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ADJOINTS OF IDEALS IN REGULAR LOCAL RINGS

Joseph Lipman

with an Appendix by

Steven Dale Cutkosky

Introduction. Several existing results labeled “Briançon-Skoda theorem”
concern an ideal I in a regular local ring R. Of these, the weakest states

that if I is generated by ` elements then In+`−1 ⊂ In (n > 0), where “ ”
stands for “integral closure.” In this paper, we associate to I an integrally

closed ideal Ĩ ⊃ Ī, the adjoint of I, and indicate how Ĩ can be used in place
of Ī to improve such results. At first, in Theorem (1.4.1), this just involves
a recycling of methods from [LS]. (Even that is not without benefit, see
Cor. (1.4.4)). But there’s more. It’s not hard to show that there is an n0

such that Ĩn+1 = I Ĩn for all n ≥ n0. The basic conjecture (1.6)—which, as
we’ll see, quickly implies a number of recently proved Briançon-Skoda-type
theorems—says that n0 can be taken to be the dimension of the closed fibre
in the blowup of I, i.e., to be `(I ) − 1 where `(I ) is the analytic spread
of I. This conjecture does hold when R is essentially of finite type over a
field of characteristic zero, or when dimR = 2.

Section 2 deals with a conjecture, related to Grauert-Riemenschneider
vanishing, about certain cohomology groups being zero. Suppose there
exists a proper birational map f : Y → Spec(R) such that IOY is invertible
and Y is nonsingular, i.e., locally regular. (The existence of such a Y
in all characteristics is not yet certain, but it is needed in the vanishing
conjecture.) Let ωY be a dualizing sheaf for f , chosen to be canonical in
the sense that its restriction to the open set U where f is an isomorphism

is OU . While the definition (1.1) of Ĩ uses neither Y nor any duality

theory, Proposition (1.3.1) states that H0(Y, IωY) = Ĩ; and the vanishing
conjecture states that Hi(Y, IωY) = 0 for all i > 0.
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The point is that this vanishing conjecture implies conjecture (1.6).
In fact it is only via Cutkosky’s transcendental proof of vanishing (see
Appendix) that we know conjecture (1.6) holds in characteristic zero.

Section 3 elaborates on the two-dimensional case, where the vanishing
conjecture is known to hold, see Remark (2.2.1)(b). In this case a geomet-
rically motivated treatment of the adjoint of a simple complete ideal I was
given in [L4], where close connections with the multiplicity sequence and
the conductor ideal of the local ring o of the “generic curve through I ” were
brought out. (Roughly speaking, o is the local ring at the generic point
of the exceptional divisor—a P1—on the blowup Y0 of any 2-generated
reduction I0 of I.) Propositions (3.1.2) and (3.2.2) below explore such con-
nections for an arbitrary integrally closed I primary for the maximal ideal.

Ĩ is shown to be the unique integrally closed ideal whose order is r − 1
at any infinitely near point where I has order r > 1, and 0 elsewhere. If
Y is the normalization of Y0, then IωY is just the conductor C := OY0

:OY
(so C is independent of the choice of I0), and it is generated by its global

sections, i.e., by Ĩ. We also find in Proposition (3.3) that Ĩ = I0 : I.
Again for an integrally closed m-primary ideal I in a two-dimensional

regular local ring (R,m), Huneke and Swanson have a remarkable charac-

terization of Ĩ as being the second Fitting ideal F2(I ); and more generally(
since I = F1(I )

)
, for all n > 0, F̃n(I ) = Fn+1(I ) (see [HS]).

Let me mention in closing that though the material in [L4] dates back
to 1966, the results in this paper all came out of an effort to analyze the
Briançon-Skoda theorem (3.3) in [AH1].

1. Adjoints and Briançon-Skoda theorems. Let R be a regular noe-
therian domain with fraction field K, let v be a valuation of K whose
valuation ring Rv (with maximal ideal mv) contains R, and let h be the
height of the prime ideal p := mv ∩ R. We say that v is a prime divisor
of R if Rv/mv has transcendence degree h − 1 over its subfield Rp/pRp .
It is equivalent that Rv be essentially of finite type over R, or that v be
a Rees valuation of some R-ideal I, i.e., that Rv be R-isomorphic to the
local ring of a point on the normalized blowup YI := Proj(⊕n≥0 In), where

In is the integral closure of In. Such a v is a discrete rank-one valuation.
(See [A, p. 300, Thm. 1 (4) and p. 336, Prop. 3]. Note also that R, being
universally catenary, satisfies the “dimension formula” [EGA III, (5.6.4)
and (5.6.1) (c)]; and that YI is of finite type over R [Re, p. 27, Thm. 1.5].)
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Definition (1.1). The adjoint of an R-ideal I is the ideal

Ĩ :=
⋂
v

{ r ∈ K | v(r) ≥ v(I )− v(JRv/R) }

where the intersection is taken over all prime divisors v of R, and where
for any essentially finite-type R-subalgebra S of K, the Jacobian ideal JS/R
is the 0-th Fitting ideal of the S-module of Kähler differentials Ω1

S/R .

