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Abstract. We show that a certain category G, whose objects are pairs G ⊃ H of groups
subject to simple axioms, is equivalent to the category of ≥ 2-dimensional vector spaces and

injective semi-linear maps; and deduce via the “Fundamental Theorem of Projective Geometry”

that the category of ≥2-dimensional projective spaces is equivalent to the quotient of a suitable
subcategory of G by the least equivalence relation which identifies conjugation by any element

of H with the identity automorphism of G.

Introduction. Let V be a left vector space of dimension ≥ 2 over a (not necessarily com-
mutative) field F . For any pair 0 6= a ∈ F , v ∈ V , let [a, v] : V → V be the map given
by

[a, v](w) = aw + v (w ∈ V ).

The set G of all such maps is closed under composition:

[a, v] ◦ [a′, v′] = [aa′, av′ + v] ;

and each [a, v] is bijective, with inverse

[a, v]−1 = [a−1, −a−1v] .

So G is a group of transformations of V , with identity element e = [1, 0].
Denote by H the subgroup of G consisting of all maps of the form [a, 0]. H is isomorphic

to the multiplicative group of non-zero elements in F .
Denote by T the subgroup of G consisting of all maps of the form [1, v]. T is a normal

subgroup of G, isomorphic to the additive group V . Every element of G is uniquely of the
form th, with t ∈ T , h ∈ H:

[a, v] = [1, v][a, 0] .

The elements of T are called translations. One checks that:

(0.1) A non-identity element g ∈ G is a translation if and only if
no conjugate of g lies in H.

Recall that for g ∈ G, the double coset HgH is the set

HgH = {h1gh2 | g ∈ G and h1, h2 ∈ H } .
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One verifies the following properties of the pair (G,H).

(GH1) For all g ∈ G,

G 6= HgH ∪H.

(In other words H has at least three distinct double cosets in G.)

(GH2) For all g ∈ G,

gHg−1 ⊂ HgH ∪ {e} .

(GH3) For all g ∈ G,

HgH = Hg−1H.

Remarks. (i) With regard to (GH2), note that for g ∈ G and h ∈ H,

ghg−1 = e ⇐⇒ h = e.

(ii) The property (GH3) follows formally from (GH2), except when H = {e}, in which
case (GH2) says nothing at all.

Indeed, if g ∈ G and e 6= h ∈ H, then applying (GH2) twice we get

gh−1g−1 ∈ HgH,
gh−1g−1 = (ghg−1)−1 ∈ (HgH)−1 = Hg−1H;

so the double cosets HgH and Hg−1H meet, and hence they are equal.

(iii) We will see later (Remark 1.11) that given (GH1), conditions (GH2) and (GH3)
together are group-theoretically equivalent to :

⋂
g∈G

gHg−1 = {e}, and(GH2)*

for each g ∈ G, HgH ∪H is a subgroup of G.(GH3)*

Now let V be the category whose objects are all pairs (V, F ) as above, and whose arrows
are injective semi-linear maps

(ζ, θ) : (V, F )→ (V ′, F ′) .

More specifically:

— θ : F → F ′ is a homomorphism of fields.
— ζ : V → V ′ is an injective map satisfying

ζ(v1 + v2) = ζ(v1) + ζ(v2) (v1, v2 ∈ V ),

ζ(av) = θ(a)ζ(v) (a ∈ F, v ∈ V ).
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Let G be the category whose objects are pairs (G,H) consisting of a group G and a
subgroup H satisfying (GH1)–(GH3) above, and whose arrows (G,H)→ (G′, H ′) are those
group homomorphisms f : G→ G′ satisfying

(0.2.1) f(H) ⊂ (H ′), and
(0.2.2) if g ∈ G has no conjugate lying in H, then f(g) ∈ G′ has no conjugate lying in H ′.

We define a functor Γ: V→ G as follows:

— For any object (V, F ), Γ(V, F ) is the pair (G,H) described at the beginning of this
Introduction.

— For any arrow (ζ, θ) : (V, F )→ (V ′, F ′), the arrow

Γ(ζ, θ) : Γ(V, F )→ Γ(V ′, F ′)

is given by the formula

Γ(ζ, θ)[a, v] = [θ(a), ζ(v)] .

To verify that Γ is indeed a functor, check that it respects categorical identities and compo-
sition, and that Γ(ζ, θ) is a group homomorphism satisfying (0.2.1) and (0.2.2)—cf. (0.1).

Our main result is:

Theorem 1. Γ is an equivalence of categories.

In other words, there exists a functor Θ: G→ V together with isomorphisms of functors

ΓΘ −→∼ 1G , ΘΓ −→∼ 1V

(where 1 denotes an identity functor). Such a functor Θ is called a pseudo-inverse of Γ.

∗ ∗ ∗
The title of this paper refers to Theorem 2 below. By way of explanation, we first re-

formulate the Fundamental Theorem of Projective Geometry [A, p. 88] in the language of
categories.

The projective space P = P (V, F ) is, by definition, the set of one-dimensional subspaces
of V . A projective subspace of P is a subset consisting of all the one-dimensional subspaces
of some vector subspace of V .

A sequence (x1, x2, . . . , xn) in P is linearly independent if for each i = 1, 2, . . . , n, xi lies
outside some projective subspace Pi ⊂ P which contains xj for all j 6= i;1 and linearly
dependent otherwise. Three points x1, x2, x3 ∈ P are collinear if (x1, x2, x3) is linearly
dependent.

