HL 14 \#
radius r decreasing at a rake of $1.2 \mathrm{~cm} / \mathrm{sec}$
1.) How fast is volume dec. when $r=10 \mathrm{~cm}$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d t} & =\frac{4}{3} \pi \frac{d}{d t}\left(r^{3}\right) \\
& =\frac{4}{3} \pi \cdot 3(r)^{2} \cdot \frac{d r}{d t} \\
& =\frac{4}{3} \pi \cdot 3(10)^{2} \cdot 1.2 \\
& =4 \pi \cdot 10 \cdot 12 \\
& =480 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

Lesson 15: Related rates.

- length of ladder is $\sqrt{8} \mathrm{~m}$
- The bise of ladder is moving away from wall at a rate of
$\frac{3}{10} \mathrm{~m} / \mathrm{s}$ ground
- How fast is the head \& ladder moving down when the base is 2 m away from the wall?

$$
\begin{aligned}
& x^{2}+y^{2}=(\sqrt{8})^{2}=8 \quad \frac{d x}{d t}=\frac{3}{10} \mathrm{~m} / \mathrm{s} \\
& \frac{d}{d t}\left[x^{2}+y^{2}\right]=\frac{d}{d t}[8] \\
& 2(x) \cdot \frac{d x}{d t}+2(y) \cdot \frac{d y}{d t}=0 \\
& 2 x \cdot \frac{3}{10}+2 y \frac{d y}{d t}=0 \\
& \frac{d y}{d t}=\frac{-2 x \cdot \frac{3}{10}}{2 y} \\
& \left.\frac{d y}{d t}\right|_{2 m \text { away from }} ^{\text {wall }}=? \\
& \text { What we are } 2 \mathrm{~m} \\
& \text { away from wall } \\
& x=2 \\
& (2)^{2}+y^{2}=8 \\
& =\frac{-2 \cdot 2 \cdot y_{3 / 10}}{2 \cdot 2}=-\frac{3}{10} \mathrm{~m} / \mathrm{s} \quad \begin{array}{l}
y^{2}=4 \\
y=2
\end{array}
\end{aligned}
$$

head if ladler is moving down at a rate of $3 / 10 \mathrm{~m} / \mathrm{s}$.
2^{n-2}
(2)

- This square w/ side length 90 ff t
- playgoer is running at a rote of $12 \mathrm{f} / \mathrm{sec}$
- At what rate is the players dist. from hame inc. when they are half $b / w 1^{\text {st }}$ and $2^{\text {nd. }}$.

$$
\begin{aligned}
&(90)^{2}+y^{2}=z^{2} \quad \frac{d y}{d t}=12 \mathrm{ft} / \mathrm{sec} \quad \frac{d z}{d t}=? \\
& \frac{d}{d t}\left[90^{2}+y^{2}\right]=\frac{d}{d t}\left[z^{2}\right] \\
& 0+2(y) \cdot \frac{d y}{d t}=2(z) \cdot \frac{d z}{d t}
\end{aligned}
$$

$$
2 y \cdot 12=2 z \frac{d z}{d t}
$$

$$
\begin{aligned}
& z^{2}=(90)^{2}+(45)^{2} \quad \frac{d z}{d t}=\frac{12 \cdot 45}{\sqrt{1025}} \mathrm{ft} / \mathrm{sec} \\
& z^{2}=10125
\end{aligned}
$$

$$
z=\sqrt{10125}
$$

(3). A balloon at a height of 50 m is rising at a rate of $5 \mathrm{~m} / \mathrm{sec}$.

- The boiler macon special driving towards balloon at a speed of $10 \mathrm{~m} / \mathrm{s}$.
- How fast is dist b/w BMS. and the balloon. changing 10 seconds latter.

$$
x^{2}+y^{2}=z^{2} \quad \frac{d y}{d t}=5, \quad \frac{d x}{d t}=10, \frac{d z}{d t}=?
$$

See last page for soon.