Remarks (1.2). (a) Ĩ ⊂ R because R is the intersection of its localizations
at height one primes, and each such localization is the valuation ring of a v
for which v(JRv/R) = 0. Hence

Ĩ =
⋂
v

{ r ∈ R | v(r) ≥ v(I )− v(JRv/R) }

where the intersection is taken over all prime divisors v such that v(I ) > 0.

(b) Being an intersection of valuation ideals, Ĩ is integrally closed; and

if Ī is the integral closure of I then

(1.2.1) I ⊂ Ī ⊂ Ĩ = ˜̄I.
In fact, for any height h prime ideal P such that R/P is regular,

(1.2.2) Ī :P h−1 ⊂ Ĩ.
To see this we need only prove, for any prime divisor v, the inequality
v(JRv/R) ≥ v(P h−1), for which purpose we can localize at p := mv ∩ R,
reducing to where R is local; but then Rv ⊃ R′ := R[x2/x1, . . . , xh/x1] for
some (x1, x2, . . . , xh) generating P, and

(1.2.3) JRv/R = JRv/R′JR′/R = P h−1JRv/R′

(see [LS, p. 201, (1.1) and top of p. 202]), whence the conclusion.

(c) For any x ∈ R, we have x̃I = xĨ. In particular, x̃R = xR.

(d) For any two R-ideals I, J , we have J̃I : I = J̃ . In particular,

Ĩn+1 : I = Ĩn (n ≥ 0).

(1.3). Given any finite-type birational map f : Y → Spec(R), we may—
and will—identify OY with a subsheaf of the constant sheaf K on Y , so that
the stalks OY,y (y ∈ Y ) are all R-subalgebras of K. If g : Z → Spec(R) is
another such map which factors via f , then g is uniquely determined by Z
and Y , and we say that Z dominates Y . The relative Jacobian Jf (or, less
precisely, JY ) is the coherent OY -module whose sections over any affine
open Spec(A) ⊂ Y are given by H0

(
Spec(A),JY

)
= JA/R .

We set
ωY := OY : JY ∼= HomY (JY ,OY ).

If Y is normal, ωY is a canonical dualizing sheaf for f [LS, p. 206, (2.3)].
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For any proper birational f : Y → Spec(R) with Y normal and IOY
invertible, we set

ĨY := H0(Y, IωY ),

the ideal obtained by restricting the intersection in Definition (1.1) to

those v such that Rv is OY,y for some y ∈ Y . So Ĩ ⊂ ĨY , and ĨY is
a “decreasing” function of Y in the sense that for any proper birational

g : Z → Y with Z normal, we have ĨZ ⊂ ĨY . For any prime divisor w,

Rw is the local ring of a point on some such Z; so the intersection of all ĨZ
is just Ĩ.

Proposition (1.3.1). For any Y as above and having pseudo-rational

singularities (for example, Y regular), ĨY = Ĩ. If such a Y exists then for

any multiplicative system M in R, ĨRM = ĨRM .

Proof. The pseudo-rationality assumption forces g∗(IωZ) = IωY for all
g : Z → Y as above (by [LT, p. 107, Corollary], and since IOY is invertible),
whence

ĨZ = H0(Z, IωZ) = H0(Y, g∗IωZ) = ĨY ,

and ĨY = ∩Z ĨZ = Ĩ. The rest follows from compatibility of H0(Y, IωY )
with localization on R. �

Remarks (1.3.2). (a) That a regular Y with IOY invertible always exists
has been announced by Spivakovsky, but details have not appeared at the
time of this writing. For the equicharacteristic zero case, see [H].

(b) In dimension 2, every normal Y birationally dominating Spec(R) has
pseudo-rational singularities, [L1, p. 212, §9], [LT, p. 103, Example (a)]. So
in Proposition (1.3.1), we could take Y to be the normalized blowup of I.

(c) An example where Y in (1.3.1) can be taken to be the blowup of I is
given by I = (x1, . . . , xr, y)R, where (x1, . . . , xr) is a regular sequence such
that R/(x1, . . . , xr)R is still regular [LS, p. 219, Proposition, (ii)]. Here

Ĩn = ĨnY (n ≥ 0) is easily calculated: for, if L is any R-ideal generated
by a regular sequence of length δ and such that all the powers of L are
integrally closed, then the blowup X of L is normal and JX = Lδ−1OX ,
[LS, top of p. 202]. It follows that

L̃nX = R (n < δ)

= Ln−δ+1 (n ≥ δ).

