Lesson 14: Related rates

$$
\begin{aligned}
y^{2}+2 x & =3 \quad \text { find } d y / d x \\
\frac{d}{d x}\left[y^{2}+2 x\right] & =\frac{d}{d x}(3) \\
2 y \frac{d y}{d x}+2 & =0
\end{aligned}
$$

(1) Suppose that x and y are functions of t

$$
(x=x(t) \text { and } y=y(t))
$$

$7 x^{a} y=14 \quad d x / d t=2$. find $d y / d t$ at $x=1$

$$
\begin{array}{cc}
\frac{d}{d t}\left(7 x^{9} y\right)=\frac{d}{d t}(14)=0 \\
\frac{d}{d t}\left(7 x^{9}\right) \cdot y+7 x^{9} \cdot \frac{d}{d t}(y)=0 \\
63 x^{8} \cdot \frac{d x}{d t} \cdot y+7 x^{9} \cdot \frac{d y}{d t}=0 & 7 x^{9} y=14 \\
63(1)^{8} \cdot 2 \cdot y+7(1)^{9} \cdot \frac{d y}{d t}=0 & 7(1)^{9} y=14 \\
126 y+7 \frac{d y}{d t}=0 \\
\frac{d y}{d t}=-\frac{126 \cdot 2}{7} & y=2
\end{array}
$$

(2) The radius of a circle is increasing at a rate of $9 \mathrm{~cm} / \mathrm{min}$. Find R.O.C. of circumference with respect to time when when $r=5 \mathrm{~cm}$ (radius).

$$
\begin{aligned}
& C=2 \pi r \quad \frac{d r}{d t}=\text { "R.o.C. of radius wrt. time" } \\
&=9 \mathrm{~cm} / \mathrm{min} \\
& \frac{d c}{d t}=\frac{d}{d t}(2 \pi r)=2 \pi \frac{d r}{d t}=2 \pi \cdot 9=18 \pi \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

(3) All edges of 1 cube are shrinking at a rate of $35 \mathrm{~cm} / \mathrm{s}$ How fast is the surface area decreasing when each edge is 0.0 derivative 11 cm .

$$
\begin{array}{rl}
S=6 a^{2} & a=\text { length of edges } \\
\frac{d S}{d t} & =\frac{d}{d t}\left(6 a^{2}\right)=12 a \cdot \frac{d a}{d t}=12(11)(35)=4620 \mathrm{~cm} / \mathrm{s}
\end{array}
$$

(4) Sand is being poured on a pile at a rate of $11 \mathrm{~cm}^{3} \mathrm{~J} / \mathrm{s}$. $\frac{d V}{d t}=11$
length of diameter of the base $=$ altitude.

How fast is the alt changing when the pile is 3 cm high? $d L_{1} / t=$?

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h \\
V & =\frac{1}{12} \pi h^{3} \\
\frac{d V}{d t} & =\frac{1}{12} \pi \cdot 3 h^{2} \cdot \frac{d h}{d t}
\end{aligned}
$$

Lesson 14: Related rates.
(1) Suppose x and y are functions of t

$$
(x=g(t) \text { and } y=f(t))
$$

$7 x^{9} y=14, \quad d x / d t=2$. find $d y / d t$ at $x=1$.

$$
\begin{aligned}
& \frac{d}{d t}\left[7 x^{9} y\right]=\frac{d}{d t}[14]=0 \\
& \frac{d}{d t}\left[7 x^{9}\right] \cdot y+7 x^{9} \cdot \frac{d}{d t}[y]=0 \\
& 63 \cdot x^{8} \cdot \frac{d x}{d t} \cdot y+7 x^{9} \cdot \frac{d y}{d t}=0 \\
& 63(1)^{8} \cdot 2 \cdot y+7(1)^{9} \cdot \frac{d y}{d t}=0 \\
& 126 y+7 \frac{d y}{d t}=0 \\
& \frac{d y}{d t}=-\frac{126 \cdot 2}{7}=-36
\end{aligned}
$$

(2) The radius is increasing at a rate of $9 \mathrm{~cm} / \mathrm{min}$. Find R.o.C. of circumference of circle w.r.t. time, when $r=5 \mathrm{~cm}$. find derivative of c writ. to t

$$
\begin{array}{rlrl}
C & =2 \pi r & & C: \text { circumference } \\
\frac{d C}{d t} & =\frac{d}{d t}[2 \pi r] \quad & r a d i u s \\
& =2 \pi \frac{d r}{d t} & \frac{d r}{d t}=\text { "RoC. of radius wot. time" } \\
& =18 \pi \quad \begin{aligned}
\frac{d C}{d t} l_{r=5}=18 \pi \mathrm{~cm} / \mathrm{min} .
\end{aligned}
\end{array}
$$

(3) All the edges of a cube are shrinking at a rate of $35 \mathrm{~cm} / \mathrm{sec}$.
How fast is surface area of the cube decreasing w.rt. to time when edge length is 11 cm ?

A : surface area $\quad A=6 s^{2}$
s : length of edge.

$$
\begin{gathered}
\frac{d s}{d t}=35 \mathrm{~cm} /\left.\mathrm{sec} \quad \frac{d A}{d t}\right|_{s=11}=? \\
\left.\frac{d A}{d t}=\frac{d}{d t}\left(6 \mathrm{~s}^{2}\right)=121 \mathrm{~s}\right)^{\prime} \cdot \frac{d s}{d t}=12 \mathrm{~s} \cdot 35=420 \mathrm{~s} \\
\left.\frac{d A}{d t}\right|_{s=11}=420 \cdot 11=4620 \mathrm{~cm}^{2} / \mathrm{sec}
\end{gathered}
$$

(4). Sand is being poured into a pile at a rate of $11 \mathrm{~cm}^{3} / \mathrm{sec}$.

- length of the diameter of base $=$ altitude.

How fart is alt. changing writ time when pile is 3 cm fill.

$$
\begin{aligned}
& V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h=\frac{\pi}{12} h^{3} \\
& \frac{d V}{d t}=11 \mathrm{~cm}^{3} /\left.\mathrm{sec} \quad \frac{d h}{d t}\right|_{h=3}=?
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d}{d t}\left(\frac{\pi}{12} \cdot h^{3}\right)=\frac{\pi}{12} \cdot 3(h)^{2} \cdot \frac{d h}{d t} \\
& 11=\frac{\pi}{4} \cdot h^{2} \cdot \frac{d h}{d t} \\
& 11=\left.\frac{\pi}{4} \cdot 9 \cdot \frac{d h}{d t} \quad \frac{d h}{d t}\right|_{h=3}=\frac{11 \cdot 4}{9 \pi}=\frac{44}{9 n \pi} \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

