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Introduction. In the study of the singularity of a complex plane curve germ (C, 0),
given locally, say, by f(x, y) = 0, important roles are played by the adjoint curves
(those having a local equation g = 0 such that g restricts on C to an element in
the conductor ideal of the one-dimensional local ring OC,0 of germs of holomorphic
functions), and by the polar curves (those given locally by an equation of the form
afx + bfy + cf = 0 with a, b, c ∈ C). In this paper, we introduce corresponding
complete ideals C and P in the convergent power series ring C{x, y}, and indeed in
any two-dimensional regular local ring.

The classical theory of base points of linear systems of curves on smooth sur-
faces, exposed at length in [4, book 4] and summarized in [16, Chaps. 1 and 2],
inspired Zariski to create the theory of complete (=integrally closed) ideals in two-
dimensional regular local rings [15, pp. 199–201]. Over the past half century, this
theory has been further developed, by Zariski himself and others [17, Appendix 5],
[6, Chaps. II and V], [7], [5], [12], [8].

A complete ideal p in C{x, y} encodes local “base conditions” to be satisfied by
certain complete linear systems of curves C through the origin; the adjoint ideal Cp
(defined in (2.1)) encodes the conditions which are then satisfied by the adjoints
of a generic such C, and the polar ideal Pp (defined in (5.1)) does the same for
curves whose multiplicities at the infinitely near base points of the linear system
are at least as big as those of the generic polar of C. These “polar multiplicities”
were worked out in [4, pp. 374–381] (and for an extensive modern treatment of
local polars of plane curves, see [1], [2], [3]). They are just the integers which make
up the point basis of P, i.e., the si prescribed in Theorem (5.2) below in terms
of the point basis {ri} of p, which {ri} may also be thought of as the sequence
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of infinitely near multiplicities of the generic curve C (weighted by the degrees
of certain field extensions when we work with fields which are not algebraically
closed). The factorization of P into simple complete ideals is related to the number
of irreducible branches of the generic polar, cf. (5.3). The basic results on the
adjoint ideal are given in (2.2) and (3.1), and further interesting properties appear
in §4.

When our two-dimensional regular local ring, with maximal ideal m, has an
algebraically closed residue field, then C = P : m. The general case is treated
in (2.3).

Though the preceding loosely-described background is geometric, all our consid-
erations will be purely algebraic and precise (except for some remarks at the very
end). We assume throughout that the complete ideal p is simple. The extension
to more general complete ideals—corresponding to the extension from irreducible
plane curve germs to reducible ones—is left to the sufficiently motivated reader.

1. Preliminaries. We first fix some notation and terminology, and recall a few
basic facts. More details and references can be found in [7].

(1.1) Let K be a field. Greek letters α, β, γ, . . . will denote two-dimensional
regular local rings with fraction field K; and such objects will be called “points.” A
quadratic transform of a point α is a localization α[x−1mα]n where x is an element of
the maximal ideal mα of α, x /∈ m2

α, and n is a maximal ideal in the ring α[x−1mα].
Any such quadratic transform is itself a point, in which mα generates a principal
prime ideal.

A point β is said to be infinitely near to a point α if β ⊃ α. There exists then
a unique sequence of the form

(1.1.1) α =: α0 ⊂ α1 ⊂ · · · ⊂ αn := β (n ≥ 0)

where for each i < n, αi+1 is a quadratic transform of αi. The maximal ideal
mβ contains mα, and the residue field extension α/mα ↪→ β/mβ has finite degree,
denoted [β : α].

(1.2) For an α-ideal I of finite colength (i.e., I contains some power of mα), the
transform Iβ of I in a point β ⊃ α is the ideal I(Iβ)−1, which is mβ-primary unless
Iβ is a principal ideal, in which case Iβ = β. If β is a quadratic transform of α,
then the ideal mαβ is principal, and Iβ = I(mαβ)−r, where r := ordα(I) is the
largest among those integers s such that I ⊂ msα. Transform is transitive: if γ ⊃ β
then (Iβ)γ = Iγ. Transform preserves products: (IJ)β = IβJβ.

An α-ideal I is complete (i.e., integrally closed) if IR∩α = I for every valuation
ring R such that K ⊃ R ⊃ α. Any product of complete ideals is complete. I is
simple if it is not the product of two other ideals. If the finite-colength ideal I is
complete (resp. complete and simple) then so is Iβ .

The point basis of I is the family of integers {ordβ(I
β)}β⊃α, where ordβ is the

unique discrete valuation of K satisfying

(1.2.1) ordβ(x) = max{n | x ∈ mnβ } (0 6= x ∈ β).

Two complete finite-colength α-ideals coincide iff they have the same point basis.
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The Hoskin-Deligne formula for the colength of an mα-primary complete ideal I
with point basis {rβ}β⊃α is

(1.2.2) λ(α/I) =
∑
β⊃α

[β : α]rβ(rβ + 1)/2

(λ denotes “length”). For such an I, then, there are only finitely many points β
with rβ 6= 0. (In fact rβ 6= 0 iff there is a point γ ⊃ β such that ordγ is a Rees
valuation of I.)