For L = I we have δ = r or r+1 according as y is or is not in (x1, . . . , xr)R.
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(d) If R is local with maximal ideal m, and we set, for any R-ideal I,

r = r(I ) := dimR/m

(
(I +m2)/m2

)
,

then I contains an ideal I0 := (x1, . . . , xr, y)R as in (c), where we can take
δ = r + 1 unless R/I is regular, in which case δ = r. If I 6= 0 then δ ≥ 1,
and for n ≥ δ,

Ĩn : In−δ+1 = Ĩδ−1 ⊃ Ĩδ−1
0 = R,

(see Remark (1.2)(d)) whence, since Ĩn is integrally closed,

(1.3.3) In−δ+1 ⊂ Ĩn.

(1.4). The following is clearly related to the Briançon-Skoda theorem

in [LS, p. 204, Thm. 1′′].1 (Recall from (1.2.1) the inclusion Ī ⊂ Ĩ , where

Ī and Ĩ are the integral closure and adjoint, respectively, of the R-ideal I.
See also (1.3.3).)

We say that I is `-generated (` ≥ 0) if I is generated by ` elements.

Theorem (1.4.1). For any `-generated ideal I in a regular noetherian

domain R :

(i) Ĩn+`−1 ⊂ In for all n� 0.

(ii) If the graded ring grIR := ⊕n≥0 I
n/In+1 contains a homogeneous

regular element of positive degree, then (i) holds for all n ≥ 1.

(iii) Ĩn+` ⊂ In for all n ≥ 0.

Proof. If Y0 := Proj(⊕n≥0 I
n) is the blowup of I, and Y is its normalization,

then as in [LS, p. 200, Thm. 2 and proof of Corollary], I`−1ωY ⊂ OY0
(all

inside the constant sheaf K on Y0). Hence

Ĩn+`−1 ⊂ H0(Y, In+`−1ωY ) ⊂ H0(Y0, I
nOY0

) =
⋃
j≥0

In+j : Ij .

For n� 0, H0(Y0, I
nOY0

) = In (by e.g., [EGA III, (2.3.1)]),2 proving (i).
If grIR has a homogeneous regular element of positive degree, then

In+j : Ij = In, proving (ii).

1For that statement and the ones that follow it to be correct, the integer δ(I ) therein

must be replaced by max(δ(I ), 0). (When R is local, δ(I ) < 0 iff R/I is regular.)
2For a more elementary proof, apply [ZS, pp. 154–155, Lemmas 4 and 5] to the ideal

B := (0) in grIR to find an integer q such that for any n and any x ∈ H0(Y0, I
nOY0

)\In,

x /∈ Iq (because the leading form of x annihilates all homogeneous elements of large de-

gree . . . ) Such an x must lie in In. But there exists p such that Ip+1 = I Ip, whence

Ip+q ⊂ Iq, and therefore n < p+ q.
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In (i), the restriction of n to sufficiently large values is annoying, and may well be
unnecessary (see Conjecture (1.6) below). If so, then (iii)—and the following ungainly

argument—would be superfluous.

The polynomial ring R[t] is still regular. An immediate consequence of the following

Lemma is that for any R-ideal L, L̃R[t] ⊂ L̃R[t]. (The adjoints are taken in R and R[t]

respectively.) With I′ := (I, t)R[t], we have that grI′R[t] ∼= (grI′R)[t] has a regular

element (namely t) of degree 1, and we can apply (ii) to get Ĩ′n+` ⊂ I′n for all n ≥ 0;

and since Ĩn+`R[t] ⊂ (In+`R[t])˜ ⊂ Ĩ′n+` and I′n ∩R = In, therefore (iii) results.

Lemma (1.4.2). Let w be a prime divisor of the polynomial ring R[t] and let v be the
restriction of w to K, the fraction field of R. Then v is a prime divisor of R, and for

any R-ideal L,
v(L)− v(JRv/R) ≥ w(L)−w(JRw/R[t]).

Proof. Let (Rw,mw) and (Rv,mv) be the (discrete) valuation rings of w and v respec-

tively. Set q := mw ∩ Rv[t]. There are two cases to consider.
(1) q = mvRv[t]. Then the localization Rv[t]q is a discrete valuation ring contained

in, and hence equal to, Rw. Thus Rw/mw = (Rv/mv)(t) has transcendence degree

(t.d.) 1 over Rv/mv .
(2) q ) mvRv[t], whence q is maximal, and Rv [t]/q is algebraic over Rv/mv . Since

Rw is essentially of finite type over R[t], hence over Rv[t], therefore w is a prime divi-

sor of Rv[t]; and so Rw/mw has t.d. 1 over Rv [t]/q. Thus, again, Rw/mw has t.d. 1
over Rv/mv .

