |K) ' Σd RHomP e(P,RHomK(S,ΩdP |K))

' Σd RHomP e(P, P e)⊗L
P e RHomK(S,ΩdP |K)

' RHomP (ΩdP |K , P )⊗L
P e RHomK(S,ΩdP |K)

' RHomP (ΩdP |K , P )⊗L
P e

(
ΩdP |K ⊗

L
K RHomK(S,K)

)
' RHomP (ΩdP |K , P )⊗L

P

(
P ⊗L

P e

(
ΩdP |K ⊗

L
K RHomK(S,K)

))
' RHomP (ΩdP |K , P )⊗L

P

(
ΩdP |K ⊗

L
P RHomK(S,K)

)
' RHomP (ΩdP |K ,Ω

d
P |K)⊗L

P RHomK(S,K)

' RHomK(S,K) .
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The first one holds by a classical associativity formula, see (2.1.1), the second one
because pdP e P is finite, see 1.3.4, the third one by (1.7.1). The last one is induced

by the homothety P → RHomP (ΩdP |K ,Ω
d
P |K), which is bijective as (ΩdP |K)p ∼= Pp

holds as Pp-modules for each p ∈ SpecP . The other isomorphisms are standard. �

Proof of Theorem 1.1. Let K → Q→ S be the factorization of σ given by (1.0.1),
with Q = V −1K[x1, . . . , xe]. The isomorphism

Ω1
(P⊗KQ)|K

∼= (Ω1
P |K ⊗K Q)⊕ (P ⊗K Ω1

Q|K)

induces the first isomorphism of (P ⊗K Q)-modules below:

Ωd+e
(P⊗KQ)|K

∼=
⊕

i+j=d+e

(ΩiP |K ⊗K Q)⊗P⊗KQ (P ⊗K ΩjQ|K)

∼= ΩdP |K ⊗K ΩeQ|K .

The second one holds because for each p ∈ SpecP one has (ΩiP |K)p ∼= ∧iPp(P dp ) = 0

for i > d, and similarly (ΩiQ|K)p = 0 for j > e. One also has

(1.9.1) Ωn(P⊗KQ)|Q
∼= ΩnP |K ⊗K Q for every n ∈ N .

The isomorphisms above explain the first and third links in the chain

RHomP⊗KQ(S,Σd+eΩd+e
(P⊗KQ)|K) ' RHomP⊗KQ(S,ΣdΩdP |K ⊗K ΣeΩeQ|K)

' RHomP⊗KQ(S,ΣdΩdP |K ⊗K Q)⊗Q ΣeΩeQ|K

' RHomP⊗KQ(S,ΣdΩd(P⊗KQ)|Q)⊗Q ΣeΩeQ|K

' RHomQ(S,Q)⊗Q ΣeΩeQ|K

' RHomQ(S,ΣeΩeQ|K)

For the fourth isomorphism, apply Lemma 1.8 to the factorizationQ→ P⊗KQ→ S
of the finite homomorphism Q → S, where the first map is essentially smooth by
[14, 17.7.4(v)] and has relative dimension d by (1.9.1). The other isomorphisms are
standard. By symmetry one also obtains an isomorphism

RHomP⊗KQ(S,Σd+eΩd+e
(P⊗KQ)|K) ' RHomP (S,ΣdΩdP |K) . �

Proof of Theorem 1.2. Recall that K → P → S is a factorization of σ with K → P
essentially smooth of relative dimension d and P → S finite. Set L = ΣdΩdP |K , and

note that one has Dσ = RHomP (S,L); see Theorem 1.1.
(1) Standard adjunctions give isomorphisms of functors

RHomS(−, Dσ) ∼= RHomS(−,RHomP (S,L)) ∼= RHomP (−, L) ,

For M ∈ P(σ) Lemma 1.4 yields pdP M < ∞, so M is represented in D(P ) by a
bounded complex F of finite projective P -modules. As L is a shift of a finite projec-
tive P -module, HomP (F,L) is a bounded complex of finite projective P -modules.
It represents RHomP (M,L), so one sees that H(RHomP (M,L)) is finite over P . As
P acts on it through S, it is finite over S as well; furthermore, fdK RHomP (M,L)
is finite by Lemma 1.4.

The map δM in D(S) is represented in D(P ) by the canonical biduality map

F → HomP (HomP (F,L), L) .

This is a quasiisomorphism as F is finite complex of finite projectives and L is
invertible. It follows that δM is an isomorphism.
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(2) Since fdK S is finite, (1) applied to M = S shows that Dσ = RHomS(S,Dσ)
is in P(σ) and that δS : S → RHomS(RHomS(S,Dσ), Dσ) is an isomorphism. Com-
posing δS with the map induced by the isomorphism Dσ ' RHomS(S,Dσ) one gets
χD

σ

: S → RHomS(Dσ, Dσ), hence χD
σ

is an isomorphism. �

2. DG derived categories

Our purpose here is to introduce background material on differential graded
homological algebra needed to state and prove the results in Sections 3 and 4.

In this section K denotes a commutative ring.

2.1. DG algebras and DG modules. Our terminology and conventions generally
agree with those of MacLane [22, Ch. VI]. All DG algebras are defined over K, are
zero in negative degrees, and act on their DG modules from the left. When A is
a DG algebra and N a DG A-module we write A\ and N \ for the graded algebra
and graded A\-module underlying A and N , respectively. We set

inf N = inf{n ∈ Z | Nn 6= 0} ;

supN = sup{n ∈ Z | Nn 6= 0} .

Every element x ∈ N has a well defined degree, denoted |x|.
When B is a DG algebra the complex A ⊗K B is a DG algebra with product

(a⊗ b) · (a′ ⊗ b′) = (−1)|b||a
′|(aa′ ⊗ bb′).

When M ′ is a DG B-module the complex N ⊗KM ′ is canonically a DG module
over A⊗K B, with (a⊗ b) · (n⊗m′) = (−1)|b||n|an⊗ bm′.

The opposite DG K-algebra Ao has the same underlying complex of K-modules
as A, and product · given by a · b = (−1)|a||b|ba. We identify right DG A-modules
with DG modules over Ao, via the formula am = (−1)|a||m|ma.

When M is a DG B-module the complex HomK(M,N) is canonically a DG
A⊗K Bo-module, with action given by

(
(a⊗ b)(α)

)
(m) = (−1)|b||α|aα(bm).

We write Ae for the DG K-algebra A⊗K Ao. Any morphism α : A→ B of DG
K-algebras induces a morphism αe = α ⊗K αo from Ae to Be. There is a natural

DG Ae-module structure on A given by (a⊗ a′)x = (−1)|a
′||x|axa′.

For every DG A⊗K Bo-module L, [22, VI.(8.7)] yields a canonical isomorphism

(2.1.1) HomA⊗KBo(L,HomK(M,N)) ∼= HomA(L⊗B M,N) .

For every DG Ao ⊗K B-module L′, [22, VI.(8.3)] yields a canonical isomorphism

(2.1.2) L′ ⊗A⊗KBo (N ⊗K M ′) ∼= (L′ ⊗A N)⊗B M ′ .

2.2. Properties of DG modules. A DG A-module F is said to be semiprojective
if the functor HomA(F,−) preserves surjections and quasi-isomorphisms, and semi-
flat if (F⊗A−) preserves injections and quasi-isomorphisms. If F is semiprojective,
respectively, semiflat, then F \ is projective, respectively, flat, over A\; the converse
is true when F is bounded below. Semiprojectivity implies semiflatness.

A DG module I is semiinjective if HomA(−, I) transforms injections into sur-
jections and preserves quasi-isomorphisms. If I is semiinjective, then I\ is injective
over A\; the converse is true when I is bounded above.

2.2.1. Every quasi-isomorphisms of DG modules, both of which are either semipro-
jective or semiinjective, is a homotopy equivalence.

The following properties readily follow from standard adjunction formulas.
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2.2.2. Let α : A → B be a morphism of DG K-algebras, and let X and Y be DG
modules over A and B, respectively. The following statements hold:

(1) If X is semiprojective, then so is the DG B-module B ⊗A X.
(2) If X is semiinjective, then so is the DG B-module HomA(B,X).
(3) If B is semiprojective over A and Y is semiprojective over B, then Y is semipro-

jective over A.
(4) If B is semiflat over A and Y is semiinjective over B, then Y is semiinjective

over A.

2.3. Resolutions of DG modules. Let M be a DG A-module.

2.3.1. A semiprojective resolution of M is a quasi-isomorphism F →' M with F
semiprojective. Each DG A-module M admits such a resolution; [4, §1].

A semiinjective resolution of M is a quasi-isomorphism M →' I with I semiin-
jective. Every DG A-module M admits such a resolution; see [18, §3-2].

In what follows, for each DG module M over A, we fix a semiprojective resolution
πMA : pA(M)→M , and a semiinjective resolution ιMA : M → iA(M).

Each morphism of DG modules lifts up to homotopy to a morphism of their
semiprojective resolutions and extends to a morphism of their semiinjective resolu-
tions, and such a lifting or extension is unique up to homotopy. In particular, both
F and I are unique up to homotopy equivalences inducing the identity on M .

Lemma 2.3.2. Let ω : A → B be a quasi-isomorphism of DG algebras, I a semi-
injective DG A-module, J a semiinjective DG B-module, and ι : J → I a quasi-
isomorphism of DG A-modules.

For every DG B-module L the following map is a quasi-isomorphism:

Homω(L, ι) : HomB(L, J)→ HomA(L, I) .

Proof. The morphism ι factors as a composition

J
ι′−→ HomA(B, I)

HomA(ω,I)−−−−−−−−→ HomA(A, I) ∼= I

of morphisms of DG A-modules, where ι′(x)(b) = (−1)|x||b|bι(x). It follows that
ι′ is a quasi-isomorphism. Now J is a semiinjective DG B-module by hypothesis,
HomA(B, J) is one by 2.2.2(2), so 2.2.1 yields

HomB(L, J)
'−→ HomB(L,HomA(B, I)) ∼= HomA(L, I) .

