Lesson 18: Concavity and inflection points; Second derivative test.
Concativily
a function is concave up on (a, b) if
$f^{\prime \prime}(x)>0$ on (a, b)
A function is concave down on (a, b) if $f^{\prime \prime}(x)<0$ on (a, b)

Inflection points
$x=c$ is an inflection point of $f(x)$ if the concavity of suritches ot $x=c$.

How to find inflection points

1) Find all points such that $f^{\prime \prime}(x)=0$ or PNE.
2) determine if the concavity switches near the points found in (1).
Examples find the inflection points
(1)

$$
\begin{aligned}
y & =\left(x^{2}-11 x+32\right) e^{x} \\
y^{\prime} & =(2 x-11) e^{x}+\left(x^{2}-11 x+32\right) e^{x} \\
& =e^{x}\left(x^{2}-9 x+21\right) \\
y^{\prime \prime} & =e^{x}\left(x^{2}-9 x+21\right)+e^{x}(2 x-9) \\
& =e^{x}\left(x^{2}-7 x+12\right)
\end{aligned}
$$

$$
y^{\prime \prime}=0
$$

or
$y^{\prime \prime}$ DIE

$$
\begin{gathered}
e^{x}\left(x^{2}-7 x+12\right)=0 \\
x^{2}-7 x+12=0 \\
(x-3)(x-4)=0 \\
x=3,4
\end{gathered}
$$

concave up $(-\infty, 3)$
 and $(4, \infty)$

Concave down on $(3,4)$.

$$
\begin{aligned}
f^{\prime \prime}(0) & =e^{0}\left(0^{2}-7(0)+12\right)=12 \\
f^{\prime \prime}(7 / 2) & =e^{7 / 2}\left(\left(\frac{7}{2}\right)^{2}-7 \cdot \frac{7}{2}+12\right)= \\
& =e^{7 / 2}\left(\frac{49}{4}-\frac{49 \cdot 2}{4}+\frac{48}{4}\right) \\
& =e^{7 / 2}\left(-^{1} / 4\right) \quad \text { negative! } \\
f^{\prime \prime}(5) & =e^{5}\left(5^{2}-7(5)+12\right) \\
& =e^{5}(25-35+12) \\
& =2 e^{5}
\end{aligned}
$$

3 and 4 are inflection points.

Second derivative test
Suppose $x=c$ is a critical point of $f(x)$.
(1) If $f^{\prime \prime}(c)>0$, then $x=c$ is Relative min.
M2) If $f^{\prime \prime}(c)<0$, then $x=c$ is relative max.
Examples
(2) $y=5+6 x-8 x^{3}$ find relative extrema

$$
y^{\prime}=6-24 x^{2}
$$

$y^{\prime}=0$ or y^{\prime} DNE never happens

$$
\begin{aligned}
& 6-24 x^{2}=0 \\
& 24 x^{2}=6 \\
& x^{2}=1 / 4 \\
& x= \pm \sqrt{1 / 4}= \pm \frac{1}{2} \quad \text { critical points } \\
& y^{\prime \prime}=-48 x
\end{aligned}
$$

Second der. test $\Rightarrow x=-\frac{1}{2}$ is rel. min

$$
x=\frac{1}{2} \quad y^{\prime \prime}\left(\frac{1}{2}\right)=-48\left(\frac{1}{2}\right)=-24
$$

Second derivative test $\Rightarrow x=\frac{1}{2}$ is rel. max.

Lesson 18: Concavity and inflation paints; Decant derivative test.
Concavity
a function is concave up on (a, b) if $\quad \underbrace{\prime \prime}(x)>0$ on (a, b) or \quad of
A function is concave down on (a, b) if

$$
f^{\prime \prime}(x)<0 \text { on }(a, b) . \quad--
$$

Inflection paint
$x=c$ is an inflection point of $f(x)$ if the concavity switches at c.
How to find inflection points

1) find all points such that $f^{\prime \prime}(x)=0$ or DNE
2) determine if the concavity switches near the points in 11). (f" switches sign)

Examples
(1) $y=\left(x^{2}-11 x+32\right) e^{x}$ find inflection paints.

$$
\begin{aligned}
y^{\prime} & =(2 x-11) e^{x}+\left(x^{2}-11 x+32\right) e^{x} \\
& =e^{x}\left(x^{2}-9 x+21\right) \\
y^{\prime \prime} & =e^{x}\left(x^{2}-9 x+21\right)+e^{x}(2 x-9) \\
& =e^{x}\left(x^{2}-7 x+12\right)
\end{aligned}
$$

$y^{\prime \prime}=0 \quad$ or $\quad y^{\prime \prime}$ DNE never happens

$$
\begin{gathered}
e^{x}\left(x^{2}-7 x+12\right)=0 \\
x^{2}-7 x+12=0 \\
(x-4)(x-3)=0 \\
x=3,4
\end{gathered}
$$

Concave up: $(-\infty, 3),(4, \infty)$ concave down: $(3,4)$

$$
\begin{aligned}
f^{\prime \prime}(0) & =e^{0}(0-4)(0-3)=12 \\
f^{\prime \prime}(3.5) & =e^{3.5}(3.5-4\rangle(3.5-3) \\
& =e^{3.5}(-0.5)(0.5) \\
& =-0.25 e^{3.5} \\
f^{\prime \prime}(5) & =e^{5}(5-4)(5-3) \\
& =2 e^{5}
\end{aligned}
$$

Second derivative test
Suppose $x=c$ is a critical point of $f(x)$.
(1) If $f^{\prime \prime}(c)>0$, then $x=c$ is a relative min.
(2) If $f^{\prime \prime}(c)<0$, then $x=c$ is a Relative max.
(2) $y=5+6 x-8 x^{3}$ find relative extrema

$$
\begin{aligned}
& y^{\prime}=6-24 x^{2} \\
& 0=6-24 x^{2} \\
& x= \pm 1 / 2 \leftarrow \text { Critical points } \\
& y^{\prime \prime}=-48 x \\
& y^{\prime \prime}\left(-\frac{1}{2}\right)=24 \quad y^{\prime \prime}\left(+\frac{1}{2}\right)=-24
\end{aligned}
$$

$-\frac{1}{2}$ is rel. min $+\frac{1}{2}$ is rel max.