Now set p′ := mw∩R[t] and p := p′∩R = mv∩R, so that Rw/mw has t.d. height(p′)−1
over R[t]/p′, and by the preceding, the t.d. of Rv/mv over R/p is height(p′) − 2 + the

t.d. of R[t]/p′ over R/p. It follows then from [ZS, p. 323, Prop. 1A] that Rv/mv has

t.d. height(p)− 1 over R/p, and so v is indeed a prime divisor of R.
The last assertion follows from the relation

JRw/R[t] = JRw/Rv [t]JRv [t]/R[t] = JRw/Rv [t]JRv/R.

(See [LS, p. 201, (1.1)] for the first equality.) �

Suppose now that R is local, with maximal ideal m. For an R-ideal I,
the analytic spread `(I ) is the Krull dimension of the ring ⊕n≥0 I

n/mIn.
When R/m is infinite then I has an `(I )-generated reduction I0 ⊂ I, i.e.,
I0I

n = In+1 for some n ≥ 0.

Corollary (1.4.3). For R local, assertions (i) and (iii) in Theorem (1.4.1)
hold with ` the analytic spread of I. And if I has an `-generated reduc-
tion I0 such that grI0R contains a homogeneous regular element of positive
degree, then (i) holds for all n ≥ 0.

Proof. By arguing as in the proof of (1.4.1)(iii), with R[t] replaced by its
localization S := R[t]mR[t], and I ′ := IS, we reduce to the case where R/m
is infinite. Then we can apply (1.4.1) to an `-generated reduction I0, noting

that for any valuation v such that Rv contains R we have v(I0) = v(I ),

whence Ĩp0 = Ĩp for all p ≥ 0. �
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The following statement was conjectured by Huneke.

Corollary (1.4.4). If (R,m) is a d-dimensional regular local ring and I is
an m-primary ideal, then for all n ≥ 1,

In+d−1 :md−1 ⊂ In.

Proof. Replacing (R, I ) by (S := R[t]mR[t], IS) if necessary, we may assume
that R/m is infinite. Then I has a d-generated reduction I0 such that
grI0R is a polynomial ring in d variables over R/I0; so Corollary (1.4.3)

gives Ĩn+d−1 ⊂ In, and we can apply (1.2.2). �
Lemma (1.5). Let R be a regular noetherian domain, let I be an R-ideal,

and set G := ⊕n≥0 I
n, G̃ := ⊕n≥0 Ĩn. Then G̃ is a finitely generated graded

G-module, and hence there is an n0 such that

Ĩn+1 = I Ĩn for all n ≥ n0.

Proof. G̃ is a graded G-module because, clearly, IpĨq ⊂ Ĩp+q (p, q ≥ 0).

Now just note, with Y the normalized blowup of I, that by (1.3), G̃ is
a submodule of ⊕n≥0 H

0(Y, InωY ), which is finitely generated over G (see
[EGA III, (3.3.2)]). �

As we’ll see in (2.3) below, the following refinement of Lemma (1.5) holds
true when R is essentially of finite type over a characteristic-zero field, or
when dimR = 2. (The 2-dimensional case also results from Prop. (3.1.2),
or from Prop. (4.2) of [HS]. For another example, see Remark (1.3.2)(c).)

Conjecture (1.6). Let R be a regular local ring, and let I be an R-ideal
of analytic spread `. Then

Ĩn+1 = I Ĩn for all n ≥ `− 1.

We illustrate the usefulness of this conjecture (when it holds) by indi-
cating how it implies some Briançon-Skoda-type theorems recently proved
for equicharacteristic regular local rings by Aberbach and Huneke. These
theorems are all of the form

In+`−1 ⊂ InA (n > 0),

where the “coefficient ideal” A depends only on I. Under the assumption

that (1.6) holds, we need only show that Ĩ`−1 ⊂ A in order to get the
stronger assertion (see (1.2.2) and (1.3.3)):

Ĩn+`−1 = InĨ`−1 ⊂ InA (n > 0).
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(1.6.1). In [AH2] A is taken to be the sum of all ideals A′ such that

IA′ = ĪA′. By (1.6) and (1.2)(b), IĨ`−1 = Ĩ` = Ī Ĩ`−1, so that Ĩ`−1 ⊂ A.3

(1.6.2). In [AH1, p. 350, Thm. 3.3], A is taken to be the intersection of
the primary components of I`−h belonging to the minimal primes p1, . . . , pe
of I, where h := maxi hi := maxi height(pi). (To check that ` ≥ h, just

localize at each pi.) To show that Ĩ`−1 ⊂ A, localize at p = pi (1 ≤ i ≤ e),
and note that

Ĩ`−1Rp ⊂ ˜I`−1Rp ⊂ I`−hi ⊂ I`−h,

where the first inclusion is elementary, and the second is given by (1.4.1)(ii).
Moreover, if (1.6) holds, then with Ip := IRp we have

Ĩ`−1
p = I`−hp Ih−hip Ĩhi−1

p = I`−hp Ĩh−1
p ;

and hence if Ĩ`−1Rp = Ĩ`−1
p for all pi (see Prop. (1.3.1)), then Ĩ`−1 is

even contained in the intersection of the primary components of I`−hĨh−1

belonging to the pi.