It remains to note that the composition of these maps is equal to Homω(L, ι). �

Lemma 2.3.3. Let ω : A → B be a morphism of DG algebras, and let Y and Y ′

be DG B-modules that are quasi-isomorphic when viewed as DG A-modules.
If ω is a quasi-isomorphism, or if there exists a morphism β : B → A, such that

ωβ = idB, then Y and Y ′ are quasi-isomorphic as DG B-modules.

Proof. By hypothesis, one has A-linear quasi-isomorphisms Y
υ←− U υ′−→ Y ′.

When ω is a quasi-isomorphism, choose U semiprojective over A, using 2.3.1.
With vertical arrows defined to be b⊗ u 7→ bυ(u) and b⊗ u 7→ bυ′(u) the diagram

Y

U

'υ

..

'υ′
00

A⊗A U
ω⊗AU
'

// B ⊗A U

OO

��

Y ′
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commutes. The vertical maps are morphisms of DG B-modules, and ω ⊗A U is a
quasi-isomorphism because ω is one and U is semiprojective.

When ω has a right inverse β, note that the A-linear quasi-isomorphisms υ and
υ′ are also B-linear, and that the DG B-module structures on Y and Y ′ induced
via β are identical with their original structures over B. �

We recall basic facts concerning DG derived categories; see Keller [18] for details.

2.4. DG derived categories. Let A be a DG algebra and M a DG A-module.
DG A-modules and their morphisms form an abelian category. The derived

category D(A) is obtained by keeping the same objects and by formally inverting
all quasi-isomorphisms. It has a natural triangulation, with translation functor
Σ is defined on M by (ΣM)i = Mi−1, ∂ΣM ς(m) = −ς(∂M (m)), and aς(m) =
(−1)|a|ς(am), where ς : M → ΣM is the degree one map given by ς(m) = m.

For any semiprojective resolution F →M , and each N ∈ D(A) one has

MorD(R)(M,N) ∼= H0(HomR(F,N)) .

2.4.1. For all L ∈ D(Ao) and M,N in D(A), the complexes of K-modules

L⊗L
AM = L⊗A F and RHomA(M,N) = HomA(F,N)

are defined uniquely up to unique isomorphisms in D(A). When ω : A → B is a
morphism of DG algebras, L′, M ′ and N ′ are DG B-modules, and λ : L → L′,
µ : M → M ′, and ν : N ′ → N are ω-equivariant morphisms of DG modules, there
exist uniquely defined morphisms

λ⊗L
ω µ : L⊗L

AM → L′ ⊗L
B M

′ ,

RHomω(µ, ν) : RHomB(M ′, N ′)→ RHomA(M,N) .

that depend functorially on all three arguments, and are isomorphisms when all the
morphisms involved have this property. For each i ∈ Z one sets

TorAi (L,M) = Hi(L⊗L
AM) and ExtiA(M,N) = H−i(RHomA(M,N)) .

2.4.2. Associative K-algebras are viewed as DG algebras concentrated in degree
zero, in which case DG modules are simply complexes of left modules. Graded mod-
ules are complexes with zero differential, and modules are complexes concentrated
in degree zero. The constructions above specialize to familiar concepts:

When Ai = 0 for i 6= 0 the derived category D(A) coincides with the classical
unbounded derived category of the category of A0-modules. Similarly, if M and
N are DG A-modules with Mi = 0 = Ni for i 6= 0, then for all n ∈ Z one has
ExtnA(M,N) = ExtnA0

(M0, N0) and TorAn (M,N) = TorA0
n (M0, N0).

2.4.3. Let ω : A → B be a morphism of DG algebras. Viewing DG B-modules as
DG A-modules via restriction along ω, one gets a functor of derived categories

ω∗ : D(B)→ D(A) .

When ω is a quasi-isomorphism it is an equivalence, with quasi-inverse B ⊗L
A −.

3. Derived Hochschild functors

In this section we explain the left hand side of the isomorphism in Theorem 1.
Let K be a commutative ring and σ : K → S an associative K-algebra.
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3.1. A flat DG algebra resolution of σ is a factorization K → A
α−→ S of σ as a

composition of morphisms of DG algebras, where each K-module Ai is flat and α is
a quasi-isomorphism; complexes of S-modules are viewed as DG A-modules via α.

When K → B
β−→ S is a flat DG algebra resolution of σ, we say that ω : A→ B is a

morphism of resolutions if it is a morphism of DG K-algebras, satisfying βω = α.

We set Ae = A⊗K Ao, note that K → Ao αo

−→ So is a flat DG algebra resolution
of σo : K → So, and turn S into a DG module over Ae by (a⊗ a′)s = α(a)s αo(a′).

Flat DG algebra resolutions always exist: A resolution K → T → S, with T \

the tensor algebra of some free non-negatively graded K-module, can be obtained
by inductively adjoining noncommuting variables to K; see also Lemma 3.7.

Here we construct one of four functors of pairs of complexes of S-modules that
can be obtained by combining RHomAe(S,−) and S ⊗L

Ae − with (− ⊗L
K −) and

RHomK(−,−). The other three functors are briefly discussed in 3.10 and 3.11.
The statement of the following theorem is related to results in [32, §2]. We

provide a detailed proof, for reasons explained in 3.12.

Theorem 3.2. Each flat DG algebra resolution K → A→ S of σ defines a functor

RHomAe(S,−⊗L
K −) : D(S)× D(So)→ D(Sc) ,

where Sc denote the center of S, described by (3.8.1). For every flat DG algebra
resolution K → B → S of σ there is a canonical natural equivalence of functors

ωAB : RHomAe(S,−⊗L
K −)→ RHomBe(S,−⊗L

K −) ,

given by (3.8.2), and every flat DG algebra resolution K → C → S of σ satisfies

ωAC = ωBCωAB .

The theorem validates the following notation:

Remark 3.3. Fix a flat DG algebra resolution K → A→ S of σ and let

RHomS⊗L
KS

o(S,−⊗L
K −) : D(S)× D(So)→ D(Sc)

denote the functor RHomA⊗KAo(S,− ⊗L
K −). For all L ∈ D(S) and L′ ∈ D(So)

it yields derived Hochschild cohomology modules with tensor-decomposable coeffi-
cients:

ExtnS⊗L
KS

o(S,L⊗L
K L′) = Hn(RHomS⊗L

KS
o(S,L⊗L

K L′)) .

These modules are related to vintage Hochschild cohomology.
For all S-modules L and L′ there are canonical natural maps

HHn(S |K;L⊗K L′)→ ExtnS⊗KSo(S,L⊗K L′)

of Sc-modules, where the modules on the left are the classical ones, see 2.4.2. These
are isomorphisms when S is K-projective; see [10, IX, §6]. When one of L or L′ is
K-flat, there exist canonical natural homomorphisms

Extnα⊗Kαo(S,L⊗K L′) : ExtnS⊗KSo(S,L⊗K L′)→ ExtnS⊗L
KS

o(S,L⊗K L′) .

When S is K-flat the composition K → S
=−→ S is a flat DG resolution of σ and

α : A→ S is a morphism of resolutions, so the theorem shows that the maps above
are isomorphisms.
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Construction 3.4. Let K → A
α−→ S and K → A′

α′−→ So be flat DG algebra
resolutions of σ and of σo, respectively. We turn S into a DG module over A⊗K A′
by setting (a ⊗ a′)s = α(a)s α′(a′). The action of Sc on S commutes with that of
A⊗K A′, and so confers a natural structure of complex of Sc-modules on

HomA⊗KA′(S, iA⊗KA′(pA(L)⊗K pA′(L
′)) ,

where pA and iA⊗KA′ refer to the resolutions introduced in 2.3.1.

Let K → B
β−→ S and K → B′

β′−→ So be DG algebra resolutions of σ and σo,
respectively, and ω : A→ B and ω′ : A′ → B′ be morphism of resolutions. We turn
DG B-modules into DG A-modules via ω, and remark that the equality βω = α
implies that on S-modules the new action of A coincides with the old one.

Let λ : L → M be a morphism of DG S-modules and λ′ : L′ → M ′ one of DG
So-modules. The lifting property of semiprojective DG modules yields diagrams

(3.4.1)

pA(L)

'
��

eλ
// pB(M)

'
��

L
λ

// M

and

pA′(L
′)

'
��

eλ′
// pB′(M

′)

'
��

L′
λ′

// M ′

of DG A-modules and DG A′-modules, respectively, that commute up to homotopy.
It provides the morphism in the top row of a diagram of DG (A⊗K A′)-modules

(3.4.2)

pA(L)⊗K pA′(L
′)

eλ⊗Kλ′
//

'
��

eλ⊗Keλ′
// pB(M)⊗K pB′(M

′)

'

��

iA⊗KA′(pA(L)⊗K pA′(L
′))

iA⊗KA′
(
iB⊗KB′(pB(M)⊗K pB′(M

′))
)��

ε

iB⊗KB′(pB(M)⊗K pB′(M
′))

ι

'
oo

that commutes up to homotopy, where ι is the chosen semiinjective resolution, and
ε is given by the extension property of semiinjective DG module over A⊗K A′; for

conciseness, we rewrite these maps as E
ε−→ I

ι←− J . They are unique up to homotopy,
as the liftings and extensions used for their construction have this property.