Using (1.2.2)—or otherwise—one can show that

(1.2.3) λ(I/mαI) = ordα(I) + 1

and

(1.2.4) λ
(
(I : mα)/I

)
= ordα(I),

cf. [7, §3].

(1.3) A valuation v of K dominates α if v(x) ≥ 0 for all x ∈ α and v(x) > 0 for
all x in the maximal ideal mα of α; in other words, the valuation ring Rv contains α,
and its maximal ideal mv contains mα. For such a v, a v-ideal in α is an ideal of
the form J ∩ α where J is a non-zero ideal in Rv. The v-successor of a v-ideal I
in α is the ideal

I ′v := { x ∈ α | xRv $ IRv } = { x ∈ α | v(x) > v(I) }

where v(I) := min{ v(y) | y ∈ I } (which exists since I is finitely generated). The
principal ideal IRv strictly contains I ′vRv, and it follows that I ′v = (I ′vRv) ∩ α, so
that I ′ is a v-ideal, clearly the largest one properly contained in I.

Associated to any v we have then the sequence of v-ideals

(1.3.1) α =: I0 ⊃ I1 (= mα) ⊃ I2 ⊃ · · · ⊃ In ⊃ . . .

in which Ij+1 is the v-successor of Ij for every j ≥ 0. (We also say that Ij is the
v-predecessor of Ij+1.) For j > 0, the ideal Ij is mα-primary: clearly Ij ⊃ mαIj−1

whence, by induction, Ij ⊃ mjα. If v is rank-one discrete, then every v-ideal appears
somewhere in (1.3.1).

(1.4) We’ll call a valuation v of K a prime divisor of α if v dominates α and the
residue field extension α/mα ↪→ Rv/mv is transcendental. For example, if β ⊃ α
then ordβ is a prime divisor of α, cf. (1.2.1); and in fact every prime divisor of α is
of this form for a unique β.

Moreover, there is a one-one correspondence p ↔ vp between the set of simple
mα-primary complete ideals and the set of prime divisors of α [17, p. 391, (E)].
(Actually, vp is the unique Rees valuation of p, cf. [6, p. 245, (21.3)] or [5, p. 333,
Thm. 4.2]).



226 JOSEPH LIPMAN

Thus we have three sets in one-one correspondence:

{prime divisors of α}
l

{points infinitely near to α}
l

{simple mα-primary complete ideals}

The infinitely near point βp corresponding to a simple mα-primary complete
ideal p (i.e., ordβp = vp) is characterized by any one of the following properties:

—βp is the largest among those β ⊃ α such that pβ 6= β [17, p. 389, (B)].
—βp is the unique point infinitely near to α in which the transform of p is the

maximal ideal [17, p. 389, (B)].
—A valuation v dominating α dominates βp iff p is a v-ideal. (This follows

from [17, p. 390, (D)].)

If βp ⊂ βp′ then p ⊃ p′. (The converse doesn’t hold.)
Furthermore, for any vp-ideal I in α, the ideal Iβp is principal iff p does not

divide I (i.e., I 6= p(I : p)) [17, p. 392, (F), (2)].

Lemma (1.5). Let β ⊃ α, let v be a valuation dominating β, and let I be a
v-ideal such that the ideal Iβ is principal. Then the v-successor of I is the ideal
I ′ := (mβI) ∩ α. Moreover, the length of the α-module I/I ′ is ≤ [β : α].

Proof. Let z ∈ I be such that Iβ = zβ, and map I α-linearly to β/mβ by sending
x ∈ I to (x/z) + mβ . It is immediate that the kernel of this map is I ′, and that
the kernel of its composition with the injective map β/mβ → Rv/mv is I ′v. Thus
I ′v = I ′; and we have an (α/mα)-linear injection I/I ′ → β/mβ , whence the last
assertion. �
Corollary (1.5.1).1 For any v dominating βp (i.e., such that p is a v-ideal )
the sequence (1.3.1) of v-ideals in α coincides up to and including p with the
corresponding sequence for vp.

(1.6) Various proofs of the following useful relation can be found in [6, p. 247,
Prop. (21.4)], [13, §7], [5, p. 334, Thm. 4.3], and [8, Cor. (4.8)]:

(1.6.1) ordα(p) = [βp : α]vp(mα).

Here is one application. Define the intersection number of two mα-primary ideals
I and J , with respective point bases {rβ} and {sβ}, to be

(I · J) :=
∑
β⊃α

[β : α]rβsβ .

1Even for “polynomial ideals” this strengthens [15, p. 171, Thm. 6.2.], where only 0-dimensional

valuations occur [ibid., bottom of p. 155].
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Lemma (1.6.2). For any mα-primary ideals p, J , with p complete and simple, we
have

(p · J) = [βp : α]vp(J).