(1.6.3). In [AHT, Thm. 7.6], the above-mentioned Thm. 3.3 of [AH1]
is strengthened. Here the inductive description of A is a bit complicated. So

suffice it to say that the inclusion Ĩ`−1 ⊂ A can be established by alternately
localizing at suitable associated primes of height i and applying (1.6), as
i goes, one step at a time, from `− 1 down to the height of I.

2. A vanishing conjecture. Again, let I be an ideal in a regular local
ring (R,m). Throughout this section we make the following assumption—
which is satisfied at least over varieties in characteristic zero [H, p. 143,
Cor. 1], or whenever dimR = 2, as follows e.g., from the Hoskin-Deligne
formula, see [L3, p. 223, (3.1.1)].

Assumption (2.1). There exists a map f : Y → Spec(R) which factors as
a sequence of blowups with nonsingular centers, such that IOY is invertible.

The basic conjecture (1.6) will be deduced from the following vanishing
conjecture.

Vanishing Conjecture (2.2). With I and f : Y → Spec(R) as above,

Hi(Y, IωY ) = 0 for all i > 0.

3When dimR = 2 and I is a 2-generated ideal primary for the maximal ideal, then

Ĩ = A, see Prop. (3.3) below.
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Remarks (2.2.1). (a) Cutkosky has a proof of the vanishing conjecture
for local rings essentially of finite type over a field of characteristic zero,
(Appendix, Theorem A3). He uses Kodaira vanishing, which doesn’t always
hold in positive characteristic; but that does not preclude the conjecture
for special maps such as f .

(b) It was noted in (1.3) that ωY is a dualizing sheaf for f . By duality
[L2, p. 188], the conjecture is equivalent to the vanishing ofHi

E(Y, (IOY )−1)
for all i < dimR, where E := f−1{m} is the closed fiber. For d = 2, this
dual assertion is proved in [L2, p. 177, Thm. 2.4].

(c) For I = R, the conjecture is a form of Grauert-Riemenschneider
vanishing, and is readily proved by induction on the number of blowups
making up the map f . For arbitrary I, the conjecture is equivalent to the
vanishing of Hi(Y,Q) for all i > 0 and every invertible quotient Q of a
finite direct sum of copies of ωY (because IOY is a quotient of a direct sum
of copies of OY . . . )

Further, if g : Z → Spec(R) is the normalized blowup of I and h : Y → Z
is the domination map, then using the Leray spectral sequence for f = gh,
and ampleness of IOZ , one shows that the vanishing of Rih∗ωY (i > 0) is
equivalent to the vanishing of Hi(Y, InωY ) for all n � 0. In other words,
Conjecture (2.1) is somewhat stronger than Grauert-Riemenschneider van-
ishing for “sandwiched singularities.”

(d) Theorem (4.1) of [L6, p. 153] shows that there is an R-ideal L such
that Y in (2.1) is the blowup of L, i.e., the Proj of the Rees ring R[Lt] (t an
indeterminate), and such that R[Lt] is Cohen-Macaulay (CM). This leads
to another conjecture, which can be shown to imply the vanishing one:

CM Conjecture. Let L = II ′, with L, I, and I ′ integrally closed R-ideals,
and assume that R[Lt] is CM and normal. Then for some e > 0, the ideal
IR[Let] (which is divisorial ) is CM as an R[Let]-module.

(2.3). We show next that Conjecture (1.6) follows from the vanish-
ing conjecture.4 Thus (1.6) does hold for local rings of smooth points of
algebraic varieties in characteristic zero, or when dimR = 2. (See the
preceding remarks (2.2.1)(a) and (b).)

We reduce to where R/m is infinite by passing as usual to S := R[t]mR[t].

We saw in proving (1.4.1)(iii) that for any R-ideal L, L̃S ⊂ L̃S; but now
we need equality, which we can get by applying Prop. (1.3.1) to Y ⊗R S,
with Y as in (2.1). (I don’t know a more elementary way.)

Now let I0 = (a1, . . . , a`)R be a reduction of I, so that I0OY = IOY .
Let F be the direct sum of ` copies of (I0OY )−1, and let σ : F → OY be the
OY -homomorphism defined by the sequence (a1, . . . , a`). Then we have a

4All we’ll need here is that Y is regular and IOY is invertible.
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locally split Koszul complex

K(F, σ) : 0→ Λ`F → Λ`−1F → · · · → Λ1F
σ−→ OY → 0

(see [LT, p. 111]), so that K(F, σ)⊗ In+1ωY (n ≥ `− 1) is exact. By (2.2),
and with Hi(−) := Hi(Y,−),

H1(In−1ωY ) = H2(In−2ωY ) = · · · = H`−1(In+1−`ωY ) = 0.