The hypotheses βω = α and β′ω′ = α′ imply that ω and ω′ are quasi-isomor-
phisms, hence so is ω ⊗K ω′, due to the K-flatness of A\ and B′\. Since ι is a
quasi-isomorphism, Lemma 2.3.2 shows that so is Homω⊗Kω′(S, ι); thus, the latter
map defines in D(Sc) an isomorphism, denoted RHomω⊗Kω′(S, ι). We set

(3.4.3) [ω, ω′](λ, λ′) = RHomω⊗Kω′(S, ι)
−1 ◦ RHomA⊗KA′(S, ε) :

RHomA⊗KA′(S,L⊗L
K L′) −→ RHomB⊗KB′(S,M ⊗L

K M ′)

The first statement of the following lemma contains the existence of the functors
RHomAe(S,− ⊗L

K −), asserted in the theorem. The second statement, concerning
the uniqueness of these functors, is weaker than the desired one, because it only
applies to resolutions that can be compared through a morphism ω : A → B. On
the other hand, it allows one to compare functors defined by independently chosen
resolutions of σ and σo. The extra generality is needed in the proof of Lemma 3.7.
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Lemma 3.5. In the notation of Construction 3.4, the assignment

(L,L′) 7→ HomA⊗KA′(S, iA⊗KA′(pA(L)⊗K pA′(L
′))) ,

defines a functor

RHomA⊗KA′(S,−⊗L
K −) : D(S)× D(So)→ D(Sc) ,

and the assignment

(λ, λ′) 7→ [ω, ω′](λ, λ′) ,

given by formula (3.4.3), defines a canonical natural equivalence of functors

[ω, ω′] : RHomA⊗KA′(S,−⊗L
K −)→ RHomB⊗KB′(S,−⊗L

K −) .

If K → C
γ−→ S and K → C ′

γ′−→ S are flat DG algebra resolutions of σ and σo,
respectively, and ϑ : B → C and ϑ′ : B′ → C ′ are morphism of resolutions, then

[ϑω, ϑ′ω′] = [ϑ, ϑ′][ω, ω′] .

Proof. Recall that the maps E
ε−→ I

ι←− J are unique up to homotopy. Thus,
HomA⊗KA′(S, ε) and Homω⊗Kω′(S, ι) are morphisms of complexes of Sc-modules
defined uniquely up to homotopy. In view of (3.4.3), this uniqueness has the fol-
lowing consequences:

The morphism [ω, ω′](λ, λ′) depends only on λ and λ′; one has

[idA, idA
′
](idL, idL

′
) = idRHomA⊗KA′

(S,L⊗L
KL
′) ;

and for all morphism µ : M → N and µ′ : M ′ → N ′ of complexes of S-modules and
So-modules, respectively, there are equalities

[ϑω, ϑ′ω′](µλ, µ′λ′) = [ϑ, ϑ′](µ, µ′) ◦ [ω, ω′](λ, λ′) .

Suitable specializations of these properties show that RHomA⊗KA′(S,− ⊗L
K −)

is a functor to D(Sc) from the product of the categories of complexes over S with
that of complexes over So, and that [ω, ω′] is a natural transformation.

To prove that [ω, ω′] is an equivalence, it suffices to show that if λ and λ′ are
quasi-isomorphisms, then RHomω⊗Kω′(S, λ⊗L

K λ′) is an isomorphism.
By (3.4.3), it is enough to show that RHomA⊗KA′(S, ε) is a quasi-isomorphism.

As λ and λ′ are quasi-isomorphisms, the diagrams in (3.4.1) imply that so are λ̃

and λ̃′. Due to the K-flatness of A\ and B′\, their semiprojective DG modules are

K-flat, hence λ̃ ⊗K λ̃′ is a quasi-isomorphism of DG modules over A ⊗K A′. Now
diagram (3.4.2) shows that ε : E → I is a quasi-isomorphism. It follows that it is a
homotopy equivalence, because both E and J are semiinjective DG modules over
A⊗KA′. This implies that HomA⊗KA′(S, ε) is a quasi-isomorphism, as desired. �

To clarify how the natural equivalence in Lemmas 3.5 depends on ω, we apply
Quillen’s homotopical approach in [25]. It is made available by the following result,
see Baues and Pirashvili [8, A.3.1, A.3.5]:

3.6. The category of DG K-algebras has a model structure, where

• the weak equivalences are the quasi-isomorphisms;
• the fibrations are the morphisms that are surjective in positive degrees;
• any DG K-algebra, whose underlying graded algebra is the tensor algebra

of a non-negatively graded projective K-module, is cofibrant ; that is, the
structure map from K is a cofibration.
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We recall some consequences of the existence of a model structure, following [12]:
For all DG K-algebras T and A, there exists a relation on the set of morphisms
T → A, known as left homotopy, see [12, 4.2]. It is an equivalence when T is
cofibrant, see [12, 4.7], and then π`(T,A) denotes the set of equivalence classes.

Lemma 3.7. There is a DG algebra resolution K → T → S of σ with T cofibrant.

If K → A
α−→ S is a flat DG algebra resolutions of σ, then there is a morphism of

resolutions ω : T → A. Any morphism of resolutions $ : T → A is left homotopic
to ω, and the natural equivalences defined in Lemma 3.5 satisfy

[ω, ωo] = [$,$o] : RHomT e(S,−⊗L
K −)→ RHomAe(S,−⊗L

K −)

Proof. Being both a fibration and a weak equivalence, α is, by definition, an acyclic
fibration. The existence of ω comes from a defining property of model categories—
the left lifting property of cofibrations with respect to acyclic fibrations; see axiom
MC4(i) in [12, 3.3]. Composition with α induces a bijection π`(T,A) → π`(T, S),
see [12, 4.9], so α$ = αω implies that $ and ω are left homotopic.

By [12, 4.3, 4.4], the homotopy relation produces a commutative diagram

T
ι
��

ω

��

T

qqqqqqqqq

qqqqqqqqq

MMMMMMMMM

MMMMMMMMM C
ρ

'
oo

χ
// A

T

ι′
OO

$

GG

of DG K-algebras, with a quasi-isomorphism ρ. It induces a commutative diagram

T ⊗K T o

ι⊗KT o

��

ω⊗KT o

��

T ⊗K T o

nnnnnnnnnnnn

nnnnnnnnnnnn

PPPPPPPPPPPP

PPPPPPPPPPPP
C ⊗K T o χ⊗KT o

//
ρ⊗KT o

'
oo A⊗K T o

T ⊗K T o

ι′⊗KT o

OO

$⊗KT o

FF

of morphisms of DG K-algebras, where ρ⊗K T o is a quasi-isomorphism because T o

is K-flat. The diagram above yields the following chain of equalities:

[ω, idT
o

] = [χ, idT
o

][ι, idT
o

] = [χ, idT
o

][ρ, idT
o

]−1 = [χ, idT
o

][ι′, idT
o

] = [$, idT
o

].

A similar argument shows that the morphisms ωo and $o are left homotopic,
and yields [idA, ωo] = [idA, $o]. Assembling these data, one obtains

[ω, ωo] = [idA, ωo][ω, idT
o

] = [idA, $o][$, idT
o

] = [$,$o] . �

Proof of Theorem 3.2. Choose a DG algebra resolution K → T → S of σ with T
cofibrant, either by noting that the one in 3.1 has this property by 3.6, or referring
to a defining property of model categories; see axiom MC5(i) in [12, 3.3].

For each flat DG algebra resolution K → A→ S of σ, form the flat DG algebra
resolution K → Ao → So of σo, and define a functor

(3.8.1) RHomAe(S,−⊗L
K −) : D(S)× D(So)→ D(Sc)
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by applying Lemma 3.5 with A′ = Ao. As T is cofibrant, Lemma 3.7 provides a
morphism of resolutions ω : T → A, and shows that it defines a natural equivalence

[ω, ωo] : RHomT e(S,−⊗L
K −)→ RHomAe(S,−⊗L

K −) ;

that does not depend on the choice of ω; set ωAT = [ω, ωo].
When K → U → S also is a flat DG algebra resolution of σ with U cofibrant,

one gets morphisms of resolutions τ : T → U and θ : U → A. Both θτ : T → A and
ω are morphisms of resolutions, so Lemmas 3.7 and 3.5 yield

ωAT = [ω, ωo] = [θτ, θoτ o] = [θ, θo][τ, τ o] = ωAUω
U
T .

For each flat DG algebra resolution K → B → S of σ set

(3.8.2) ωAB := ωBT (ωAT )−1 : RHomAe(S,−⊗L
K −)→ RHomBe(S,−⊗L

K −) .

One clearly has ωAC = ωBCωAB , and ωAB is independent of T , because

ωBT (ωAT )−1 = ωBUω
U
T (ωAUω

U
T )−1 = ωBUω

U
T (ωUT )−1(ωAU )−1 = ωBU (ωAU )−1 .

It follows that ωAB is the desired canonical natural equivalence. �

We proceed with a short discussion of other derived Hochschild functors. The
proof of the next result is omitted, as it parallels that of Theorem 3.2.

Theorem 3.9. Any flat DG algebra resolution K → A→ S of σ defines a functor

A⊗Ae RHomK(−,−) : D(S)op × D(S)→ D(Sc) .

For each flat DG algebra resolution K → B → S of σ one has a canonical equiva-
lence

ωBA : B ⊗Be RHomK(−,−)
'−→ A⊗Ae RHomK(−,−)

of functors, and every flat DG algebra resolution K → C → S of σ satisfies

ωCA = ωBAωCB . �

Remark 3.10. We fix a DG algebra resolution K → A→ S of σ and let

S ⊗L
S⊗L

KS
o RHomK(−,−) : D(S)op × D(S)→ D(Sc)

denote the functor A⊗A⊗KA RHomK(−,−): The preceding theorem shows that it
is independent of the choice of A. For all M,N ∈ D(S) it defines derived Hochschild
homology modules of the K-algebra S with Hom-decomposable coefficients:

TorS⊗
L
KS

o

n (S,RHomK(M,N)) = Hn(S ⊗L
S⊗L

KS
o RHomK(M,N)) .