Proof. Since for β ⊃ α, pβ = β unless βp ⊃ β, therefore

(p · J) =
∑

βp⊃β⊃α
[β : α]ordβ(p

β)ordβ(J
β)

(1.6.1)
=

∑
βp⊃β⊃α

[β : α][βp : β]vp(mβ)ordβ(J
β)

= [βp : α]vp(J),

the last equality by an easy induction on the number of points between βp and α,
cf. [7, pp. 209–210, Lemma (1.11)]. �

We mention in passing a more general form of (1.6.1):

Corollary (1.6.3). (Reciprocity) For any two simple mα-primary ideals p and q,

[βp : α]vp(q) = [βq : α]vq(p).

Geometrically, (1.6.1) can be understood thus: the left-hand side is the intersection num-
ber of the proper transform of a general element of p with the closed fiber f−1{mα} of any

map f : X → Spec(α) obtained by a succession of point blowups, while the right hand side is that

intersection number when f is the map obtained by successively blowing up all the points between
α and βp, inclusive. A more precise intersection-theoretic interpretation of (1.6.3) is given in the

proof of [6, p. 247, Prop. (21.4)].

2. The adjoint ideal. We fix a point α, and denote its maximal ideal by m. The
length of an α-module M will be denoted by λ(M). For any simple m-primary
complete ideal p in α, we set

fp := [βp : α],

the degree of the residue field extension associated with βp ⊃ α.
By (1.5) and the statement immediately preceding it, if I is a vp-ideal not divis-

ible by p, and I ′ is the vp-successor of I, then λ(I/I ′) ≤ fp. In particular, if the
residue field α/m is algebraically closed then λ(I/I ′) = fp = 1.

Definition (2.1). The adjoint ideal Cp of a simple m-primary complete ideal p
is the largest vp-ideal in α containing p such that whenever I is a vp-ideal with
vp-successor I ′ and Cp ⊃ I ⊃ I ′ ⊃ p, then

(i) vp(I
′) = vp(I) + 1, and

(ii) λ(I/I ′) = fp.

Remark. Corollary (2.2.1) below entails that the “conductor property” (i) holds for
any successive pair I ⊃ I ′ of vp-ideals such that Cp ⊃ I. Property (ii), however,
doesn’t—consider the case p = m. (For more information, see [12, Remark 3.3].)
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Theorem (2.2). Let p be a simple m-primary complete ideal, and let q be the
largest among those vp-ideals q′ such that ordα(q′) = ordα(p). Then Cp = q : m
and mCp = q. In particular, ordα(Cp) = ordα(p)− 1.

Corollary (2.2.1). For every integer n ≥ n0 := vp(Cp), there exists an x ∈ α such
that vp(x) = n.

Proof. Since vp(zm) = vp(z) + vp(m) for any z ∈ α, it suffices to show that
(2.2.1) holds for n = n0, n0 + 1, . . . , n0 + vp(m) − 1, which by (2.1)(i) follows
easily from the relation mCp = q ⊃ p.

Proof of (2.2). Setting v := vp, we have, by (1.2.4) and (1.6.1),

(2.2.2) λ
(
(q : m)/q

)
= ordα(q) = ordα(p) = fpv(m).

In view of the paragraph preceding (2.1), there must then be at least v(m) v-ideals
contained in q : m and strictly containing q. On the other hand, m(q : m) ⊂ q
implies that v(q) − v(q : m) ≤ v(m), and so there are at most v(m) such ideals.
Hence there are precisely v(m) such ideals; and furthermore if I is any one of them,
with v-successor I ′, then (i) and (ii) in (2.1) must hold. Thus q : m ⊂ Cp, and
v(q : m) = v(q)−v(m). (Incidentally, the same argument applies to any q′ in (2.2)).

Now let P be the v-predecessor of q, so that v(P) = v(q)−1 = v(q : m)+v(m)−1
and λ(P/q) = fp. Then P : m is a v-ideal containing q : m, and again by (1.2.4)
and (1.6.1) we have

λ
(
(P : m)/P

)
= ordα(P) < ordα(p) = fpv(m),

whence λ
(
(P : m)/(q : m)

)
< fp (cf. (2.2.2)). So if q : m $ Cp, then by (ii) in (2.1)

we must have P : m = q : m, and further, by (i), the v-predecessor I of q : m must
satisfy v(I) = v(q : m)− 1. But this is impossible, since then

v(mI) = v(m) + v(I) = v(m) + v(q : m)− 1 = v(P)

(see above), whence mI ⊂ P, i.e., I ⊂ P : m = q : m. Thus q : m = Cp.

Now ordα(Cp) < ordα(p) (since Cp % q); and

mCp ⊂ q =⇒ 1 + ordα(Cp) ≥ ordα(q) = ordα(p).

So ordα(Cp) = ordα(p)− 1. Finally,

λ
(
(q : m)/mCp

)
= λ(Cp/mCp) = ordα(Cp) + 1 = ordα(p) = λ

(
(q : m)/q

)
,

the second equality by (1.2.3) and the fourth by (2.2.2), so that mCp = q. �
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Some peculiarities of the case where α/mα is not algebraically closed are illustrated by:

Corollary (2.3). With notation as in the proof of (2.2), and C := Cp, the following conditions

are equivalent:

(i) fp > 1.
(ii) P : m 6= C.

(iii) v(P : m) = v(C)− 1.