Hence, as in [LT, p. 112, Lemma (5.1)] we can conclude that

H0(In+1ωY ) = IH0(InωY ),

i.e., by Proposition (1.3.1), Ĩn+1 = I Ĩn. �
3. Dimension 2. Except in Lemma (3.2.1), (R,m) will be a regular local
ring of dimension 2 and I will be an m-primary R-ideal. The purpose of

this section is to give a number of alternative descriptions of Ĩ.

(3.1). It is pointed out in the footnote on p. 235 of [L4] that when I is
a simple integrally closed ideal, the definition of the adjoint of I given in
[L4, p. 229] and [L5, p. 299] agrees with the one in this paper (see Propo-
sition (1.3.1)). Let us extend this result—more specifically, the not-quite-
correctly stated Corollary (4.1) of [L4, p. 233]—to arbitrary I.

The point basis of I is the family of integers (ordS(IS))S⊃R where S runs
through all two-dimensional regular local rings between R and its fraction
field, ordS is the order valuation associated with the maximal ideal of S,

and IS :=
(
gcd(IS)

)−1
IS, the S-transform of I. There are only finitely

many S for which ordS(IS) 6= 0; these are called the base points of I [L4,
p. 225]. Two m-primary ideals I ′ and I ′′ have the same point basis iff their
integral closures coincide [L3, p.209, (1.10)].

Consider a sequence of regular schemes

Spec(R) =: X0 ←−
f0

X1 ←−
f1

· · · ←−
fn

Xn+1 =: X

where fi : Xi+1 → Xi (0 ≤ i ≤ n) is obtained by blowing up a point on Xi

whose local ring (Si, mi) is a base point of I, and where IOX is invertible.
Denote by miOX the invertible OX -ideal whose stalk at x ∈ X is miOX,x
if OX,x ⊃ Si , and OX,x otherwise. Then

ω−1
X =

n∏
i=0

miOX ,

see (1.2.3), or the footnote on page 235 in [L4]. With Ei ∼= P1
Si/mi

the

curve on X corresponding to the mi-adic valuation, and [Si :R] the de-
gree of the field extension (Si/mi)/(R/m), we have that the intersection
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number (Ei · Ei) is −di[Si :R] for some positive integer di , and di = 1 iff
ISi generates an invertible ideal on Xi+1, i.e., iff ISi = md

i (d > 0), in
which case (IOX · Ei) = d[Si :R]. Also, as in [L4, p. 235],

(ωX ·Ei) = −(Ei · Ei)− 2[Si :R].

It follows that (IωX · Ei) ≥ 0 for all i, so by [L1, p. 220, Thm. (12.1)(ii)],

IωX is generated by its global sections, i.e., by Ĩ, see Prop. (1.3.1). Thus:

(3.1.1) IωX = ĨOX i.e., IOX = Ĩ

n∏
i=0

miOX .

For any S ⊃ R, we have then

ordS(I )− ordS(Ĩ ) =
∑
Si⊂S

ordS(mi).

On the other hand, setting, for any two-dimensional regular local T be-

tween R and its fraction field, rT := ordT (IT ), r̃T := ordT (Ĩ T ), we have

ordS(I )− ordS(Ĩ ) =
∑
T⊂S

ordS(mi)(rT − r̃T ),

see [L4, p. 301, Remark (1)]. By induction on the length g of the unique
sequence of quadratic transforms R := R0 ⊂ R1 ⊂ · · · ⊂ Rg =: S (see [A,
p. 343, Thm. 3]), we deduce that

rS − r̃S = 1 (S = S1, S2, . . . , Sn)

= 0 otherwise.

But since S1, S2, . . . , Sn are precisely the base points of I, i.e., those S such
that rS > 0, what this amounts to is that r̃S =

(
max(0, rS − 1)

)
. Thus:

Proposition (3.1.2). Ĩ is the unique integrally closed ideal whose point
basis is (

max(0, ordS(IS)− 1)
)
S⊃R .

For any two-dimensional regular local T between R and its fraction field,
the point basis of the transform IT is obtained from that of I by restriction
to those S which contain T . Moreover, a theorem of Zariski states that IT

is integrally closed if I is (see e.g., [L5, p. 300]). We have then the following
generalization of [L4, p. 231, Thm. (3.1)]:

Corollary (3.1.3). Adjoint commutes with transform: for all T, ĨT = Ĩ T .
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(3.2). For the next result, let I be any non-zero integrally closed ideal
in a d-dimensional regular local ring R, such that I has a reduction I0
generated by a regular sequence (a1, a2, . . . , ad). Let Y0 be the blowup up
of I0, let π : Y → Y0 be the normalization map, and let C be the conductor
of Y in Y0. Then C is independent of I0:

Lemma (3.2.1). With the preceding notation, we have C = Id−1ωY .