A map
π : P (V, F ) = P → P ′ = P (V ′, F ′)

is a collineation if for any three collinear points x1, x2, x3 ∈ P the points π(x1), π(x2), π(x3) ∈
P ′ are also collinear. A rather simple induction shows that this is equivalent to π mapping
every linearly dependent sequence in P to a linearly dependent sequence in P ′. We say that
π is linearly faithful if it satisfies the following conditions, which are (exercise) equivalent:

— A sequence (x1, x2, . . . , xn) in P is linearly independent if and only if the sequence
(π(x1), π(x2), . . . , π(xn)) in P ′ is linearly independent.

— Every projective subspace P1 ⊂ P is of the form π−1(P ′1) for some projective subspace
P ′1 ⊂ P ′.

1i.e., if the subspace x1 + x2 + · · ·+ xn ⊂ V spanned by the xi has dimension n.
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Any linearly faithful map is an injective collineation. A bijective collineation π is linearly
faithful if and only if π−1 is a collineation.

We define P2, the category of projective spaces of dimension ≥ 2, as follows:

— The objects of P2 are the vector spaces (V, F ) of dimension ≥ 3.
— The arrows (V, F ) → (V ′, F ′) in P2 are the linearly faithful maps π : P (V, F ) →

P (V ′, F ′) .

Let V3 be the subcategory of V with objects the vector spaces (V, F ) of dimension ≥ 3,
and with arrows the semi-linear maps

(ζ, θ) : (V, F )→ (V ′, F ′)

such that ζ is linearly faithful in the sense that it satisfies the following equivalent conditions:

— A sequence (v1, v2, . . . , vn) in V is linearly independent (over F ) if and only if the
sequence (ζ(x1), ζ(x2), . . . , ζ(xn)) in V ′ is linearly independent (over F ′) .

— Every linear subspace V1 ⊂ V is of the form ζ−1(V ′1) for some linear subspace V ′1 ⊂ V ′.

Remarks. (i) If ζ is linearly faithful then ζ is injective.
(ii) If ζ is injective and θ is bijective then ζ is linearly faithful.2

(iii) If dim V ≥ 3, and if a is any non-zero element of F , then the automorphism
(ζa, θa) : (V, F )→ (V, F ) given by

ζa(v) = av (v ∈ V )

θa(b) = aba−1 (b ∈ F )

is an arrow in V3.

We define a functor Π: V3 → P2 by

Π(V, F ) = (V, F ) ,

Π
(
(ζ, θ) : (V, F )→ (V ′, F ′)

)
= πζ

where for each non-zero v ∈ V , πζ takes the subspace Fv ∈ P (V, F ) to the subspace F ′ζ(v) ∈
P (V ′, F ′).

Next we form a quotient category of V3 through which Π factors. Let R be the equivalence
relation under which two arrows in V3

(ζ1, θ1), (ζ2, θ2) : (V, F )→ (V ′, F ′)

are equivalent if there exists a non-zero a ∈ F ′ such that

(ζ2, θ2) = (ζa, θa) ◦ (ζ1, θ1) .

The quotient category V3/R has the same objects as V3; but for two objects (V, F ),
(V ′, F ′), the V3/R-arrows (V, F ) → (V ′, F ′) are the equivalence classes under R of arrows
in V3 between these two objects, composition being defined in the natural way.

There is a canonical functor ρ : V3 → V3/R taking any object to itself and taking any
arrow to its equivalence class; and it is easily checked that there is a unique functor

Π: V3/R −→ P2

such that
Π = Π ◦ ρ .

Now, at last, we can state:

2More generally, ζ is linearly faithful ⇐⇒ the map F ′ ⊗F V → V ′ induced by (ζ, θ) is injective.
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Fundamental Theorem of Projective Geometry. The functor Π is an isomorphism of
categories.

In other words, Π is bijective on objects (clearly) and on arrows: every arrow in P2 is of
the form πζ , and

πζ = πζ′ ⇐⇒ ζ ≡ ζ ′ (mod R).

The proof is essentially given by E. Artin in [A, pp. 88–91]. Artin restricts his attention to
finite-dimensional spaces and to arrows which are isomorphisms; but his arguments are easily
modified to cover the present statement.

The Fundamental Theorem in some sense reduces Projective Geometry to Linear Algebra.
Consequently, using Theorem 1, we can reduce Projective Geometry to Group Theory. Here
is a precise formulation; proofs are provided in §2.

Let G3 be the subcategory of G whose objects are pairs (G,H) satisfying (GH2), (GH3)—
or (GH2)*, (GH3)*—and

(GH1)* For all g1, g2 ∈ G,

(∗) G 6= (Hg1 ∪H)(Hg2 ∪H) ;

and whose arrows f : (G,H)→ (G′, H ′) are those of G which further satisfy:

(0.3) Every subgroup G1 of G containing H is of the form f−1(G′1)
for some subgroup G′1 of G′ containing H ′.

If Θ is, as above, a pseudo-inverse of Γ, then (GH1)* is equivalent to the vector space Θ(G,H)
having dimension ≥ 3 (cf. Corollary (2.2), which also shows that if (∗) holds for some two
elements g1, g2 ∈ G such that

H 6= Hg1H 6= Hg2H 6= H

then it holds for all g1, g2 ∈ G); and (0.3) is equivalent to Θ(f) being linearly faithful. In
fact the above functors Γ and Θ induce pseudo-inverse equivalences between the categories
V3 ⊂ V and G3 ⊂ G.