(iv) There exists z ∈ α with v(z) = v(C)− 1.

Proof. (i)⇔(ii). Since q ⊂ P ⊂ C = q : m, therefore

fp = λ(P/q) = λ(P/mC)

≥ λ(C/mC)− λ(C/P)− λ
(
(P : m)/C

)
= λ(C/mC)− λ

(
(P : m)/P

)
= ordα(C) + 1− ordα(P) (cf. (1.2.3), (1.2.4))

= 1,

with equality throughout iff P : m = C.
(ii)⇔(iii) follows easily (since P : m ⊃ C = q : m) from

v(m) + v(P : m) = v
(
m(P : m)

)
≥ v(P) = v(q)− 1 = v(m) + v(C)− 1.

(iii)⇒(iv)⇒(i). The first implication is obvious. As for the second, with P′ the v-ideal

P
′ := {x ∈ α | v(x) ≥ v(z) }

we have v(P′) = v(C)−1, whence by (2.1) and the paragraph preceding it, fp > λ(P′/C) ≥ 1. �

3. Covariance of the adjoint. Notation remains as in §2. This section is devoted
to the proof of the following key result, to the effect that adjoint commutes with
transform. Immediate consequences appear in §4.

Theorem (3.1). Assume p 6= m, so that there is a unique quadratic transform β
of α dominated by vp. Denote the transform Iβ of an m-primary ideal I by I ′.
Then p′ is a simple mβ-primary complete ideal, and

Cp′ = (Cp)
′.

Proof. That p′ is a simple mβ-primary complete ideal is proved e.g., in [17, p. 381,
Prop. 5 and p. 386, Lemma 6].

Let q = mCp be as in (2.2), so that, mβ being principal, q′ = (Cp)
′. We show

first that q′ ⊂ Cp′ . Set v := vp = vp′ , and let

q = q0 > q1 > q2 > · · · > qn = p

be the sequence of all the v-ideals between q and p, cf. (1.3.1). Since all these ideals
have the same order, say r, their transforms—obtained by extending to β and then
dividing by the principal ideal (mβ)−r—form a descending sequence

q′ = q′0 > q
′
1 > q

′
2 > · · · > q′n = p′

whose members are v-ideals in β [17, p. 390, (D) (1)]. A similar argument holds for
any quadratic transform γ of α; and so if γ 6= β then qγi ⊃ pγ = γ for all i. From
(1.2.2) and “transitivity of transform” we find then that

λα(α/qi) = [β : α]
(

1
2r(r + 1) + λβ(β/q

′
i)
)

λα(α/qi+1) = [β : α]
(

1
2r(r + 1) + λβ(β/q

′
i+1)

)
.
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Subtracting the first of these equations from the second, and by (2.1)(ii), we get

[β : α]λβ(q
′
i/q
′
i+1) = λα(qi/qi+1) = fp,

so that
λβ(q

′
i/q
′
i+1) = [β : α]−1fp = fp′ .

Also,

v(qi) = v(qiβ) = v(q′i) + rv(m)

v(qi+1) = v(qi+1β) = v(q′i+1) + rv(m)

and so
v(q′i+1)− v(q′i) = v(qi+1)− v(qi) = 1.

It follows, by (2.1), that indeed q′ ⊂ Cp′ , i.e., (Cp)
′ ⊂ Cp′ .

If q′ = β we are done. Otherwise, let P′ ⊂ β be the v-predecessor of q′, and let
P ⊂ α be the inverse transform of P′, i.e., the largest ideal in α whose transform
in β is P′ [17, p. 390]. Clearly, P is not divisible by m and P = (msP′) ∩ α where
s := ordα(P).

Now s < r := ordα(q); for if not, then we would have

ms−r+1Cp = ms−rq ⊂ (ms−rqβ) ∩ α = (msq′) ∩ α ⊂ (msP′) ∩ α = P;

and since ordα(ms−r+1Cp) = s = ordα(P), the initial forms of elements in P with
order s would form an α/mα-vector space of dimension > 1, contradicting [17,
p. 368, Prop. 3] since P is not divisible by m. So t := r − 1− s ≥ 0, and

v
(
(Cp)

′)− v(P′) =
(
v(Cp)− (r − 1)v(m)

)
−
(
v(mtP)− (r − 1)v(m)

)
= v
(
Cp
)
− v
(
mtP

)
.

If v((Cp)
′) − v(P′) > 1, then by (2.1)(i), (Cp)

′ = Cp′ , q.e.d. So suppose that
v(Cp) − v(mtP) = 1, whence, by (2.1) again, the v-predecessor I of Cp satisfies
λ(I/Cp) < fp. Note that mtP = (mtPβ) ∩ α [17, p. 369, Cor. 2], and that

Cpβ = mr−1q′ ⊂ mr−1P′ = mtPβ,

so that Cp ⊂ mtP ⊂ I. Thus λ(mtP/Cp) < fp. Moreover, mtP and Cp have the
same order r−1, and since as before (Cp)

γ = qγ = γ for any quadratic transform γ
of α other than β, therefore (mtP)γ = γ too. Applying (1.2.2) to Cp and to mtP,2

we conclude as above that

λβ
(
P′/(Cp)

′) = λβ
(
(mtP)′/(Cp)

′) = [β : α]−1λα
(
mtP/Cp

)
< [β : α]−1fp = fp′ .