Proof. Noting that Y0 → Spec(R) is a local complete intersection map (see
[LS, top of p. 202]), and arguing as on pp. 205–207 of loc. cit., we find that

π∗ωY = Hom(π∗OY , ωY0
) = Hom(π∗OY , (I0OY0

)1−d),

so that

π∗I
d−1ωY = π∗I

d−1
0 ωY = Id−1

0 π∗ωY = Hom (π∗OY ,OY0
) = π∗C,

whence the assertion. �

More can be said in the two-dimensional case.

Proposition (3.2.2). With the preceding notation, when d = dimR = 2,

C is generated by its global sections H0(Y,C) = H0(Y, IωY ) = Ĩ , i.e.,

C = ĨOY .

Proof. Choose X as in (3.1), and let g : X → Y be the domination map
(which exists because IOX is invertible). As in the proof of Prop. (1.3.1),
g∗(IωX) = IωY = C, the last equality by Lemma (3.2.1). Also, by [L1,

p. 209, Prop. (6.5)], the OY -ideal ĨOY is integrally closed. Hence, and
by (3.1.1),

ĨOY = g∗(ĨOX) = g∗(IωX) = IωY = C,

whence the assertion. �

Here is another characterization of Ĩ.

Proposition (3.3). Let I be an m-primary integrally closed ideal in a
regular local ring R of dimension 2, and let I0 = (a, b)R be a reduction of I.
Then with D an injective hull of R/m, we have a duality isomorphism

R/Ĩ ∼= HomR(I/I0, D).

Hence the R-module I/I0 depends only on I, and has annihilator I0 : I = Ĩ.
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Proof. Let f : Y → Spec(R) be the normalized blowup of I. Recall that
H1(Y,OY ) = 0 [L1, p. 199, Prop. (1.2)]; and H2(Y,OY ) = 0 since the fibers
of f have dimension < 2. (In fact the following argument applies to any
two-dimensional pseudo-rational singularity.) With I := IOY = (a, b)OY ,
we have the exact Koszul complex

0 −→ I−1 −b⊕a−−−→ OY ⊕OY
(a,b)−−−→ I −→ 0,

whence an exact homology sequence, with H•(−) := H•(Y,−),

R⊕R = H0(OY ⊕OY )
(a,b)−−−→ H0(I) = I → H1(I−1)→ H1(OY ⊕OY ) = 0,

yielding
I/I0 ∼= H1(I−1).

Since H1(OY ) = 0 and H2(OY ) = 0, therefore

H1(I−1) ∼= H1(I−1/OY ).

Moreover, I−1/OY vanishes on Y \ E := Y \ f−1{m}; and thus

H1
E(I−1/OY ) ∼= H1(I−1/OY ) ∼= I/I0.

Denoting the dualizing functor HomR(−, D) by −′, we have, by [L2, p. 188],

H2
E(I−1) ∼= Ext0(I−1, ωY )′ ∼= H0(I ⊗ ωY )′ = (Ĩ )′,

and similarly

H2
E(OY ) ∼= Ext0(OY , ωY )′ ∼= H0(ωY )′ = R′.

Recall from (2.2.1)(b) that H1
E(I−1) = 0. So there is an exact sequence

0→ H1
E(I−1/OY )→ H2

E(OY )→ H2
E(I−1)→ 0

whose dual is an exact sequence

0→ Ĩ → R→ HomR(I/I0, D)→ 0

which gives the desired conclusion. �
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Appendix: A VANISHING THEOREM FOR LOCAL RINGS

by Steven Dale Cutkosky5

The purpose of this note is to prove a variation of the Kodaira vanish-
ing theorem which is applicable to commutative algebra. The Theorem
(Theorem A3) is used above by Lipman in his proof of a very general
Briançon-Skoda type theorem. In particular, this gives a proof of Lipman’s
Vanishing Conjecture (2.2) for rings essentially of finite type over a field of
characteristic zero.

The vanishing theorem proved here is the consequence of a generalization
by Ramanujam of the Kodaira vanishing theorem. The book “Vanishing
theorems on projective manifolds” by Shiffman and Sommese [SS] is a good
reference for vanishing theorems on projective varieties. Theorem A2, from
which Theorem A3 is immediate, can be further generalized along the lines
of the theorems for complex projective manifolds in [SS].

Given a field k, a k-variety W and a line bundle L on W , let L be a
subfield of k such that W and L are defined over L. We will denote the
corresponding L-variety by WL, and the corresponding line bundle on WL

by LL.