Note that if (G,H) ∈ G3 then for any h ∈ H, the inner automorphism γh : G→ G, given
by

γh(g) = hgh−1 (g ∈ G)

is an arrow in G3.
On G3 we consider the equivalence relation R∗ under which two arrows

f1, f2 : (G,H)→ (G′, H ′)

are equivalent if there exists an h ∈ H ′ such that f2 = γh ◦ f1. As above, we have a quotient
category G3/R

∗, together with a canonical functor ρ∗ : G3 → G3/R
∗. And there is a unique

functor Θ: G3/R
∗ → V3/R making the following diagram commute:

G3
Θ−−−−→ V3

ρ∗
y yρ

G3/R
∗ −−−−→

Θ

V3/R

This Θ is also an equivalence of categories.

Following Θ by the isomorphism Π, we obtain the above-indicated group-theoretic foun-
dations for projective geometry :
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Theorem 2. The category P2 of projective spaces of dimension ≥ 2 is equivalent to the
quotient category G3/R

∗ just described.

1. Proof of Theorem 1. We first define a category S which will serve as an intermediary
in the proof of the equivalence of G and V.

The objects of S, called “pointed geometries,” are triples (G, S, p) with S a set, p ∈ S, and
G a group acting faithfully on S, i.e., there is a map G × S → S—for which the image of a
pair (g, s) is denoted gs—such that

(gh)s = g(hs) (g, h ∈ G; s ∈ S)

and such that
gs = s for all s ∈ S ⇐⇒ g = e, the identity.

(For motivation, consider the triple (G, V, 0) described at the beginning of the Introduction;
or cf. [L]). A translation of (G, S, p) is defined as in [L, p. 272] to be an element g ∈ G such
that either g = e or g has no fixed points (i.e., gs 6= s for all s ∈ S). A line of (G, S, p) is by
definition a subset of S of the form

s1 + s2 = { s ∈ S | s = s1 or ∃g ∈ G with gs1 = s1, gs2 = s }

where s1, s2 are distinct points in S. It is assumed further that G acts doubly transitively on
lines, but not on all of S. (Cf. [L, p. 268, AXIOM 1, and p. 271, AXIOM 2]; recall that a
group acts doubly transitively on a set if for any s1, s2, s3, s4 in the set with s1 6= s2, s3 6= s4,
there is a g in the group such that gs1 = s3 and gs2 = s4.) Note that then G acts transitively
on S, i.e., for any s1, s2 in S there is a g in G with gs1 = s2. (There is even such a g which
furthermore satisfies gs2 = s1: this is obvious if s1 = s2, and otherwise holds because s1 and
s2 both lie on the line s1 + s2).

The arrows of S are pairs

(φ, ψ) : (G, S, p)→ (G′, S′, p′)

where φ : G→ G′ is a group homomorphism and ψ : S → S′ is a map of sets with ψ(p) = p′,
such that

(1.1) ψ(gs) = φ(g)ψ(s) (g ∈ G, s ∈ S)

and such that

φ takes non-identity translations of (G, S, p)

to non-identity translations of (G′, S′, p′) .

(1.2)

Composition of arrows (φ, ψ) : (G, S, p)→ (G′, S′, p′) and (φ′, ψ′) : (G′, S′, p′)→ (G′′, S′′, p′′)
is defined in the obvious way:

(φ′, ψ′) ◦ (φ, ψ) = (φ′ ◦ φ, ψ′ ◦ ψ) : (G, S, p)→ (G′′, S′′, p′′) .

We observe in passing the following facts.

Remarks (1.3). Let (φ, ψ) be a pair as above satisfying (1.1).

(1) If ψ is bijective then (1.2) holds.
(2) If (1.2) holds then both φ and ψ are injective.
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Proof. (1) Assuming ψ to be bijective, let g be a non-identity translation of (G, S, p), so that
gs 6= s for any s ∈ S. Since ψ is injective, therefore

φ(g)ψ(s) = ψ(gs) 6= ψ(s) ;

and since ψ is surjective, this means that φ(g)s′ 6= s′ for any s′ ∈ S′, i.e., φ(g) is a non-identity
translation of (G′, S′, p′). Thus (1.2) holds.

(2) Assuming (1.2), let us show first that ψ is injective. Let s1, s2 be distinct points of
S. By [L, p. 272, Thm. 8] there exists a translation g (obviously non-identity) with gs1 = s2.
Then

ψ(s2) = ψ(gs1) = φ(g)ψ(s1) 6= ψ(s1)

because φ(g) is a non-identity translation. So ψ is indeed injective.
Finally, if g ∈ G is such that φ(g) = e′, the identity in G′, then for every s ∈ S we have

ψ(gs) = φ(g)ψ(s) = ψ(s) ,

and since ψ is injective, therefore gs = s. So g = e, and φ is injective, as asserted. �
We show now that:

Theorem 1a. The categories G and S are equivalent.