So once again we have by (2.1) that (Cp)
′ = Cp′ . �

2Here we use completeness of mtP; but mtP = (mtPβ) ∩ α suffices, cf. [7, p. 223, (3.1) etc.].
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4. More properties of the adjoint.
Denote the point basis of the simple mα-primary complete ideal p by {rβ}.

From (2.2) and (3.1) we get:

Corollary (4.1). The point basis of Cp is {rβ − 1}.
Hence, by (1.2.2):

Corollary (4.2).

λ(α/Cp) =
∑
β⊃α

[β : α]rβ(rβ − 1)/2.

Recall that fp := [βp : α].

Corollary (4.3). (Gorenstein property)

fpvp(Cp) = 2λ(α/Cp).

Proof. By (1.6.2), the left-hand side is (p · Cp) =
∑
β⊃α [β : α]rβ(rβ − 1).

Corollary (4.4). (Noh, [11, Thm. 1]). If fp = 1 (for example, if α/mα is alge-
braically closed) then the semigroup

Sp := { vp(x) | 0 6= x ∈ α }

is symmetric.

Proof. If fp = 1 then by (2.1) and (2.2.1), c := vp(Cp) is the conductor of Sp, i.e.,
Sp contains every integer ≥ c, but c − 1 /∈ Sp. Symmetry means, by definition,
that c − 1 − s ∈ Sp for every s ∈ Sp, or, equivalently, that Sp contains exactly
half of the integers in the interval [0, c − 1]. But when fp = 1, we have by (1.5)
and the statement preceding it that λ(I/I ′) = 1 for any two successive vp-ideals
containing Cp. Hence the symmetry of Sp results from (4.3). �

(4.5). Let β ⊃ α, and set p := pβ , C := Cp. The quadratic sequence

α =: α0 ⊂ α1 ⊂ · · · ⊂ αn := β (n ≥ 0)

in (1.1) gives rise to the sequence of regular surfaces

Spec(α) =: X0 ←−
f0

X1 ←−
f1

· · · ←−
fn

Xn+1 =: X

where fi : Xi+1 → Xi (0 ≤ i ≤ n) is obtained by blowing up the geometric
point xi ∈ Xi whose local ring is αi. Set mi := mαi . Note that miOX is an
invertible OX -ideal. Also pOX and COX are invertible; indeed, an easy induction
yields

pOX =
∏

0≤i≤n
m
ri
i OX

(
ri := ordαi(p

αi)
)

and similarly, in view of (4.1),

COX =
∏

0≤i≤n
m
ri−1
i OX .
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Let E′i be the curve E′i := f−1
i {xi}, and let Ei be the proper transform of E′i

on X , i.e., the unique curve on X mapped isomorphically onto E′i by the composed
map fi+1 ◦fi+2 ◦ · · · ◦fn. Let ι : Ei ↪→ X be the inclusion map. For any invertible
OX -module L, (L · Ei) denotes the degree, over α/mα, of the invertible sheaf ι∗L
on the curve Ei. For any divisor D on X , the intersection number (D · Ei) is, by
definition, (OX(D) · Ei).

Proposition (4.5.1). Set

K := p(COX)−1 =
∏

0≤i≤n
miOX .

Then
(K ·Ej) = (Ej · Ej) + 2[αj : α] (0 ≤ j ≤ n).

Proof.3 Standard intersection theory (cf. e.g., [6, §13]) yields the following facts.
—If i < j then the OX -module miOX is free (of rank one) in a neighborhood

of Ej , and hence (miOX · Ej) = 0.
—If i = j then

(miOX · Ej) = (mjOXj+1
· E′j) = −(E′j · E′j) = [αj : α].

—If i > j then (miOX · Ej) = −[αi : α] if xi lies on the proper transform of E′j
on Xi (in which case we say that αi is proximate to αj, and write αi � αj); and
otherwise (miOX · Ej) = 0.

Thus
(K ·Ej) =

∑
j≤i≤n

(mi · Ej) = [αj : α]
(
1−

∑
αi�αj

[αi : αj ]
)
.

Now let Eij be the proper transform of E′j on Xi (i > j). Then

(Ei+1
j · Ei+1

j ) = (Eij · Eij)− [αi : α] if αi � αj
= (Eij · Eij) otherwise.

Since
(Ej+1

j · Ej+1
j ) = (E′j ·E′j) = −[αj : α],

we conclude that

(Ej · Ej) = −[αj : α]−
∑
αi�αj

[αi : α] = [αj : α]
(
−1−

∑
αi�αj

[αi : αj ]
)
,

and (4.5.1) results. �

3Alternatively, [αj : α] is the Euler characteristic of OEj ; and hence (4.5.1) amounts to saying

that K = ω−1 where ω is the relative canonical sheaf for X → Spec(α), an assertion proved,

in essence, in [10, p. 111] or [9, p. 202 and p. 206, (2.3)]. In particular, C = H0(X, pω).
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Corollary (4.5.2). With Eγ := Ei when γ = αi , the adjoint ideal C factors as

C =
∏

α⊂γ$β
p
cγ
γ

where

cγ = −[γ : α]−1(Eγ · Eγ)− 2

is one less than the number of δ ⊂ β proximate to γ, each such δ being counted
with multiplicity [δ : γ].