Theorem A1 (Ramanujam). Let L be a line bundle on a nonsingular
complex projective variety X. Suppose that some positive multiple L⊗m is
generated by global sections and the image of X by a projective morphism
determined by Γ(X,L⊗n) has the dimension of X for large n. Then

Hi(X,L−1) = 0 for i < dim(X).

This is Theorem 3 of [Ra]. The proof is also given in [SS, Theorem 7.1].

Theorem A2. let R be a local domain essentially of finite type over a
field k of characteristic zero. Suppose that f : X → Spec(R) is a projective
resolution of singularities, ωX is a dualizing sheaf on X, and L is a line
bundle on X which is generated by global sections. Then Hi(X,L⊗ωX) = 0
for i > 0.

Proof. R is the local ring of a point P on a projective k-variety V . By
resolution of singularities [H], there exists a nonsingular variety Y and a
projective morphism a : Y → V such that a : YP → VP is isomorphic to
f : X → Spec(R). Extend L to a line bundle L′ on Y . Let A be a very
ample divisor on V . After replacing A by a sufficiently high power, we

5Partially supported by NSF
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have that A ⊗ a∗(L′) is generated by global sections on V , so there is a
surjection

(1) Γ(V,A⊗ a∗(L′))⊗k OV → A⊗ a∗(L′).

L′ | YP is generated by global sections, so that

(2) a∗(L′)⊗OV OY → L′ is surjective in a neighborhood of YP .

By (1) and (2), and since Γ(Y,A ⊗ L′) = Γ(V,A ⊗ a∗(L′)), therefore
Γ(Y,A⊗L′)⊗kOY → A⊗L′ is surjective in a neighborhood of YP . Hence
A⊗L′ is generated by global sections in a neighborhood of a−1(P ).

By resolution of indeterminacies [H], there exists a projective birational
morphism of nonsingular varieties g : Y ′′ → Y obtained by blowing up
a subscheme whose support is disjoint from a−1(P ), and an exceptional
divisor E for g such that A⊗O(−E)⊗L′ is generated by global sections.
A2⊗O(−E)⊗L′ is then also generated by global sections, and a nontrivial
section of Γ(Y ′′,A⊗O(−E)⊗ L′) gives an inclusion

Γ(Y ′′,A) ⊂ Γ(Y ′′,A2 ⊗O(−E)⊗ L′).

The image of the morphism from Y ′′ into P(Γ(Y ′′,A2 ⊗ O(−E) ⊗ L′))
projects onto V in P(Γ(Y ′′,A)). So after possibly replacing A by a high
power, we may assume that the image of Y ′′ by the projective map deter-
mined by Γ(Y ′′,A ⊗ O(−E) ⊗ L′) has dimension equal to the dimension
of V . LetM = A⊗O(−E)⊗L′, b = a◦g. Then b : Y ′′P → VP is isomorphic
to f : X → Spec(R), and MP

∼= L.
Y ′′ and M are defined over a finitely generated extension field of the

rationals. Let L be an algebraic closure of this extension in the function
field of Y ′′. Then L can be embedded in the complex numbers C, and
Y ′′L ⊗L C is a nonsingular complex projective variety.

By Ramanujam’s vanishing theorem (Theorem A1), Hq(Y ′′C,M−1
C ) = 0

for q < dim(V ). Since Hq(Y ′′C,M−1
C ) ∼= Hq(Y ′′L ,M−1

L ) ⊗L C and since

Hq(Y ′′k ,M−1
k ) ∼= Hq(Y ′′L ,M−1

L )⊗L k, we have that

Hq(Y ′′k ,M−1
k ) = 0 for q < dim(V ).

By Serre duality, we have Hq(Y ′′, ωY ′′ ⊗M) = 0 for q > 0. Consider
the Leray spectral sequence

Hr(V,Rsb∗(ωY ′′ ⊗M)⊗An)⇒ Hr+s(Y ′′, ωY ′′ ⊗M⊗An).
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Hr(V,Rsb∗(ωY ′′ ⊗M) ⊗ An) = 0 for r > 0 and Rsb∗(ωY ′′ ⊗M) ⊗ An is
generated by global sections for sufficiently large n since A is ample. We
then have

H0(V,Rsb∗(ωY ′′ ⊗M)⊗An) = Hs(Y ′′, ωY ′′ ⊗M⊗An) = 0

for s > 0 and all sufficiently large n. Hence Rsb∗(ωY ′′ ⊗M)⊗An = 0 for
s > 0, and Hs(X,L⊗ ωX) = 0.

Theorem A3. Let R be a local domain essentially of finite type over a
field k of characteristic zero. Suppose that f : X → Spec(R) is a resolution
of singularities, ωX is a dualizing sheaf on X, and I ⊂ R is an ideal such
that IOX is an invertible OX module. Then Hi(X, IωX) = 0 for i > 0.

Proof. The conclusion follows from Theorem A2 since IOX is a line bundle
generated by sections.
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