These modules are related to classical Hochschild homology:
For all S-modules M and N there are canonical natural maps

TorS⊗KS
o

n (S,HomK(M,N))→ HHn(S |K; HomK(M,N))

of Sc-modules, where the modules on the left are the classical ones, see 2.4.2. They
are isomorphisms when S is K-flat; see [10, IX, §6]. When M is K-projective there
exist natural homomorphisms

Torα⊗Kα
o

n (S,RHomK(M,N)) :

TorS⊗
L
KS

o

n (S,RHomK(M,N))→ TorS⊗KS
o

n (S,HomK(M,N))

When S is K-flat the composition K → S
=−→ S is a flat DG resolution of σ and

α : A→ S is a morphism of resolutions, so the theorem shows that the maps above
are isomorphisms.
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The remaining two composed functors collapse in a predictable way.

Remark 3.11. Similarly to Theorems 3.2 and 3.9, one can define functors

RHomS⊗L
KS

o(S,RHomK(−,−)) : D(S)op × D(S)→ D(Sc) ,

S ⊗S⊗L
KS

o (−⊗L
K −) : D(S)× D(S)→ D(Sc) ,

that do not depend on the choice of the DG algebra resolution A. However, this is
not necessary, as for all M,N ∈ D(S) there exit canonical isomorphisms

RHomS⊗L
KS

o(S,RHomK(M,N)) ' RHomS(M,N) ,(3.11.1)

S ⊗S⊗L
KS

o (M ⊗L
K N) 'M ⊗L

S N .(3.11.2)

They are derived extensions of classical reduction results, [10, IX.2.8, IX.2.8a].

We finish with a comparison of the content of this section and that of [32, §2].

Remark 3.12. When M = N the statement of Theorem 3.2 bears a close resem-
blance to results of Yekutieli and Zhang, see [32, 2.2, 2.3]. One might ask whether
their proof can be adapted to handle the general case.

Unfortunately, even in the special case above the argument for [32, Theorem 2.2]

is deficient. It utilizes the mapping cylinder of morphisms φ0, φ1 : M̃ → M of DG
modules over a DG algebra, B̃. On page 3225, line 11, they are described as “the
two B̃′-linear quasi-isomorphisms φ0 and φ1” where B̃′ is a DG algebra equipped
with two homomorphisms of DG algebras u0, u1 : B̃′ → B̃; with this, an implicit
choice is being made between u0 and u1. Such a choice compromises the argument,
whose goal is to establish an equality χ0 = χ1 between morphism of complexes χi,
which have already been constructed by using φi and ui for i = 0, 1.

The basic problem is that the relation between various choices of comparison
morphisms of DG algebra resolutions is not registered in the additive environment
of derived categories. In the proof of Theorem 3.2 it is solved by using the homotopy
equivalence provided by a model structure on the category of DG algebras.

4. Reduction of derived Hochschild functors over algebras

Let σ : K → S be a homomorphism of commutative rings.
Recall that σ is said to be essentially of finite type if it can be factored as

K ↪→ K[x1, . . . , xd]→ V −1K[x1, . . . , xd] � S ,

where x1, . . . , xd are indeterminates, V is a multiplicatively closed subset, the first
two maps are canonical, and the third one is a surjective ring homomorphism.

The following theorem, which is the main algebraic result in the paper, involves
the relative dualizing complex Dσ described in (1.0.2).

Theorem 4.1. If fdK S is finite, then in D(S) there are isomorphisms

RHomS⊗L
KS

(S,M ⊗L
K N) ' RHomS(RHomS(M,Dσ), N)(4.1.1)

RHomS⊗L
KS

(S,RHomS(M,Dσ)⊗L
K N) ' RHomS(M,N)(4.1.2)

for all M ∈ P(σ) and N ∈ D(S); these morphisms are natural in M and N .

We record a useful special case, obtained by combining Theorems 4.1 and 1.1:
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Corollary 4.2. Assume that σ is flat, and let K → P → S be a factorization of σ
with K → P essentially smooth of relative dimension d and P → S finite.

If M is a finite S-module that is flat over K, and N is an S-module, then for
each n ∈ Z there is an isomorphism of S-modules

ExtnS⊗KS(S,M ⊗K N) ∼= Extn−dS (RHomP (M,ΩdP |K), N) . �

Before the proof of Theorem 4.1 we make a couple of remarks.

4.3. For all complexes of P -modules L, X, and J there is a natural morphism

HomP (L,P )⊗P X ⊗P J −→ HomP (HomP (X,L), J)

defined by the assignment λ⊗x⊗j 7→
(
χ 7→ (−1)(|x|+|j|)|λ|λχ(x)j

)
. This morphism

is bijective when L\ and X\ are finite projective: This is clear when L and X are
shifts of P . The case when they are shifts of projective modules follows, as the
functors involved commute with finite direct sums. The general case is obtained by
induction on the number of the degrees in which L and X are not zero.

4.4. A DG algebra A is called graded-commutative if ab = (−1)|a||b|ba holds for all
a, b ∈ A. The identity map Ao → A then is a morphism of DG algebras, so each
DG A-module is canonically a DG module over Ao, and for all A-modules M and
N the complexes RHomA(M,N) and M ⊗L

A N are canonically DG A-modules.
When A and B are graded-commutative DG algebras, then so is A⊗KB, and the

canonical isomorphisms in (2.1.1) and (2.1.2) represent morphisms in D(A⊗K B).

Proof of Theorem 4.1. The argument proceeds in several steps, with notation in-
troduced as needed. It uses chains of quasi-isomorphisms that involve a number of
auxiliary DG algebras and DG modules. We start with the DG algebras.

Step 1. There exists a commutative diagram of morphisms of DG K-algebras

K

zzuuuuuuuuuuuuuu

κ

%%KKKKKKKKKKKKKKKK
σ

// S

P e

ηe

��

ι

$$
HHHHHHHHHHHHHHH µ

// // P

η

$$
JJJJJJJJJJJJJJJJ

ηe⊗P eP

��

π

99tttttttttttttttt

Be

Be⊗P e ι

## ##
HHHHHHHHHHHHH A

ηe⊗P eA

��

'

α

99 99ttttttttttttttttt
Be ⊗P e P

∼=

ν

$$
IIIIIIIIIIIII B

' β

OOOO

Be ⊗P e A

'

Be⊗P eα

:: ::tttttttttttttt
C

'
γ

// // C̄ B ⊗P B

µ′

OOOO

where ' flags quasi-isomorphisms and � tips surjections. The morphisms appear-
ing in the diagram are constructed in the following sequence:

Fix a factorization K
κ−→ P

π−→ S of σ, with κ essentially smooth of relative
dimension d and π finite.

Set P e = P ⊗K P and let µ : P e → P denote the multiplication map, and note
that the projective dimension pdP e P is finite by 1.3.4.
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Choose a graded-commutative DG algebra resolution P e ι−→ A
α−→ P of µ with

A0 = P e, each Ai a finite projective P e-module, and supA = pdP e P ; see [2, 2.2.8].

Choose a graded-commutative DG algebra resolution P
η−→ B

π−→ S of σ, with
B0 a finite free P -module and each Bi a finite free P -module; again, see [2, 2.2.8].

Set Be = B ⊗K B and let µ′ : B ⊗P B → B be the multiplication map.
Let ν : Be ⊗P e P → B ⊗P B be the map b⊗ b′ ⊗ p 7→ (b⊗ b′)p.
Let γ : Be ⊗P e A→ B ⊗P B be the map b⊗ b′ ⊗ a 7→ (b⊗ b′)α(a).
The diagram commutes by construction. The map ν is an isomorphism by

(2.1.2), and Be⊗P e α is a quasi-isomorphism because α is one and Be is a bounded
below complex of flat P e-modules.

We always specify the DG algebra operating on any newly introduced DG mod-
ule. On DG modules of homomorphisms and tensor products the operations are
those induced from the arguments of these functors; see 4.4.

Notation. Let P e '−→ U be a semiinjective resolution over P e.
Set H = H(HomP e(P,U)).

Step 2. There exists a unique isomorphism inducing idH in homology:

H ' RHomP e(P, P e) in D(P ) .

Proof. The isomorphism H ∼= ExtP e(P, P e) of graded P -modules and (1.7.1) show
that H is projective, so Lemma 1.6 applies. �

Notation. Set L = HomP (H,P ).

Let L
'−→ I be a semiinjective resolution over P .

Step 3. There exists an isomorphism Dσ ' RHomP (S, I) in D(S).

Proof. Theorem 1.1 provides the first isomorphism in the chain

Dσ ' RHomP (S,ΣdΩdP |K)

' RHomP (S,RHomP (RHomP e(P, P e), P ))

' RHomP (S,RHomP (H,P ))

' RHomP (S, I) .

The remaining ones come from (1.7.2), Step 2, and the resolution L ' I. �

Notation. Let X ′
'−→ M be a semiprojective resolution over B, with X ′i a finite

projective P -module for each i and inf X ′ = inf H(M), see 2.3.1; set q = pdP M ,
and note that q is finite by Lemma 1.4.

Set X = X ′/X ′′, where X ′′i = X ′i for i > q, X ′′q = ∂(Xq+1), and X ′′i = 0 for
i < q. It is easy to see that X ′′ is a DG submodule of X ′, so the canonical map

X ′ → X is a surjective quasi-isomorphism of DG B-modules. Since X ′
'−→M is a

semiprojective resolution over P , each P -module Xi is projective; see [3, 2.4.P].

Let G
'−→ HomP (X,L) be a semiprojective resolution over B.

Let N
'−→ J be a semiinjective resolution over B.

Set J = HomB(S, J).