Proof. The treatment of factorization of complete ideals given in [6, §§18–19] gives
C =

∏
α⊂γ$β p

cγ
γ with

cγ = [γ : α]−1(COX · Eγ)
(4.5.1)

= (p · Eγ)− (K · Eγ) = 0− [γ : α]−1(Eγ · Eγ)− 2.

The rest is contained in the proof of (4.5.1).4 �

5. The polar ideal. Notation remains as in §2.

Definition (5.1). The polar ideal Pp of a simple m-primary complete ideal p is
the smallest among those m-primary vp-ideals P satisfying ordα(P) = ordα(p)− 1,
i.e., Pp is the vp-predecessor of the ideal q = mCp of Theorem (2.2).

Corollary (5.1.1).

vp(Pp) = vp(Cp) + f−1
p ordα(p)− 1,

λ(α/Pp) = λ(α/Cp) + ordα(p)− fp.

Proof. Since Pp ⊂ Cp, therefore, by (2.1) and (2.2),

vp(Pp) = vp(q)− 1 = vp(Cp) + vp(m)− 1
(1.6.1)

= vp(Cp) + f−1
p ordα(p)− 1,

and also,

λ(α/Pp) = λ(α/Cp) + λ(Cp/mCp)− fp
(1.2.3)

= λ(α/Cp) + ordα(p)− fp.

�

Henceforth, we will write P (resp. C, v) for Pp (resp. Cp, vp) when there is no
possibility of confusion.

Next we describe how to derive the point basis {sγ}γ⊃α of P from the point ba-
sis {rγ}γ⊃α of p. As mentioned in the Introduction, this will explain the appellation
“polar ideal.”

4Another justification—not using geometric methods—of this description of cγ in terms of

proximity appears in [8, Example (3.2)].
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Let β ⊃ α be the point corresponding to p (so that v = ordβ , cf. (1.4)) and let

α =: α0 ⊂ α1 ⊂ · · · ⊂ αn := β

be the corresponding quadratic sequence (1.1.1). Then rγ and sγ both vanish unless
γ = αi for some i. (Such vanishing holds for the point basis of any v-ideal, cf. [17,
p. 392, (F)].) So setting ri := rαi , si := sαi , we need only look at the sequences
(ri)0≤i≤n, (si)0≤i≤n.

We say, as in the proof of (4.5.1), that αi is proximate to αj, and write αi � αj ,
if i > j and if the valuation ring of ordαj contains αi. When i > 0, αi is proximate
to αi−1 and to at most one other αj (because, for example, the closed points on Xi

in (4.5) form a normal-crossing divisor; or, one can use (5.2.2) below). If there is
such an αj, we say that αi is a satellite, and otherwise that αi is free, with respect
to (w.r.t.) α.

Set mi := mαi . The integers v(mi) = [β : αi]
−1ri (cf. (1.6)) appearing in the

following Theorem may be thought of, informally, as representing the infinitely
near multiplicities of a general element of p. At least that’s what they do when
α/mα is algebraically closed. We also let P′i be the transform Pαi (which is a
v-ideal in αi [17, p. 390, (1)]); and we set pi := p

αi , Pi := polar ideal—in αi—of pi.

Theorem (5.2). With preceding notation, we have the following inductive pre-
scription for determining ri − si :

(i) Pi ⊃ P′i ⊃ pi , so that ri − si = 0 or 1 (0 ≤ i ≤ n).

(ii) r0 − s0 = 1.

(iii) If v(mi+1) = v(mi) then ri+1 − si+1 = ri − si unless either i + 1 = n or
αi+1 is a satellite and αi+2 is free, in which cases ri+1 − si+1 = 1 (whether or not
v(mi+1) = v(mi)).

(iv) If v(mi+1) < v(mi) then ri+1 − si+1 6= ri − si .
Moreover, if ri − si = 1 then P′i = Pi. And ri − si = 1 whenever αi+1 is free.

Proof. Condition (ii) holds by the definition of P. For the rest, we proceed by
induction on the number of points between α and β, everything being obvious if
α = β. Suppose α 6= β and that we can find a k > 0 such that P′k = Pk. The
inductive hypothesis establishes (5.2)k , the statement (5.2) with the underlying
pair α ⊂ β replaced by αk ⊂ β. Such a replacement does not affect pi or P′i for
any i ≥ k (use transitivity of transform (1.2)), and hence does not affect ri, si, Pi,
or v(mi) = ordβ(mi). For i ≥ k then, assertions (i) and (iv) in (5.2), as well as
the assertions following (iv), are clearly implied by the corresponding assertions
in (5.2)k. So is assertion (iii), as we see after making the following observation: if
w.r.t. αk, αi+1 is a satellite and αi+2 is free, then the same is true w.r.t. α0—for if
αi+2 � αj for some j < k, i.e., αi+2 is contained in the valuation ring Rj of ordαj ,
then also αi+1 ⊂ Rj , so that αi+1 is proximate to αj as well as to two other points
containing αk, contradiction.