Proof. The asserted equivalence is induced by a well-known equivalence

Φ: G→ S

where the categories G ⊃ G and S ⊃ S are as follows:
The objects of G are pairs (G,H) with G a group and H a subgroup of G; and the arrows

(G,H)→ (G′, H ′) are the group homomorphisms f : G→ G′ for which f(H) ⊂ H ′.
The objects of S are triples (G, S, p) with S a set, p ∈ S, and G a group acting transitively

on S; and the arrows (G, S, p) → (G′, S′, p′) are pairs of maps (φ, ψ) as above, satisfying
(1.1) (but not necessarily (1.2)).

For (G,H) ∈ G, let G/H be the set consisting of all the left cosets of H in G. G acts
transitively on G/H by left multiplication.

The above equivalence Φ is the functor given by

Φ(G,H) = (G, G/H, H)

Φ
(
f : (G,H)→ (G′, H ′)

)
= (f, ψf) : (G, G/H, H)→ (G′, G′/H ′, H ′)

where
ψf (gH) = f(g)H ′ (g ∈ G).

For (G, S, p) ∈ S, let Gp ⊂ G be the stabilizer of p, i.e., the subgroup

Gp = { g ∈ G | gp = p } .

It is straightforward to verify that a pseudo-inverse of Φ is the functor Ψ: S→ G given by

Ψ(G, S, p) = (G,Gp)

Ψ
(
(φ, ψ) : (G, S, p)→ (G′, S′, p′)

)
= φ : (G,Gp)→ (G′, G′p′) .
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In fact ΨΦ = 1G ; and a functorial isomorphism ΦΨ −→∼ 1S is given for (G, S, p) ∈ S by

(1, ψ) : ΦΨ(G, S, p) = (G,G/Gp, Gp) −→∼ (G, S, p)

where ψ(gGp) = gp.

We will show that Φ maps the subcategory G of G into the subcategory S of S, and that
Ψ maps S into G. It is easily checked that an isomorphism in G between two objects of
G is actually an isomorphism in G; and similarly for S ⊂ S. It will follow then that the
restrictions of Φ and Ψ to the respective subcategories G, S are pseudo-inverse equivalences,
proving Theorem 1a.

From the simple fact that g ∈ G is a non-identity translation of (G, S, p) ∈ G (i.e., gs 6= s
for all s ∈ S) if and only if no conjugate of g lies in Gp, it follows easily that Φ takes arrows
of G to arrows of S, and that Ψ takes arrows of S to arrows of G. So it remains to examine
the effect of Φ (resp. Ψ) on objects of G (resp. S).

Let us show that:

(1.4) Φ(G,H) = (G,G/H,H) ∈ S for (G,H) ∈ G.

(1.4.1) G acts faithfully on G/H.
We must show: if g′ ∈ G is such that g′gH = gH for all gH ∈ G/H, i.e., g′ ∈ gHg−1 for

all g ∈ G, then g′ = e. But by (GH1) there is a g ∈ G such that the double cosets HgH and
H are distinct, whence HgH ∩H = ∅; and from (GH2) we then get

g′ ∈ gHg−1 ∩ eHe−1 ⊂ (HgH ∪ {e}) ∩H = {e} .

(1.4.2) G does not act doubly transitively on G/H.
By (GH1) there exist three distinct double cosets H,HgH,Hg′H. Then H 6= g−1H and

g′H 6= H, but there is no j ∈ G such that jH = g′H and jg−1H = H, since such a j would
lie in Hg′H ∩HgH = ∅.

(1.4.3) G acts doubly transitively on lines.
We first give a condition for cH ∈ G/H to lie on a line aH + bH.

Lemma(1.5). If aH 6= bH and aH 6= cH are in G/H, then

cH ∈ aH + bH ⇐⇒
(i)

a−1c ∈ Ha−1bH

⇐⇒
(ii)

(aH)−1(cH) = (aH)−1(bH) .

Proof. Since cH 6= aH, we have

cH ∈ aH + bH ⇐⇒ ∃g ∈ G with gaH = aH, gbH = cH

⇐⇒ aHa−1 ∩ cHb−1 6= ∅
⇐⇒ Ha−1b ∩ a−1cH 6= ∅
⇐⇒ a−1c ∈ Ha−1bH.
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This proves the logical equivalence (i); and (ii) is obvious. �
Now let g1H, g2H, g3H, g4H ∈ aH + bH, g1H 6= g2H, g3H 6= g4H. By (1.5),

a−1gi ∈ H ∪Ha−1bH (i = 1, 2, 3, 4) .

Note that a−1gi ∈ H ⇐⇒ giH = aH. In particular, a−1g1 and a−1g2 can’t both lie in H.
It follows that

g−1
1 g2 = (g−1

1 a)(a−1g2) ∈ Hb−1aH ∪Ha−1bH ∪ (Hb−1aH)(Ha−1bH) .

By (GH3),
Hb−1aH = Ha−1bH,

and by (GH2),

(Hb−1aH)(Ha−1bH) = H(b−1aHa−1b)H ⊂ Hb−1aH ∪H;

since g1H 6= g2H, therefore g−1
1 g2 /∈ H, and we conclude then that g−1

1 g2 ∈ Ha−1bH.
Similarly, g−1

3 g4 ∈ Ha−1bH. So

Hg−1
1 g2H = Ha−1bH = Hg−1

3 g4H,

i.e., there exist h1, h2 ∈ H such that

h1g
−1
1 g2h2 = g−1

3 g4.