Step 4. There exists an isomorphism

RHomS(RHomS(M,Dσ), N) ' RHomB(RHomP (M,L), N) in D(B) .
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Proof. The map N
'−→ J induces the vertical arrows in the commutative diagram

N

��

HomB(S,N)
∼=

HomB(β,N)
//

��

HomB(B,N)

'
��

J HomB(S, J)
'

HomB(β,J)
// HomB(B, J)

Note that B acts on N through β, which is surjective, so HomB(β,N) is bijective.
The map HomB(β, J) is a quasi-isomorphism because β is one and J is semiinjective.
By 2.2.2(2), J is semiinjective, so N → J is a semiinjective resolution over S. In the
following chain of morphisms of DG B-modules the isomorphisms are adjunctions:

HomS(HomS(M,HomP (S, I)), J) ∼= HomS(HomP (M, I), J)

= HomS(HomP (M, I),HomB(S, J))

∼= HomB(S ⊗S HomP (M, I), J)

∼= HomB(HomP (M, I), J)

' HomB(HomP (X ′, I), J)

' HomB(HomP (X, I), J)

' HomB(HomP (X,L), J)

' HomB(G, J)

The quasi-isomorphisms are induced by M
'←− X ′

'−→ X, L
'−→ I, and G

'−→ X,
because I is semiinjective over P , J is semiinjective over B, and X is semiprojective
over P . The chain yields the desired isomorphism in D(B) as J is semiinjective over
S, G is semiprojective over B, and Step 3 gives HomP (S, I) ' Dσ. �

Notation. Let F
'−→ B be a semiprojective resolution over C.

Step 5. There exists an isomorphism

RHomB(RHomP (M,L), N) ' RHomC(B,RHomP (RHomP (M,L), N)) in D(C) .

Proof. The DG C̄-module C̄ ⊗C F is semiprojective by 2.2.2(1). The map F
'−→ B

induces the vertical arrows in the commutative diagram of DG C-modules

F
∼=
//

'
��

C ⊗C F
'

γ⊗CF
//

'
��

C̄ ⊗C F

��

B
∼=
// C ⊗C B

∼=
γ⊗CB

// C̄ ⊗C B

where γ ⊗C B is an isomorphism because γ is surjective and C acts on B through
γ, and γ ⊗C F is a quasi-isomorphism because γ is one and F is semiprojective.

The resulting quasi-isomorphism C̄ ⊗C F
'−→ B induces the quasi-isomorphism

in the following chain, because HomP (G, J) is semiinjective over C̄ by 2.2.2(2):

HomB(G, J) ∼= HomC̄(B,HomP (G, J))

' HomC̄(C̄ ⊗C F,HomP (G, J))

∼= HomC(F,HomP (G, J)) .
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The first isomorphism reflects the action of C̄ = B ⊗P B on HomP (G, J), the
second one holds by adjunction. The chain represents the desired isomorphism
because HomP (G, J) is semiinjective over C; see 4.4. �

Notation. Let Y
'−→ N be a semiprojective resolution over B.

Step 6. There exists an isomorphism

RHomP (RHomP (M,L), N) ' RHomP e(P, P e)⊗L
P e (M ⊗L

K N) in D(Be) .

Proof. From G
'−→ HomP (X,L) one gets the first link in the chain

HomP (G, J) ' HomP (HomP (X,L), J)

∼= HomP (L,P )⊗P X ⊗P J
= H ⊗P X ⊗P J
' H ⊗P X ⊗P Y
∼= H ⊗P e (X ⊗K Y )

' HomP e(P,U)⊗P e (X ⊗K Y )

of morphisms of DG C̄-modules; it is a quasi-isomorphism because the semiinjective
DG B-module J is semiinjective over P , see 2.2.2(4).

The equality reflects the definition of L.

The composition Y
'−→ N

'−→ J induces the third link; which is a quasi-
isomorphism because H and X are semiprojective over P .

The second isomorphism holds by associativity of tensor products; see 2.1.2.
The quasi-isomorphism H ' HomP e(A,P e) from Step 2 induces the last link,

which is a quasi-isomorphism because X ⊗K Y is semiflat over P e.
Finally, the semiinjectivity of J̄ and the semiflatness of X ⊗K Y imply that the

chain above represents the desired isomorphism in D(Be). �

Step 7. There exists an isomorphism

RHomP e(P, P e)⊗L
P e (M ⊗L

K N) ' RHomP e(P,M ⊗L
K N) in D(Be) .

Proof. The resolutions A
'−→ P

'−→ U over P e induce quasi-isomorphisms

HomP e(P,U) ' HomP e(A,U) ' HomP e(A,P e)

of complexes of P e-modules, which in turn induce a quasi-isomorphism

HomP e(P,U)⊗P e (X ⊗K Y ) ' HomP e(A,P e)⊗P e (X ⊗K Y )

of DG Be-modules. To wrap things up, we use the canonical evaluation morphism

HomP e(A,P e)⊗P e (X ⊗K Y )→ HomP e(A,X ⊗K Y )

given by λ⊗ x⊗ y 7→
(
a 7→ (−1)(|x|+|y|)|a|λ(a)(x⊗ y)

)
; it is bijective, because the

DG algebra A is a bounded complex of finite projective P e-modules. �

Notation. Let X ⊗K Y
'−→ V be a semiinjective resolution over Be.

Step 8. There exists an isomorphism

RHomC(B,RHomP e(P,M ⊗L
K N)) ' RHomBe(S,M ⊗L

K N) in D(Be) .
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Proof. The isomorphisms below come from adjunction formulas, see (2.1.1):

HomC(F,HomP e(A,X ⊗K Y )) ∼= HomBe(F ⊗A A,X ⊗K Y )

∼= HomBe(F,X ⊗K Y )

' HomBe(F, V )

' HomBe(S, V )

The quasi-isomorphisms are induced by X ⊗K Y ' V and F ' S, respectively,
because F is semiprojective over Be and V is semiinjective over Be. �

Step 9. The composed morphism of the chain of isomorphisms

RHomS(RHomS(M,Dσ), N) ' RHomB(RHomP (M,L), N)

' RHomC(B,RHomP (RHomP (M,L), N))

' RHomC(B,RHomP e(P, P e)⊗L
P e (M ⊗L

K N))

' RHomC(B,RHomP e(P,M ⊗L
K N))

' RHomBe(S,M ⊗L
K N)

' RHomS⊗L
KS

(S,M ⊗L
K N)

provided by Steps 4 through 8 and Theorem 3.2, defines an isomorphism in D(S).

Proof. The diagram of DG algebras in Step 1 provides a morphism from Be to every
DG algebra appearing in the chain of canonical isomorphisms above. Thus, each
isomorphism in the chain above defines a unique isomorphism in D(Be). Its source
and target are complexes of S-modules, on which Be acts through the composed
morphism of DG algebras Be → B → S. This map is equal to the composition
Be → Se → S. Therefore, Lemma 2.3.3, applied first to the quasi-isomorphism
Be → Se, then to the homomorphisms S → Se → S given by s 7→ s ⊗ 1 and
s⊗ s′ 7→ ss′, shows that the complexes above are also isomorphic in D(S). �

Step 10. The morphism in Step 9 is natural with respect to M and N .

Proof. The morphism in question is represented by a composition of quasi-isomor-
phisms of DG modules over Be, so it suffices to verify that each such quasi-isomor-
phism represents a natural morphism in D(Be).

Three kinds of quasi-isomorphisms are used. The one chosen in Step 2 involves
neither M nor N , and so works simultaneously for all complexes of S-modules; thus,
no issues of naturality arises there. Some of the constituent quasi-isomorphisms
themselves are natural isomorphisms, such as Hom-tensor adjunction or associativ-
ity of tensor products. Finally, there are quasi-isomorphisms of functors induced
replacing some DG module with a semiprojective or a semiinjective resolution. The
induced morphism of derived functors are natural, because morphisms of DG mod-
ules define unique up to homotopy morphisms of their resolutions; see 2.3.1. �

The isomorphism (4.1.1) and its properties have now been established.
Theorem 1.2(1) shows that formula (4.1.2) is equivalent to (4.1.1). �

The next result is an analog of Theorem 4.1 for the derived Hochschild functor
from Remark 3.10; it can be proved along the same lines, so the argument is omitted.
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Theorem 4.6. If fdK S is finite, then in D(S) there are isomorphisms

S ⊗L
S⊗L

KS
RHomK(M,N) ' RHomS(M,Dσ)⊗L

S N ,(4.6.1)

S ⊗L
S⊗L

KS
RHomK(RHomS(M,Dσ), N) 'M ⊗L

S N ,(4.6.2)

for all M ∈ P(σ) and N ∈ D(S); this morphism is natural in M and N . �

Setting M = S = N in (4.6.1) produces a remarkable expression for Dσ:

Corollary 4.7. In D(S) there is an isomorphism

Dσ ' S ⊗L
S⊗L

KS
RHomK(S, S) . �

Remark 4.8. The right hand sides of (4.1.2) and (3.11.1) coincide, so one might
wonder whether the induced isomorphism of the derived Hochschild functors on the
right hand side might be induced by an isomorphism of their coefficients:

RHomS(M,Dσ)⊗L
K N ' RHomK(M,N) .

To prove that no such isomorphism exists in general, it suffices to consider the
case when K is a field, S = K[x] a polynomial ring over K, and M = S = N .
The factorization K → K[x] = K[x] gives Dσ ' K[x], hence the left-hand side is
isomorphic toK[x]⊗KK[x]. On the other hand, the Se-module RHomK(K[x],K[x])
on the right hand side has an uncountable basis as a K-vector space.

5. Global duality

We now reconsider a portion of the preceding results from a global point of view.
The facts needed from Grothendieck duality theory for schemes are summarized in
this section, and the globalized results given in the next.

While it is not difficult to show that the complexes and functors we will deal with
specialize over affine schemes to sheafifications of similar things that have appeared
earlier, the corresponding statement for functorial maps between such objects is
not so easy to establish, and we will not be settling this issue here. Indeed, giving
concrete descriptions of abstractly characterized functorial maps is one of the major
problems of duality theory.

Schemes are assumed throughout to be noetherian.

A scheme-map f : X → Y is essentially of finite type if every y ∈ Y has an
affine open neighborhood V = Spec(A) such that f−1V can be covered by finitely
many affine open Ui = Spec(Ci) such that the corresponding ring homomorphisms
A→ Ci are essentially of finite type.