HW 14:\#5

- Water is bring drained at a rate of $15 \mathrm{~cm}^{3} / \mathrm{scc}$
- How fast is the height of water dec?

$$
\begin{aligned}
V & =\pi r^{2} h=19^{2} \pi h \quad \frac{d V}{d t}=-15, \quad \frac{d h}{d t}=? \\
\frac{d V}{d t} & =19^{2} \pi \frac{d}{d t}(h)=19^{2} \pi \frac{d h}{d t} \\
-15 & =19^{2} \pi \cdot \frac{d h}{d t} \quad \frac{d h}{d t}=\frac{-15}{19^{2} \pi} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

speed the height dec at is $\frac{15}{19^{2} \pi} \mathrm{~cm} / \mathrm{sec}$

Lesson 15: Related rates

Pythagorean Thun:

$$
x^{2}+y^{2}=z^{2}
$$

- We have a ladder of length $\sqrt{8} \mathrm{~m}$
- The bus of the ladder is pulled away from wall at a rate of
- How fart is the head of loader moving down when the base is 2 m from the wall?

$$
\begin{aligned}
& x^{2}+y^{2}=(\sqrt{8})^{2}=8, \quad \frac{d x}{d t}=\frac{3}{10} \mathrm{~m} / \mathrm{s}, \frac{d y}{d t}=? ? \\
& \frac{d}{d t}\left[x^{2}+y^{2}\right]=\frac{d}{d t}[8] \\
& 2(x) \cdot \frac{d x}{d t}+2(y) \cdot \frac{d y}{d t}= \\
& 2 x \cdot \frac{3}{10}+2 y \cdot \frac{d y}{d t}=0 \quad \begin{aligned}
\frac{d y}{d t} & =\frac{-3 / 10 x}{y} \quad 2^{2}+y^{2}=8 \\
& =\frac{-3 / 10 \cdot 2}{2}=-\frac{3}{10} \quad \begin{array}{l}
y^{2} \\
y
\end{array} \quad=2
\end{aligned}
\end{aligned}
$$

Speed at which the head of the ladder falls is $3 / 10 \mathrm{~m} / \mathrm{s}$
(2)

- This a square of side length 90 pt. - player is running at a rate of $12 f t / s$.
- At what rate is the dist. b/w the player and home increasing when the player is half B/w $1^{\text {st }}$ and $2^{n!}$.

$$
\left.\begin{array}{rl}
90^{2}+y^{2} & =z^{2}, \frac{d y}{d t}=12 \mathrm{ft} / \mathrm{s}, \quad \frac{d z}{d f}
\end{array}=? ?\right\} \begin{aligned}
\frac{d}{d t}\left[90^{2}+y^{2}\right] & =\frac{d}{d t}\left[z^{2}\right] \\
0+2(y) \cdot \frac{d y}{d t} & =2(z) \cdot \frac{d z}{d t} \\
\frac{d y}{d t} & =\frac{12 y}{z} \\
& =\frac{12.45}{\sqrt{10125}} \quad \begin{aligned}
y^{2} & =90^{2}+45^{2} \\
& =10125 \\
z & =\sqrt{10125}
\end{aligned}
\end{aligned}
$$

(3). A balloon is at a height of 50 m and nising at a rate of $5 \mathrm{~m} / \mathrm{s}$.

- The boiler maker spacial is driving towards balloon at a rate of $10 \mathrm{~m} / \mathrm{s}$.
- How fast is the dist. b/w the two inc. 10 seconds later?
* Note at time $t=0$ the balloon is 50 m above the ground and the train is directly below the balloon.

$$
\begin{aligned}
& x^{2}+y^{2}=z^{2}, \quad \frac{d y}{d t}=5 \mathrm{~m} / \mathrm{s}, \quad \frac{d x}{d t}=10 \mathrm{~m} / \mathrm{s}, \frac{d z}{d t}=? ? \\
& \frac{d}{d t}\left[x^{2}+y^{2}\right]=\frac{d}{d t}\left[z^{2}\right] \\
& 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t} \quad\left\{\begin{array}{l}
\text { for ease of } \\
\text { calculations } \\
\text { assume positive }
\end{array}\right.
\end{aligned}
$$

at $t=0 \mathrm{sec} ;$ at $t=10 \mathrm{sec}$
 Since the balloon is rising at a rate of $5 \mathrm{~m} / \mathrm{s}$, then 10 sec. Gator the height of balloon $y=50+5(10)=100 \mathrm{~m}$. Similarly since train has speed $10 \mathrm{~m} / \mathrm{s}, x=10(10)=100 \mathrm{~m}$ Thus $z=\sqrt{x^{2}+y^{2}}=100 \sqrt{2} \mathrm{~m}$

Thus $\quad 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d y}{d t}$
will simplify to

$$
\begin{aligned}
& 2(100) \cdot(10)+2(100) \cdot(5)=2 \cdot 100 \sqrt{2} \frac{d z}{d t} \\
& \therefore \frac{d z}{d t}=\frac{2000+1000}{200 \sqrt{2}}=\frac{15}{\sqrt{2}} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