Thus, for g1H, g2H, g3H, g4H on one line, g1H 6= g2H, g3H 6= g4H, there is an element of
G, (namely g3h1g

−1
1 = g4h

−1
2 g−1

2 ) which sends g1H to g3H and g2H to g4H.
This completes the proof of (1.4) �
Let us show finally that

(1.6) Ψ(G, S, p) = (G,Gp) ∈ G for (G, S, p) ∈ S.

For convenience, set Gp = H.

(1.6.1) G 6= HgH ∪H for any g ∈ G.
For, were G = HgH ∪H, then for any point p 6= p1 ∈ S we would have (by transitivity,

see the definition of S), for some g1 ∈ G,

p1 = g1p = h1gp (h1 ∈ H),

and since h1p = p therefore p1 ∈ p+ gp. Thus the line p+ gp would be all of S; and since G
acts doubly transitively on lines, but not on all of S, we would have a contradiction.

(1.6.2) HgH = Hg−1H for any g ∈ G.
We may assume that g /∈ H, i.e., gp 6= p. Since G acts doubly transitively on the line

p+ gp, there exists g1 ∈ G such that

g1p = gp, g1gp = p.

It follows that there exist h1, h2 ∈ H such that

g1 = gh1 = h2g
−1.

Hence g ∈ Hg−1H, i.e., HgH = Hg−1H.
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(1.6.3) gHg−1 ⊂ HgH ∪ {e} for any g ∈ G.
We may assume that g /∈ H. Let h ∈ H, with h /∈ g−1Hg. Then p, g−1p, and hg−1p are

three distinct points on the line L = p+ g−1p. Since G acts doubly transitively on L, there
is a j ∈ G such that

jp = g−1p and jg−1p = hg−1p.

Then we have j = g−1h1 for some h1 ∈ H, and g−1h1g
−1p = hg−1p, so that hg−1 ∈

g−1h1g
−1H, whence

ghg−1 ∈ Hg−1H
(1.6.2)

= HgH.

It remains to consider elements of the form ghg−1 with h ∈ H ∩ g−1Hg. Such an h has the
two distinct points p, g−1p ∈ S as fixed points, and so by [L, p. 271, Thm. 5], h = e, and
ghg−1 = e.

This completes the proof of (1.6), and of Theorem 1a. �

Our next task is to describe a functor Θ: G→ V pseudo-inverse to Γ. This is basically an
elaboration of [L, §7].

For (G,H) ∈ G, set

T = TG,H = { translations of (G,H) }
def
= {e} ∪ { g ∈ G | no conjugate of g lies in H } .

The set T is closed under conjugation:

jT j−1 = T (j ∈ G).

As above, Φ(G,H) = (G,G/H,H) ∈ S; and it is immediate that T is the set of all translations
of (G,G/H,H)—cf. beginning of this §1. Hence, by [L, p. 274, Thm. 11], T is an abelian
(normal) subgroup of G. We also note, for later use, the following consequence of [L, p. 272,
Thm. 8]:

(1.7) Each left coset gH contains exactly one translation.

Let E be the ring of additive endomorphisms of T , with zero-element 0 = 0E . We define
a map γ : H → E by

[γ(h)](t) = hth−1 (h ∈ H, t ∈ T ).

According to [L, p. 276], γ is injective and F = γ(H) ∪ {0} is a subfield of E. Thus T is a
vector space over F .

Extend γ to γ̃ : H ∪ {0} → E sending 0 to 0. Since γ̃ is injective, there is a unique field

structure on H̃ = H ∪{0} such that γ̃ is a field isomorphism. For this structure, the product
of two elements h1, h2 ∈ H is the same as their product in G. In particular, the multiplicative

identity 1
H̃

is e. The additive inverse −h1 ∈ H̃ is the unique h ∈ H such that

hth−1 = (h1th
−1
1 )
−1

= h1t
−1h−1 for all t ∈ T.

If h2 6= −h1, then the sum h1 + h2 ∈ H̃ is the unique h ∈ H such that for all t ∈ T

(1.8) hth−1 = h1th
−1
1 h2th

−1
2 .
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All this follows from [L, p. 276]. We leave it to the reader to explicate sums and products in

H̃ involving 0.

Accordingly, we can regard T as a vector space over H̃, with scalar multiplication

h · t = hth−1 (h ∈ H, t ∈ T ).

Remark (1.9). Given h1, h2 ∈ H, with h1 6= −h2, if h ∈ H is such that (1.8) holds for one
non-identity t ∈ T , then h = h1 + h2.

This follows from [L, p. 275, Cor. 12.1] and the injectivity of γ.

The above-mentioned functor Θ is specified by:

Θ(G,H) = (TG,H , H̃)

Θ
(
f : (G,H)→ (G′, H ′)

)
= (ζf , θf ) : (TG,H , H̃)→ (TG′,H′ , H̃ ′)

where

ζf (t) = f(t) (t ∈ TG,H)

θf (h) = f(h) (h ∈ H)

θf (0) = 0′.

To see that Θ is indeed a functor from G to V we need to prove that (ζf , θf) is an injective
semi-linear map.

The injectivity of ζf follows from that of f , which in turn follows from the fact that
Φ(f) = (f, ψf) is a map in S (cf. (2) in (1.3) above.)