If, moreover, each Ci is a localization of A (that is, a ring of fractions) and
A→ Ci is the canonical map, then we say that f is localizing.

The property “essentially finite-type” behaves well with respect to composition
and base change: if f : X → Y and g : Y → Z are scheme-maps, and if both f and g
are essentially of finite type, then so is the composition gf ; if gf and g are essentially
of finite type then so is f ; and if Y ′ → Y is any scheme-map then X ′ := Y ′ ×Y X
is noetherian, and the projection X ′ → Y ′ is essentially of finite type.

Similar statements hold with “localizing” in place of “essentially finite-type.”

If the scheme-map f is localizing and also injective (as a set-map) then we say
that f is a localizing immersion.

A scheme-map is essentially smooth, resp. essentially étale, if it is essentially of
finite type and formally smooth, resp. formally étale [14, §17.1].
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For example, any localizing map is essentially étale: this assertion, being local
(see [14, (17.1.6)]), results from [14, (17.1.2)] and [13, (19.10.3)(ii)].)

Remark 5.1. In several places we will refer to proofs in [17] which make use of the
fact that the diagonal of a smooth map is a quasi-regular immersion. To ensure
that those proofs apply here, note that the same property for essentially smooth
maps is given by [14, 16.10.2, 16.9.4].

In [24, 4.1], extending a compactification theorem of Nagata, it is shown that
any essentially-finite-type separated map f of noetherian schemes factors as f = f̄u
with f̄ proper and u a localizing immersion.

Example 5.2. (Local compactification.) A map f : X = SpecS → SpecK = Y
coming from an essentially finite-type homomorphism of noetherian rings K → S
factors as

X
j−→ Z

i
↪→ Z̄

π−→ Y,

where Z is the Spec of a finitely-generated K-algebra T of which S is a localization,
j being the corresponding map, where i is an open immersion, and where π is a
projective map, so that π is proper and ij is a localizing immersion.

In the rest of this section we review basic facts about Grothendieck duality,
referring to [19] and [23] for details.

Henceforth all scheme-maps are assumed to be essentially of finite type, and
separated.

For a scheme X, D(X) is the derived category of the category of OX -modules,
Dc(X) ⊂ D(X) (resp. Dqc(X) ⊂ D(X)) is the full subcategory whose objects are
the OX -complexes with coherent (resp. quasi-coherent) homology modules, and
D+
• (resp. D−

• ) is the full subcategory of D• whose objects are the complexes E ∈ D•
with Hn(E) := H−n(E) = 0 for all n� 0 (resp. n� 0).

5.3. To any scheme-map f : X → Y one associates the right-derived direct-image
functor Rf∗ : Dqc(X) → Dqc(Y ) and its left adjoint, the left-derived inverse-image
functor Lf∗ : Dqc(Y )→ Dqc(X) [19, 3.2.2, 3.9.1, 3.9.2].

These functors interact with the left-derived tensor product ⊗L via a natural
isomorphism

(5.3.1) Lf∗(E ⊗L
Y F ) −→∼ Lf∗E ⊗L

X Lf∗F
(
E,F ∈ D(Y )

)
,

see [19, 3.2.4]; via the functorial map

(5.3.2) Rf∗G⊗L
Y Rf∗H → Rf∗(G⊗L

X H)
(
G,H ∈ D(X)

)
adjoint to the natural composite map

Lf∗(Rf∗G⊗L
Y Rf∗H) −→∼

(5.3.1)
Lf∗Rf∗G⊗L

X Lf∗Rf∗H −→ G⊗L
X H;

and via the projection isomorphism

(5.3.3) Rf∗F ⊗L
Y G −→∼ Rf∗(F ⊗L

X Lf∗G)
(
F ∈ Dqc(X), G ∈ Dqc(Y )

)
,

defined qua map to be the natural composition

Rf∗F ⊗L
Y G −→ Rf∗F ⊗L

Y Rf∗Lf
∗G −→

(5.3.2)
Rf∗(F ⊗L

X Lf∗G).

see [19, 3.9.4].
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5.4. Interactions with the derived (sheaf-)homomorphism functor RHom occur via
natural bifunctorial maps

(5.4.1) Lf∗RHomY (E,F )→ RHomX(Lf∗E, Lf∗F )
(
E,F ∈ D(Y )

)
,

(5.4.2) Rf∗RHomX(E,F )→ RHomY (Rf∗E, Rf∗F )
(
E,F ∈ D(X)

)
,

the former corresponding via (5.5.1) below to the composite map

Lf∗RHomX(E,F )⊗L
X Lf∗E −→∼

(5.3.1)−1
Lf∗

(
RHomX(E,F )⊗L

Y E
) Lf∗ε−−−→ Lf∗F,

with ε corresponding via (5.5.1) to the identity map of RHomY (E,F ); and the
latter corresponding to the composite map

Rf∗RHomX(E,F )⊗L
Y Rf∗E −→

(5.3.2)
Rf∗
(
RHomX(E,F )⊗L

X E
) Rf∗ε−−−→ Rf∗F.

The map (5.4.1) is an isomorphism if f is an open immersion, or if E ∈ D−
c (Y ),

F ∈ D+
qc(Y ) and f has finite flat dimension [19, 4.6.7].

5.5. The fundamental adjunction relation between the derived tensor and derived
homomorphism functors is expressed by the standard trifunctorial isomorphism

RHomX

(
A⊗L

XB,C
)
−→∼ RHomX

(
A,RHomX(B,C)

) (
A,B,C ∈ D(X)

)
,

see e.g., [19, §2.6]. Application of the composite functor H0RΓ(X,−) to this iso-
morphism produces a canonical isomorphism

(5.5.1)
HomD(X)

(
A⊗L

XB,C
)
−→∼ HomD(X)

(
A,RHomX(B,C )

) (
A,B,C ∈ D(X)

)
.

From among the many resulting maps, we will need the functorial one

(5.5.2) RHomX(M, E)⊗L
X F −→ RHomX(M, E ⊗L

X F )
(
M,E,F ∈ D(X)

)
,

corresponding via (5.5.1) to the natural composite map (with ε as above):

(RHomX(M, E)⊗L
X F )⊗L

X M −→∼ (RHomX(M, E)⊗L
X M)⊗L

X F
ε⊗L
X1−−−→ E ⊗L

X F.

The map (5.5.2) is an isomorphism if the complex M is perfect (see §6). Indeed,
the question is local on X, so one can assume that M is a bounded complex of
finite-rank free OX -modules. The assertion is then given by a simple induction—
similar to the one in the second-last paragraph in the proof of [19, 4.6.7]—on the
number of degrees in which M doesn’t vanish.

Similarly, the map (5.5.2) is an isomorphism if F is perfect.

5.6. For any commutative square of scheme-maps

X ′
v

//

g

��

X

f

��

Ξ

Y ′ u
// Y

one has the map θΞ : Lu∗Rf∗ → Rg∗Lv
∗ adjoint to the natural composite map

Rf∗ −→ Rf∗Rv∗Lv
∗ −→∼ Ru∗Rg∗Lv

∗.
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When Ξ is a fiber square (which means that the map associated to Ξ is an isomor-
phism X ′ −→∼ X ×Y Y ′), and u is flat, then θΞ is an isomorphism. In fact, for any
fiber square Ξ, θΞ is an isomorphism ⇐⇒ Ξ is tor-independent [19, 3.10.3].

5.7. Duality theory focuses on the twisted inverse-image pseudofunctor

f ! : D+
qc(Y )→ D+

qc(X),

where “pseudofunctoriality” (also known as “2-functoriality”) entails, in addition
to functoriality, a family of functorial isomorphisms cf,g : (gf)! −→∼ f !g!, one for

each composable pair X
f−→ Y

g−→ Z, satisfying a natural “associativity” property
vis-à-vis any composable triple, see, e.g., [19, 3.6.5].

This pseudofunctor is uniquely determined up to isomorphism by the following
three properties:

(i) If f is essentially étale then f ! is the usual restriction functor f∗.
(ii) If f is proper then f ! is right-adjoint to Rf∗ (which takes D+

qc(X) into D+
qc(Y )

[19, (3.9.2)]).
(iii) Suppose there is given a fiber square Ξ as above, with f (hence g) proper

and u (hence v) essentially étale. Then the functorial base-change map

(5.7.1) βΞ(F ) : : v∗f !F → g!u∗F
(
F ∈ D+

qc(Y )
)
,

defined to be adjoint to the natural composition

Rg∗v
∗f !F −→∼

θ−1
Ξ

u∗Rf∗f
!F −→ u∗F,

is identical with the natural composite isomorphism

v∗f !F = v!f !F −→∼ (fv)!F = (ug)!F −→∼ g!u!F = g!u∗F.

For the existence of such a pseudofunctor, see [24, §5.2].

Remarks 5.8. (a) If f has finite flat dimension (in addition to being proper), then
(5.7.1) is an isomorphism for all F ∈ Dqc(Y )—see [19, 4.7.4] and [20, 1.2].

(b) Theorem 5.3 in [24] (as elaborated in [23, 7.1.6]) states that, moreover, one
can associate, in an essentially unique way, to any fiber square Ξ with u (hence v)
flat, a functorial isomorphism βΞ, agreeing with (5.7.1) when f is proper, and with
the natural isomorphism v∗f∗ −→∼ g∗u∗ when f is essentially étale.

(c) Let f : X → Y be essentially smooth, so that by [14, 16.10.2] the relative
differential sheaf Ωf is locally free over OX . On any connected component W of X,
the rank of Ωf is a constant, denoted d(W ). There is a functorial isomorphism

(5.8.1) f !F −→∼ Σd
∧d
OX

(Ωf ) ⊗OX f∗F
(
F ∈ Dqc(Y )

)
,

with Σd
∧d
OX

(Ωf ) the complex whose restriction to any W is Σd(W )
∧d(W )

OW

(
Ωf
∣∣
W

)
.