Thus, to establish (5.2) it will suffice to prove its assertions for i < k, and hence,
to prove the following Lemma.
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Lemma (5.2.1). Assume α 6= β. Let a ≥ 0 and b be the unique integers such
that

v(m0) = av(m1) + b
(
0 < b ≤ v(m1)

)
.

Then:
(i) {α1, α2, . . . , αa+1} is the set of all points proximate to α0 and contained in β;

and so for 2 ≤ i ≤ a+ 1, αi is a satellite (w.r.t. α).
(ii) v(m1) = v(m2) = · · · = v(ma) ≥ v(ma+1) = b.
(iii) If b = v(m1) and 1 ≤ a ≤ n− 2, then αa+1 is a satellite and αa+2 is free.
(iv) For 1 ≤ i ≤ a+ 1, Pi ⊃ P′i ⊃ pi , and

v(P′i)− v(Pi) =
∑

i<j≤a+1

v(mj).

Thus P′a+1 = Pa+1, ra+1 − sa+1 = 1, and for 1 ≤ i ≤ a, Pi 6= P′i , so that
ri − si = 0.

Proof. If αa+2 is proximate to αi for some i ≤ a, then so is αa+1, and therefore
i = 0 or i = a. The first possibility is excluded by (i). So is the second under
the hypotheses of (iii), since then by (ii), v(ma) = v(ma+1), and we can replace m0

by mα in (i) to conclude. Hence (iii) follows from (i) and (ii).
Now (i) and (ii) follow readily from the next result (applied with γ := α, δ the

largest point between α and β proximate to α, and w := v).

Lemma (5.2.2). Let γ ≺ δ be two points, with corresponding quadratic sequence

γ =: γ0 ⊂ γ1 ⊂ · · · ⊂ γd := δ.

If w is any valuation dominating δ, then, with mi := mγi ,

(5.2.2.1) w(mγ) ≥ w(m1) + w(m2) + · · ·+ w(md−1) + w(mδ),

with equality iff w does not dominate that quadratic transform of δ which is
proximate to γ; and consequently5

(5.2.2.2) w(mγ) ≥ w(m1) = w(m2) = · · · = w(md−1) ≥ w(mδ).

Moreover, [γi : γ1] = 1 for i = 1, 2, . . . , d.

Proof. Let m0γ1 = tγ1, and let u ∈ γ1 be such that {t, u} is a regular system of
parameters in γ1 (u exists because γ1/m0γ1 is regular). The localization of γ1 at
the prime ideal m0γ1 is the valuation ring of ordγ , and so ordγ(t) = 1, ordγ(u) = 0.

We show next, by induction on i, that for 1 ≤ i ≤ d, {t/ui−1, u} is a reg-
ular system of parameters in γi, and [γi : γ1] = 1; and that for 1 ≤ i < d,
miγi+1 = uγi+1 . Indeed, if i < d and if {t/ui−1, u} is a regular system of parame-
ters in γi, then since ordγ is non-negative on δ (by definition of the condition γ ≺ δ),

5(5.2.2.2) can be deduced from the preceding statement with γi in place of γ0 (1 ≤ i ≤ d− 2),

since γi+2, being proximate to γ0 and γi+1, can’t be proximate to γi.
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hence on γi+1, and since ordγ(u
i/t) < 0, therefore γi+1 cannot be a localization

of the ring γi[(t/u
i−1)−1mi], so γi+1 must be the localization of γi[u

−1mi] at its
maximal ideal (t/ui, u).

Now for i ≤ i < d, we have w(mi) = w(miγi+1) = w(u), which is independent
of i, proving (5.2.2.2). Furthermore,

w(mγ) = w(t) = (d− 1)w(u) + w(t/ud−1)

= w(m1) + w(m2) + · · ·+ w(md−1) + w(t/ud−1).

As above, the unique quadratic transform δ′ of δ which is proximate to γ is the
localization of the ring δ[t/ud, u] at its maximal ideal (t/ud, u); and w dominates
this δ′ iff w(t/ud) > 0, i.e., iff w(t/ud−1) > w(u). Since

w(mδ) = w
(
(t/ud−1, u)δ

)
= min{w(t/ud−1), w(u)},

the rest of (5.2.2) follows. �
It remains to prove (iv) in Lemma (5.2.1). We proceed by induction, beginning

with i = 1. Since P contains the inverse transform p0 of p1, and since P is contained
in the inverse transform of P′1 [17, p. 390, (3)], therefore [ibid, (4)] gives P′1 ⊃ p1.
Let Ci be the adjoint ideal in αi of pi. From (2.2) and (3.1) we get mr0−1

0 C1 = C0α1.

Also, mr0−1
0 P′1 = P0α1. So

v(m1C1) = v(m1) + v(C0)− (r0 − 1)v(m0),

v(P′1) = v(P0)− (r0 − 1)v(m0) = v(m0) + v(C0)− 1− (r0 − 1)v(m0)

(cf. proof of (5.1.1)). Hence

v(P′1)− v(P1) = v(P′1)− v(m1C1) + 1 = v(m0)− v(m1) = (a− 1)v(m1) + b.