The conditions

ζf (t1 + t2) = ζf (t1) + ζf (t2) (t1, t2 ∈ TG,H)

ζf (ht) = θf (h)ζf (t) (h ∈ H̃, t ∈ T )

θf (h1h2) = θf (h1)θf (h2) (h1, h2 ∈ H̃)

θf (1H̃) = 1
H̃′

are trivial to verify. It remains then to show that

(1.10) θf (h1 + h2) = θf (h1) + θf (h2) (h1, h2 ∈ H̃).

If any one of h1, h2, or h1 + h2 is 0, then (1.10) is obvious. Otherwise, we can apply f to
(1.8), where h = h1 + h2 and t is a non-identity translation (which exists by (1.7), since
G 6= H, cf. (GH1)) to get

f(h)f(t)f(h)−1 = f(h1)f(t)f(h1)
−1f(h2)f(t)f(h2)

−1.

By (0.2.2), no conjugate of f(t) lies in H ′, i.e., f(t) is a non-identity translation of (G′, H ′).
Hence by (1.9),

f(h1 + h2) = f(h) = f(h1) + f(h2) ,

proving (1.10).
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Now that we have the functor Θ, let us show that it is a pseudo-inverse of Γ.

For (G,H) ∈ G, and T = TG,H , definitions yield

ΓΘ(G,H) =
({

[h, t]
}
,
{

[h, 0]
})

(h ∈ H, t ∈ T )

where [h, t] : T → T is the map defined by

[h, t](τ) = (γ(h)τ)t = hτh−1t (τ ∈ T ).

We define a map

α = αG,H : ΓΘ(G,H)→ (G,H)

by

α[h, t] = th.

Clearly α
{

[h, 0]
}

= H; and one checks (using the fact that T is an abelian normal subgroup
of G) that

α
(
[h, t] ◦ [h′, t′]

)
= tht′h′ = α[h, t]α[h′, t′] ,

so that α is a map in the category G. Furthermore, α is an isomorphism in G (hence, as
previously remarked, in G) because, by (1.7), every element in G is uniquely of the form th .3

Finally, α is functorial, i.e., for any arrow f : (G,H)→ (G′, H ′) in G, the resulting diagram

ΓΘ(G,H)
αG,H−−−−→ (G,H)

ΓΘ(f)

y yf
ΓΘ(G′, H ′) −−−−→

αG′,H′
(G′, H ′)

commutes, as follows easily from definitions. Thus we have an isomorphism of functors
ΓΘ −→∼ 1G.

Next, for (V, F ) ∈ V, let (G,H) = Γ(V, F ) be as in the Introduction, and let T be the

subgroup of G consisting of all the translations [1, v] with v ∈ V , so that with H̃ as above
we have

ΘΓ(V, F ) = (T, H̃) .

We define a map

(ζ, θ) = (ζV,F , θV,F ) : ΘΓ(V, F )→ (V, F )

by

ζ[1, v] = v (v ∈ V )

θ[a, 0] = a (0 6= a ∈ F )

θ(0) = 0F .

3The reader who so desires can rephrase this argument in terms of semi-direct products.
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Both ζ and θ are bijective. We leave it to the reader to check (mechanically, via definitions)
that (ζ, θ) is semi-linear, and hence is an isomorphism in V. For functoriality, we need to
check that for any arrow (ξ, η) : (V, F )→ (V ′, F ′) in V, the following diagram commutes:

ΘΓ(V, F )
(ζV,F , θV,F )−−−−−−−−−−→ (V, F )

ΘΓ(ξ,η)

y y(ξ,η)

ΘΓ(V ′, F ′) −−−−−−−−−−→
(ζV ′,F ′ , θV ′,F ′ )

(V ′, F ′)

This again is a mechanical exercise. So we have an isomorphism of functors ΘΓ −→∼ 1V; and
Θ is indeed a pseudo-inverse of Γ.

This completes the proof of Theorem 1. �

Remark (1.11). Let us verify Remark (iii) in the Introduction. Assuming (GH1)–(GH3), we
can prove (GH2)* as in (1.4.1); and we find that

(HgH ∪H)(HgH ∪H)−1 = (HgH ∪H)(Hg−1H ∪H)

= HgHg−1H ∪HgH ∪Hg−1H ∪H
⊂ HgH ∪H,

yielding (GH3)*. Conversely, (GH3)* easily implies (GH3) and that for any g ∈ G,

gHg−1 ⊂ (HgH ∪H)(HgH ∪H)−1 ⊂ (HgH ∪H) .

So to prove (GH2), we need to show that if g /∈ H then

gHg−1 ∩H = {e} .

For this, observe that (GH3)* alone is enough for the proof of (1.4.3), (GH1) is enough
for (1.4.2), and (GH2)* is enough for (1.4.1). So we can apply [L, p. 271, Thm. 5] to any
h ∈ gHg−1 ∩H: since hH = H and hgH = gH, therefore h = e. �

Remark (1.12). Here is a variation on the theme of Theorem 1.

Recall the definition of “faithful group action” given near the beginning of §1. Let H be
a group acting faithfully on a group T , via automorphisms, i.e.,

h(t1 · t2) = ht1 ·ht2 (h ∈ H; t1, t2 ∈ T )

where · is the group operation in T . The orbit 〈t〉 of t ∈ T is the set

〈t〉 = {ht | h ∈ H } .

For example, the orbit of the identity element eT consists of eT alone.