To prove this, one may assume that X itself is connected, and set d := d(X).
Noting that the diagonal ∆: X → X×Y X is defined locally by a regular sequence of
length d [14, 16.9.4], so that ∆!OX×YX ⊗L L∆∗G ∼= ∆!G for all G ∈ Dqc(X ×Y X)
[15, p. 180, 7.3], one can imitate the proof of [31, p. 397, Theorem 3], where, in view
of (b) above, one can drop the properness condition and take U = X, and where
finiteness of Krull dimension is superfluous.

In this connection, see also 5.10 below, and [11, §2.2].
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5.9. The fact that βΞ(F ) in (5.7.1) is an isomorphism for all F ∈ D+
qc(Y ) whenever

u is an open immersion and f is proper, is shown in [19, §4.6, part V] to be
equivalent to sheafified duality, which is that for any proper f : X → Y, and any
E ∈ Dqc(X), F ∈ D+

qc(Y ), the natural composition, in which the first map comes
from 5.4.2,

(5.9.1) Rf∗HomX(E, f !F )→ RHomY (Rf∗E, Rf∗f
!F )→ RHomY (Rf∗E,F ),

is an isomorphism.
Moreover, if the proper map f has finite flat dimension, then sheafified duality

holds for all F ∈ Dqc(Y ), see [19, 4.7.4].

If f is a finite map, the isomorphism (5.9.1) with E = OX determines the
functor f ! up to isomorphism. (See [11, §2.2].) In the affine case, for example,
if f : SpecB → SpecA corresponds to a finite ring homomorphism A → B, and
∼ denotes sheafification, then for an A-complex M, the B-complex f !(M∼) can be
defined by the equality

(5.9.2) f !(M∼) = RHomA(B,M)∼.

5.10. (f ! and ⊗L). For any f = f̄u with f̄ proper and u localizing, and E,

F ∈ D+
qc(Y ) such that E ⊗L

Y F ∈ D+
qc(Y ) (e.g., E perfect, see §6), there is a

canonical functorial map

(5.10.1) f !E ⊗L
X Lf∗F → f !(E ⊗L

Y F )

equal, when u=1, to the map χf adjoint to the natural composite map

Rf∗(f
!E ⊗L

X Lf∗F ) −→∼ Rf∗f
!E ⊗L

Y F −→ E ⊗L
Y F,

(see (5.3.3)), and equal, in the general case, to the natural composition

(5.10.2) f !E ⊗L
X Lf∗F ∼= u∗f̄ !E ⊗L

X u∗Lf̄∗F ∼= u∗(f̄ !E ⊗L
X Lf̄∗F )

u∗χf̄−−−→ u∗f̄ !(E ⊗L
Y F ) ∼= f !(E ⊗L

Y F ).

“Canonicity” means (5.10.2) depends only on f, not on the factorization f = f̄u.
This is shown by imitation of the proof of [19, 4.9.2.2], after one notes that for any

composition X
i−→ X ′

v−→ Y ′ with i a closed immersion and v localizing, the induced
map from X to its schematic image in Y ′ is localizing: the question being local,
this just means that for a multiplicative system M in a ring B, and a BM -ideal J
with inverse image I in B, the natural map (B/I)M → BM/J is bijective. (See
also [24, 5.8].)
5.10.3. By [24, Theorem 5.9], the map (5.10.1) is an isomorphism if f has finite
flat dimension and E = OY —hence more generally if E is perfect, cf. end of §5.5.
In particular, for any g : Y → Z there is a natural isomorphism

(gf)!OZ ∼= f !g!OZ −→∼ f !OY ⊗L
X Lf∗g!OZ .

In combination with 5.8(c), and (6.2.1) below, this appears to be a globalization
of [6, Theorem 8.6]. But it is by no means clear (nor will we address the point
further here) that for maps of affine schemes the present isomorphism agrees with
the sheafification of the one in loc.cit.

5.11. (f ! and RHom). Let f : X → Y be a scheme-map, E ∈ D−
c (Y ), F ∈ D+

qc(Y ).
There is a canonical isomorphism

(5.11.1) f !RHomY (E,F ) −→∼ RHomX(Lf∗E, f !F ).
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Indeed, by [15, p. 92, 3.3], RHomY (E,F ) ∈ D+
qc(Y ), so f !RHomY (E,F ) ∈ D+

qc(X);

and furthermore, f !F ∈ D+
qc(X) and, by [15, p. 99, 44], Lf∗E ∈ D−

c (X), so that

RHomX(Lf∗E, f !F ) ∈ D+
qc(X). (Those proofs in [15] which are “left to the reader”

use [15, p. 73, 7.3].) So when f is proper (the only case we’ll need), the map (5.11.1)
and its inverse come out of the following composite functorial isomorphism, for any
G ∈ D+

qc(X)—in particular, G = f !RHomY (E,F ) or G = RHomX(Lf∗E, f !F ):

HomD(X)

(
G, f !RHomY (E,F )

)
−→∼ HomD(Y )

(
Rf∗G,RHomY (E,F )

)
by 5.7(ii)

−→∼ HomD(Y )

(
Rf∗G⊗L

Y E,F )
)

by (5.5.1)

−→∼ HomD(Y )

(
Rf∗(G⊗L

X Lf∗E), F )
)

by (5.3.3)

−→∼ HomD(X)

(
G⊗L

X Lf∗E, f !F )
)

by 5.7(ii)

−→∼ HomD(X)

(
G,RHomX(Lf∗E, f !F )

)
by (5.5.1)

(For the general case, one compactifies, and shows canonicity. . . )

6. Reduction of derived Hochschild functors over schemes

Terminology and assumptions remain as in the first part of Section 5. Again,
all schemes are assumed to be noetherian, and all scheme-maps to be essentially of
finite type, and separated.

An OX -complex M is perfect if X can be covered by open sets U such that the
restriction M |U is D(U)-isomorphic to a bounded complex of finite-rank locally free
OU -modules. For a scheme-map f : X → Y , with f0 the map f considered only as
a map of topological spaces, and f−1

0 the left adjoint of the direct image functor f0∗
from sheaves of abelian groups on X to sheaves of abelian groups on Y , there is a
standard way of making f−1

0 OY into a sheaf of commutative rings on X, whose stalk
at any point x ∈ X is OY,f(x) . An OX -complex M is f -perfect if M ∈ Dc(X) and

M is isomorphic in the derived category of f−1
0 OY -modules to a bounded complex

of flat f−1
0 OY -modules. Perfection is equivalent to idX -perfection, with idX the

identity map of X [16, p. 135, 5.8.1].

If f factors as X
i−→ Z

g−→ Y with g essentially smooth and i a closed immersion,
then M is f -perfect if and only if i∗M is (idZ-)perfect: the proof of [17, pp. 252, 4.4]
applies here (see Remark 5.1). Using [17, p. 242, 3.3], one sees that f -perfection is
local on X: M is f -perfect if and only if every x ∈ X has an open neighborhood U
such that M |U is f |U -perfect. Note that, f being a composite of essentially finite-
type maps, and hence itself essentially of finite type, there is always such a U for
which f |U factors as (essentially smooth) ◦ (closed immersion).

Let P(f) be the full subcategory of D(X) whose objects are all the f -perfect

complexes; and let P(X) := P(idX) be the full subcategory of perfect OX -complexes.
If f : X = SpecS → SpecK = Y corresponds to a homomorphism of noetherian

rings σ : K → S, then P(f) is equivalent to the category P(σ) of §4: in view of
the standard equivalence, given by sheafification, between coherent S-modules and
coherent OX -modules, this follows from [17, p. 168, 2.2.2.1 and p. 242, 3.3].

The central result in this section is the following theorem.
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Theorem 6.1. Consider a commutative diagram of scheme-maps

X
f

  
AA

AA
AA

AA

Z
δ
//

ν ,,

γ 22

X ′

g
  

BB
BB

BB
BB

v

==||||||||
Ξ Y

Y ′

u

>>}}}}}}}}

with δ proper, f of finite flat dimension, u flat, and Ξ a fiber square.

For M ∈ P(f), E ∈ P(Y ) and N ∈ D+
qc(Y ′), the following assertions hold.

(i) u∗E ⊗L
Y ′ N ∈ D+

qc(Y ′).

(ii) v∗RHomX(M,f !E)⊗L
X′ Lg∗N ∈ D+

qc(X ′).

(iii) There exist functorial isomorphisms

δ!
(
v∗RHomX(M,f !E)⊗L

X′ Lg∗N
)
−→∼ RHomZ

(
Lν∗M, γ!(u∗E ⊗L

Y ′ N)
)
.

(Note that v is flat, so that v∗ ∼= Lv∗; and similarly for u.)

Before presenting a proof, we derive global versions of some results established
earlier for homomorphisms of rings.

Remark 6.2. If σ : K → S is a homomorphism of rings that is essentially of finite
type and g : V = SpecS → SpecK = W is the corresponding scheme-map then,
with ∼ denoting sheafification—an equivalence of categories from D(S) to Dqc(V ),
with quasi-inverse RΓ(V,−), see [9, 5.5]—there is an isomorphism in D(V ):

(6.2.1) g!OW ' (Dσ)∼.

To see this, factor σ as K → P := V −1K[x1, . . . , xd] � S (see (1.0.1)), so that,
correspondingly, g = g1g2 with g1 essentially smooth of relative dimension d and
g2 a closed immersion; then by (5.8.1), (5.9.2), and Theorem 1.1,

g!OW ' g!
2g

!
1OW ' Σd RHomP (S,ΩdP |K) ' (Dσ)∼.

So the following assertion, for an arbitrary scheme-map f : X → Y , globalizes
Theorem 1.2(1)—and supports our calling any OX -complex isomorphic in D(X)
to f !OY a relative dualizing complex for f . Set

DfM := RHomX(M, f !OY )
(
M ∈ D(X)

)
.