Having already proved (ii) in (5.2.1), we then deduce (iv) for i = 1.

If n = 1 we are done. Otherwise, v(m0) > v(m1), so P1%P′1 ⊃ p1, so m1C1 ⊃ P′1
and ordα1

(P′1) = ordα1
(p1). Since as in the proof of (5.1.1), v(Pi) = v(miCi)− 1,

the rest follows from the next Lemma.

Lemma (5.2.3). Let L be a v-ideal in αi (1 ≤ i < n) such that miCi ⊃ L ⊃ pi.
Then Lαi+1 ⊃ pi+1, and

v(Lαi+1)− v(mi+1Ci+1) = v(L)− v(miCi)− v(mi+1).

Proof. From (2.2) and (3.1), we see that

mi+1Ci+1 = mi+1(miCi)
αi+1 = mi+1miCi(miαi+1)

−ri

where
ri := ordαi(pi) = ordαi(miCi) = ordαi(L),

so that Lαi+1 = L(miαi+1)
−ri . The conclusion results. �

This completes the proof of Lemma (5.2.1) and of Theorem (5.2).
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Remarks. (A) Let

m := p0 ⊃ p1 ⊃ · · · ⊃ pn := p

be the sequence of simple complete ideals in α corresponding to the quadratic
sequence (1.1.1) (where β = βp, cf. (1.4)). The v-ideal P := Pp factors uniquely as

P =

n∏
i=1

p
ai
i ,

cf. [17, p. 392, (2)]. Here an = 0 since P % pn = p. The remaining exponents ai can
be characterized in terms of the point basis {si}1≤i≤n of P, by means of proximity:

ai = si −
∑
αj�αi

[αj : αi]sj ,

cf. [8, Cor. (3.1)]. Hence [2, §1] yields the following geometric interpretation when
α is the local ring of a smooth point on an algebraic surface over an algebraically
closed characteristic 0 field:

Let f be a generic element of p, and let ζ be a generic polar of the curve germ
f = 0. Then ζ has

∑n
i=1 ai irreducible branches, of which precisely ai pass through

the infinitely near points6 α1, α2, . . . , αi but not through αi+1.

(B) Now observe, keeping in mind that transform preserves products (1.2) and
consequently “point basis” takes products to sums, that for any finite-colength
α-ideal L,

(P · L) =
n∑
i=1

ai(pi · L)
(1.6.2)

=
n∑
i=1

ai[αi : α]ordαi(L).

Assume, for simplicity, that [β : α] = 1 (so that [αi : α] = 1 for all i). Set m := mα.
Define:

ei := ordαi(p)− ordαi(m) (1 ≤ i ≤ n),

mi := ordαi(m) (1 ≤ i ≤ n).

The integers ei, mi are the same as the integers eq , mq associated by Teissier
[14, p. 270] to any one of the ai branches ζq of ζ which part company at αi with
the curve f = 0. To prove this, one needs to know that except for the αi, all
other infinitely near points on ζ are nonsingular on ζ and free w.r.t. α, cf. [2, p. 4,
Thm. 2.1].

With v = ordβ as before, we have then

n∑
i=1

aimi = (P ·m) = ordα(P) = ordα(p)− 1,

6A curve germ “passes through” a point αj if it has a defining equation g = 0 (g ∈ α) with

gαj 6= mtαj (t := ordα(g)), i.e., the proper transform of g in αj is a non-unit.
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and

n∑
i=1

aiei = (P · p)− (P ·m)
(1.6.2)

= v(P)− ordα(P)

(5.1)
=
(
v(m) + v(C)− 1

)
−
(
ordα(p)− 1

)
(1.6.2)

= v(C)

(4.3)
= 2λ(α/C)

(4.2)
=

n∑
i=1

ri(ri − 1).

These relations are in accord with the equations near the top of p. 270 in [14].
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gan Math. J. 28 (1981), 97–116.
11. S. Noh, The value semigroups of prime divisors of the second kind on 2-dimensional regular

local rings, Transactions Amer. Math. Soc. (to appear).

12. S. Noh, Sequence of valuation ideals of prime divisors of the second kind in 2-dimensional
regular local rings, J. Algebra (to appear).

13. M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math 112 (1990), 107–156.
14. B. Teissier, Variétés polaires I. Invariants polaires des singularités d’hypersurfaces, Inven-

tiones Math. 40 (1977), 267–292.

15. O. Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math. 60 (1938),
151–204.

16. , Algebraic Surfaces (2nd supplemented edition), Springer-Verlag, New York, 1971.

17. and P. Samuel, Commutative Algebra, vol. 2, D. van Nostrand, Princeton, 1960.

Department of Mathematics, Purdue University, W. Lafayette, IN 47907, USA

E-mail address: lipman@math.purdue.edu