14 ALEX D. GOTTLIEB AND JOSEPH LIPMAN

Theorem 1b. Let H be a group acting faithfully via automorphisms on a group T . Then
the following conditions (1) and (2) are equivalent:

(1) (i) There are at least three distinct orbits in T , and
(ii) for any t ∈ T , 〈t〉 ∪ {eT } is a subgroup of T .

(2) There is a vector space V of dimension ≥ 2 over a field F , such that H is the mul-
tiplicative group of F , T is the additive group of V , and the action H × T → T is
induced by the scalar multiplication F × V → V .

Proof. Let G be the semi-direct product of H by T with respect to the given action: G is
the set T ×H with multiplication

(t, h)(t′, h′) = (t ·ht′, hh′) .

H can be identified with the subgroup { (eT , h) | h ∈ H } of G, T can be identified with the
normal subgroup { (t, eH) | t ∈ T }, and then the action of H on T is given by conjugation
inside G. Note that:

(∗) every element g ∈ G is uniquely of the form g = th (t ∈ T, h ∈ H).

In view of Remark (1.11) and the proof of Theorem 1, we can prove the implication
(1)⇒ (2) by showing that the pair G ⊃ H satisfies (GH1), (GH2)* and (GH3)*; and that T
is the set of translations of (G,H), i.e., a non-identity element g ∈ G is in T if and only if
no conjugate of g is in H.

For (GH1), choose t, t′ ∈ T such that the orbits 〈t〉, 〈t′〉, and 〈eT 〉 are distinct. Inside G,
if t′ were in HtH we would have

t′ = hth′ = (hth−1)(hh′) (h, h′ ∈ H)

whence, by (∗), t′ = hth−1 ∈ 〈t〉. So t′ /∈ HtH, and the three double cosets HtH, Ht′H and
H are distinct, proving (GH1).

For (GH2)*, let t ∈ T and consider an element h ∈ H ∩ tHt−1. We have

eh = h = (th1t
−1h−1

1 )h1 (h1 ∈ H)

whence, by (∗), e = th1t
−1h−1

1 and h = h1, so that hth−1 = t. Thus if h ∈
⋂
t∈T tHt

−1, then

hth−1 = t for all t ∈ T , and since H acts faithfully on T , therefore h = e, proving (GH2)*.
For (GH3)*, note first that for any t ∈ T we have, inside G,

(∗∗) H〈t〉 = 〈t〉H,

as follows from the identities

h1hth
−1 = (h1hth

−1h−1
1 )h1

hth−1h1 = h1(h
−1
1 hth−1h1) (h, h1 ∈ H).

For any g ∈ G, writing g = th, cf. (∗), we see then that

HgH ∪H = HtH ∪H = H〈t〉 ∪H,
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and we deduce easily from (ii) in (1) and from (∗∗) that HgH∪H is a subgroup of G, proving
(GH3)*.

Finally, since the normal subgroup T equals any of its conjugates in G, and since T ∩H =
{e}, it is clear that every t ∈ T is a translation. Conversely, if g = th (cf. (∗)) is a translation,
then (1.7) implies that g = t ∈ T .

This completes the proof that (1)⇒ (2); and the implication (2)⇒ (1) is clear. �
There is an obvious functor Γ∗ from the category V to the category whose objects are

pairs (T,H) satisfying the conditions in Theorem 1b, and whose arrows (T,H) → (T ′, H ′)
are pairs (ξ, η) where ξ : T → T ′ is an injective group homomorphism and η : H → H ′ is a
group homomorphism such that

ξ(ht) = η(h)ξ(t) (h ∈ H, t ∈ T ).

We leave it to the reader to verify that: Γ∗ is an equivalence of categories.

2. Proof of Theorem 2.

Proposition (2.1). Let (V, F ) and Γ(V, F ) = (G,H) be as in the Introduction. To each
subspace V ′ of V associate the subgroup Γ0(V

′) of G given by

Γ0(V
′) =

{
[a, v] ∈ G

∣∣ 0 6= a ∈ F, v ∈ V ′
}
.

(1) Γ0 is an inclusion preserving bijective map from the set of subspaces of V onto the
set of subgroups of G containing H.

(2) For any element 0 6= v ∈ V and any non-zero c ∈ F we have

Γ0(Fv) = (H[c, v]H) ∪H.

(3) For any two subspaces V1 ⊂ V , V2 ⊂ V , we have

Γ0(V1 + V2) = Γ0(V1)Γ0(V2) = Γ0(V2)Γ0(V1) .

Proof. (1) First of all it is clear that Γ0(V
′) is a subgroup of G containing H.

We show that Γ0 is bijective by constructing an inverse map. For any subgroup G′ ⊂ G
with G′ ⊃ H set

Θ0(G
′) =

{
v ∈ V

∣∣ [1, v] ∈ G′ } .
Since

[1, v1][1, v2] = [1, v1 + v2] ,

therefore Θ0(G
′) is closed under addition; and since for non-zero a ∈ F we have [a, 0] ∈ H ⊂

G′ and
[a, 0][1, v][a, 0]−1 = [1, av] ,

therefore Θ0(G
′) is closed under scalar multiplication; so Θ0(G

′) is a subspace of V .
By definition

v ∈ Θ0Γ0(V
′) ⇐⇒ [1, v] ∈ Γ0(V

′) ⇐⇒ v ∈ V ′,
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i.e., Θ0Γ0(V
′) = V ′.