Then the contravariant functor Df takes P(f) into itself, and for every M ∈ P(f)
the canonical map is an isomorphism M −→∼ DfDfM .

Indeed, the proof of [17, p. 259, 4.9.2] (in whose first line (4.8) should be (4.9))
applies here, with “localizing immersion” in place of “open immersion,” and with
“essentially smooth” in place of “smooth,” see Remark 5.1. (Actually, the assertion
being local on both X and Y , for compactifiability of f one can use Example 5.2
rather than the compactification theorem [24, 4.1].)

For E = OY and DfM in place of M , Theorem 6.1 and Remark 6.2 yield the
next Corollary, which bears comparison—at least formally—with Verdier’s “kernel
theorem” [30, p. 44, Thm. 4.1]:

Corollary 6.3. Under the assumptions of 6.1 there exists a natural isomorphism

δ!(v∗M ⊗L
X′ Lg∗N) −→∼ RHomZ(Lν∗DfM,γ!N) . �
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Corollary 6.4. Let f : X → Y be a flat scheme-map. Set X ′ := X ×Y X, with

canonical projections X
π1←− X ′ π2−→ X and diagonal map δ : X → X ′.

There are natural isomorphisms, for M ∈ P(f), E ∈ P(Y ) and N ∈ D+
qc(X) :

δ!
(
π∗1RHomX(M,f !E)⊗L

X′ π
∗
2N
)
−→∼ RHomX

(
M, f∗E ⊗L

X N
)
.

Proof. The maps π1 and π2 are flat along with f . The assertion is just the special
case of Theorem 6.1 corresponding to the data Z := X, Y ′ := X, u := f , v := π1,
and g := π2—so that ν = γ = idX . �

The first isomorphism in the next corollary is, for flat f , a globalization of
Theorem 4.1 insofar as the objects involved are concerned. This is seen by using
the description of δ! given in 5.9 for the finite map δ, and the standard equivalence
of D(S) and Dqc

(
SpecS

)
for a commutative ring S [9, 5.5]. We won’t deal with

the relation between the corresponding isomorphisms.

Corollary 6.5 (Global reduction formulae). With f and δ : X → X ′ as in 6.4,
there exist, for M ∈ P(f) and N ∈ D+

qc(X), natural isomorphisms

δ!(π∗1M ⊗L
X′ π

∗
2N) −→∼ RHomX(RHomX(M,f !OY ), N);

δ!RHomX′(π
∗
1M,π∗2N) −→∼ RHomX(M ⊗L

X f !OY , N).

Proof. For the first isomorphism, apply 6.4 with E = OY and DfM in place of M,
and use the isomorphism M −→∼ DfDfM from Remark 6.2.

The second isomorphism is the composition

δ!RHomX′(π
∗
1M,π∗2N) −→∼

a
RHomX(Lδ∗π∗1M, δ!π∗2N)

−→∼
b

RHomX(M,RHomX(f !OY , N))

−→∼
c

RHomX(M ⊗L
X f !OY , N),

where the isomorphism a comes from (5.11.1), b from the special case M = OX of
the first isomorphism in 6.5, and c from the first isomorphism in §5.5.

The following lemma contains the key ingredient for the proof of Theorem 6.1.

Lemma 6.6. Let g : X ′ → Y ′ be a scheme-map of finite flat dimension. For all
M ′ ∈ P(g), E′ ∈ P(Y ′) and F ′ ∈ D+

qc(Y ′), the map from (5.5.2) is an isomorphism

(6.6.1) ψ : RHomX′(M
′, g!E′)⊗L

X′ Lg∗F ′ −→∼ RHomX′(M
′, g!E′⊗L

X′ Lg∗F ′) .

Proof. Using the isomorphisms (5.3.1) and (for open immersions) (5.4.1), one checks
that everything here commutes with restriction to open subsets on X ′, whence the
question is local on both X ′ and Y ′ (see Remark 5.8(b).) Thus it may be assumed

that both X ′ and Y ′ are affine and that g factors as X ′ i−→ Z ′ h−→ Y ′ with i a closed
immersion and h essentially smooth.

Since i∗ preserves stalks of OX′ -modules, therefore i∗ is an exact functor, and
furthermore, since D-maps are isomorphisms if they are so at the homology level,
it will suffice to show that i∗(ψ) (= Ri∗(ψ)) is an isomorphism in D(Z ′).

Before proceeding, note that RHomX′(M
′, i!h!E′) ∈ D+

qc(X ′). That’s because

i∗M
′ ∈ D−

c (Z ′), so the duality isomorphism (5.9.1) and [15, p. 92, 3.3] give

i∗RHomX′(M
′, i!h!E′) ∼= RHomZ′(i∗M

′, h!E′) ∈ D+
qc(Z ′).

In fact, RHomZ′(i∗M
′, h!E′) is perfect because i∗M

′ and h!E′ are both perfect
(see (5.8.1), [16, p. 130, 4.19.1] and [16, p. 148, 7.1]).
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Recall from 5.10.3 that the map (5.5.2) is an isomorphism if the complex M is
perfect; and that the map (5.10.1) is an isomorphism when f is flat and E is perfect.

Now, there is the sequence of natural isomorphisms:

i∗
(
RHomX′(M

′, g!E′)⊗L
X′Lg

∗F ′
)

−→∼ i∗
(
RHomX′(M

′, i!h!E′)⊗L
X′ Li∗Lh∗F ′

)
−→∼ i∗RHomX′(M

′, i!h!E′)⊗L
Z′ Lh∗F ′ by (5.3.3)

−→∼ RHomZ′(i∗M
′, h!E′)⊗L

Z′ Lh∗F ′ by (5.9.1)

−→∼ RHomZ′
(
i∗M

′, h!E′ ⊗L
Z′ Lh∗F ′

)
by (5.5.2)

−→∼ RHomZ′
(
i∗M

′, h!(E′ ⊗L
Y ′ F

′)
)

by (5.10.1)

−→∼ i∗RHomX′
(
M ′, i!h!(E′ ⊗L

Y ′ F
′)
)

by (5.9.1)

−→∼ i∗RHomX′
(
M ′, g!(E′ ⊗L

Y ′ F
′)
)

−→∼ i∗RHomX′(M
′, g!E′ ⊗L

X′ Lg∗F ′) by (5.10.1).

It can be shown that these isomorphisms compose to i∗(ψ); but we avoid this
somewhat lengthy verification and instead use a “way-out” argument. Fix M ′

and E′. Via the above sequence of isomorphisms, the source and target of i∗(ψ),
considered as functors in F ′, are isomorphic to the functor Υ: D+

qc(Y ′)→ D+
qc(Z ′)

given by Υ(F ′) = RHomZ′(i∗M
′, h!E′) ⊗L

Z′ Lh∗F ′. Since RHomZ′(i∗M
′, h!E′) is

perfect and h is flat, it follows that Υ is a bounded functor [19, (1.11.1)], whence
the same is true of the source and target of i∗ψ.

Furthermore, one checks that ψ (and hence i∗ψ) is a morphism of ∆-functors
(see [19, §1.5]). By [15, p. 69, (iii)], it suffices therefore to prove that i∗ψ is an
isomorphism when F ′ is a quasi-coherent module.

Since Y ′ is affine, any such F ′ is a homomorphic image of a free OY ′ -module.
Hence, by [15, p. 69, (iii)] (dualized), we may assume that F ′ itself is free.

Since Υ respects direct sums in that for any small family (Fα) in D(Z ′), the
natural map is an isomorphism

⊕αΥ(Fα) −→∼ Υ(⊕αFα),

the same holds for the source and target of i∗ψ. There results a reduction to the
trivial case when F ′ = OY ′ .

This completes the proof of Lemma 6.6. �

Proof of Theorem 6.1. Assertion (i) holds because u∗E ∈ P(Y ′).
Since Ξ is a fiber square, the map v is flat along with u. For the same reason,

the map g has finite flat dimension—so that Lg∗N ∈ D+
qc(X ′), see [19, §2.7.6],

and the OX′-complex v∗M is g-perfect, see [17, p. 257, 4.7]. We then have natural
isomorphisms

v∗RHomX(M, f !E)⊗L
X′ Lg∗N −→∼ RHomX′(v

∗M, v∗f !E)⊗L
X′ Lg∗N

βΞ−→ RHomX′(v
∗M, g!u∗E)⊗L

X′ Lg∗N

ψ−→ RHomX′(v
∗M, g!u∗E ⊗L

X′ Lg∗N)

−→∼ RHomX′
(
v∗M, g!(u∗E ⊗L

Y ′ N)
)

described, respectively, in and around (5.4.1), (5.8)(b), (6.6.1), and 5.10.3.
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Since v∗M ∈ P(g) ⊂ D−
c (X ′) and g!(u∗E ⊗L

Y ′ N) ∈ D+
qc(X ′), therefore

RHomX′
(
v∗M, g!(u∗E ⊗L

Y ′ N)
)
∈ D+

qc(X ′),

cf. [15, p. 92, 3.3]. Assertion (ii) in 6.1 results.
The composition of the maps above induces the first isomorphism below:

δ!
(
v∗RHomX(M,f !E)⊗L

X′ Lg∗N
)
−→∼ δ!RHomX′

(
v∗M, g!(u∗E ⊗L

Y ′ N)
)

−→∼ RHomZ

(
Lδ∗v∗M, δ!g!(u∗E ⊗L

Y ′ N)
)

−→∼ RHomZ

(
Lν∗M, γ!(u∗E ⊗L

Y ′ N)
)
.

The second isomorphism is from (5.11.1). The third isomorphism is canonical. �
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[1] M. André, Algèbres graduées associées et algèbres symétriques plates, Comment. Math. Helv.
49 (1974), 277–301.

[2] L. L. Avramov, Infinite free resolutions, Six lectures in commutative algebra (Barcelona,

1996), Progress in Math. 166, Bikhäuser, Basel, 1–118.
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