Moreover, if [1, v] ∈ G′ and 0 6= a ∈ F , then

[a, v] = [1, v][a, 0] ∈ G′ ;

and conversely if [a, v] ∈ G′, then

[1, v] = [a, v][a, 0]−1 ∈ G′.

It follows easily that Γ0Θ0(G
′) = G′, and (1) is proved.

(2) We have

Γ0(Fv) =
{

[a, bv]
∣∣ 0 6= a ∈ F, 0 6= b ∈ F

}
∪
{

[a, 0]
∣∣ 0 6= a ∈ F

}
=
{

[b, 0][c, v][c−1b−1a, 0]
∣∣ 0 6= a ∈ F, 0 6= b ∈ F

}
∪H

= (H[c, v]H) ∪H.

(3) The inclusions

Γ0(V2)Γ0(V1) ⊂ Γ0(V1 + V2) ⊃ Γ0(V1)Γ0(V2)

are obvious; and the opposite inclusions follow from the equalities

[1, v2][a, v1] = [a, v1 + v2] = [1, v1][a, v2] . �

Corollary (2.2). Given vectors v0, v1, . . . , vn ∈ V , and non-zero elements ci ∈ F (0 ≤ i ≤
n), with gi = [ci, vi] we have that

v0 is a linear combination of v1, v2, . . . , vn

⇐⇒ g0 ∈ (Hg1H ∪H)(Hg2H ∪H) · · · (HgnH ∪H) .

Corollary (2.3). Γ0 induces a one-one correspondence between the set of 1-dimensional
subspaces of V (i.e., the points of the projective space P (V, F )) and the set of double cosets
HgH 6= H.

Corollary (2.4). Let (ζ, θ) : (V, F )→ (V ′, F ′) be a semi-linear map, and let

f = Γ(ζ, θ) : Γ(V, F ) = (G,H)→ (G′, H ′) = Γ(V ′, F ′) .

Then ζ is linearly faithful ⇐⇒ (0.3) holds.

Proof. Recall from the Introduction that ζ linearly faithful means that every subspace V1 ⊂ V
is of the form ζ−1(V ′1) for some subspace V ′1 ⊂ V ′. The conclusion follows easily from (1) in
(2.1). �

Let us show now that, as asserted in the Introduction, the functors Γ and Θ induce
pseudo-inverse equivalences between the categories V3 ⊂ V and G3 ⊂ G.

It will suffice to show that (a): Γ(V3) ⊂ G3, and (b): Θ(G3) ⊂ V3. Then any pair of
isomorphisms ΓΘ −→∼ 1, ΘΓ −→∼ 1, will induce similar isomorphisms for the restrictions of
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Γ and Θ to V3 and G3 respectively, because any isomorphism in V between objects of V3

is linearly faithful, and hence is an isomorphism in V3; and similarly any isomorphism in G
between objects of G3 is an isomorphism in G3.

Assertion (a) follows easily for objects from (2.2) and for arrows from (2.4).
As for (b), let us first consider an object (G,H) ∈ G3, and set Θ(G,H) = (V, F ). Then

(G,H) is isomorphic to Γ(V, F ) (in G). By definition of G3,

G 6= (Hg1H ∪H)(Hg2H ∪H) for all g1, g2 ∈ G,

and it follows from (2.2) that V is not spanned by two 1-dimensional subspaces, i.e., dimV3 ≥
3, i.e., (V, F ) ∈ V3.

Let f : (G,H)→ (G′, H ′) be a map in G3, and let (V, F ) = Θ(G,H), (V ′, F ′) = Θ(G′, H ′).
Then the functorial isomorphism ΓΘ −→∼ 1 gives a commutative diagram

Γ(V, F ) −−−−→ (G,H)˜
ΓΘ(f)

y yf
Γ(V ′, F ′) −−−−→ (G′, H ′)˜

where the horizontal arrows are isomorphisms. Then ΓΘ(f) satisfies condition (0.3) since f
does; and hence by (2.4), Θ(f) is linearly faithful. This completes the proof of (b). �

Next let us note that Γ and Θ respect the equivalence relations R and R* defined in the
Introduction. Indeed, if (G,H) = Γ(V, F ), and if 0 6= a ∈ F , so that h = [a, 0] ∈ H, then

Γ(ζa, θa) = γh .

Conversely, if (V, F ) = Θ(G,H), then there is an a ∈ F such that

Θ(γh) = (ζa, θa) .

To see this, recall that there is a functorial isomorphism

f : (G,H) −→∼ ΓΘ(G,H)

and hence ΓΘ(γh) = γf(h); but as we just saw, there is an a such that Γ(ζa, θa) = γf(h); and
since the equivalence Γ acts injectively on arrows, this a is as desired.

The existence of the functor Θ defined near the end of the Introduction follows easily, as
does the existence of a unique functor Γ making the following diagram commute:

G3
Γ←−−−− V3

ρ∗
y yρ

G3/R
∗ ←−−−−

Γ

V3/R

Finally, Θ and Γ are pseudo-inverse equivalences. For example to get an isomorphism
Γ Θ −→∼ 1G3/R∗ we need for each A = (G,H) ∈ G3/R

∗ an isomorphism Γ Θ(A) −→∼ A. But

Γ Θ(A) = ΓΘ(A), and we have an isomorphism f : ΓΘ(A) −→∼ A in G3. The equivalence
class of f under R∗ gives what we want.

Theorem 2 should now be clear.
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