HW 27\#4 $y^{\prime}=5 \cos x+2 \quad y\left(\frac{3 \pi}{2}\right)=9$
Gind y.

$$
\begin{aligned}
& y=\int y^{\prime} d x \\
&=\int 5 \cos x+2 d x \\
&=5 \int \cos x d x+2 \int d x \\
& y=5 \sin x+2 x+c \\
& 9=y\left(\frac{3 \pi}{2}\right)=5 \sin \left(\frac{3 \pi}{2}\right)+2\left(\frac{3 \pi}{2}\right)+c \\
& 9=-5+3 \pi+c \\
& c=14-3 \pi \\
& y=5 \sin x+2 x+14-3 \pi
\end{aligned}
$$

Lesson 28: Area and Riemann sums
Sigma notation
The sigmo notation alows us to concisely write all of the terms in a sum

$$
1+2+3+4+5+\cdots+95+96+97+98+99+100
$$

$={ }^{100} \leftarrow$ ending value for i

$$
=\sum_{i} \quad i=\text { index } x
$$

$i=1 \leftarrow$ starting value for i
rule

$$
\sum_{i=1}^{5}\left(i^{2}=1^{2}+2^{2}+3^{2}+\quad 4^{2}+5^{2}\right.
$$

(1) Write $\sum_{i=3}^{6} i(\sqrt{i}+4)$ in addition.

$$
\begin{aligned}
\sum_{i=3}^{6} i(\sqrt{i}+4)= & 3(\sqrt{3}+4)+4(\sqrt{4}+4)+5(\sqrt{5}+4) \\
& i=6 \\
& 6(\sqrt{6}+4)
\end{aligned}
$$

(2) Write $(1-1)^{3}+(2-1)^{3}+(3-1)^{3}+\cdots+(n-1)^{3}$ n is a positive integer.

$$
\sum_{i=1}^{n}(i-1)^{3}=(i-1)^{3}+(2-1)^{3}+\cdots+(n-1)^{3}
$$

Riemann sums

signed area under the curve is approximately (above x-axis)
\sum area of green rect angles

- \sum area of red rectangles
(blow x-axis)

Gad approximation
Do we want to use a lot of rectangles.
(3) Approximate signed area under the curve $y=4 x^{2}$ on $[0,6]$ using 3 rectangles.
Right Riemann sum (rectangles right bop conner touches the curve)

$\Delta x:=$ width of each rectang le

$$
=\frac{6-0}{3}=2
$$

$$
\begin{aligned}
\sum_{i=1}^{3} y\left(x_{i}\right) \Delta x & =\sum_{i=1}^{3} y(0+i \Delta x) \Delta x \\
& =\sum_{i=1}^{3} 4(i \cdot 2)^{2} \cdot 2 \\
& =4(1 \cdot 2)^{2} \cdot 2+4(2 \cdot 2)^{2} \cdot 2+4(3 \cdot 2)^{2} \cdot 2 \\
& =\underbrace{4(2)^{2} \cdot 2}_{\text {area of }}+\underbrace{4(4)^{2} \cdot 2}_{\text {area } o f}+\underbrace{4(6)^{2} \cdot 2}_{\text {secend reet. area }} \text { of thind rect. }
\end{aligned}
$$

Ift Riemom sums

$$
\begin{aligned}
& \Delta x=\frac{6-0}{3}=2 \\
& \sum_{i=0}^{2} y\left(x_{i}\right) \Delta x \\
& =\sum_{i=0}^{2} y(0+i \Delta x) \Delta x \\
& =\sum_{i=0}^{2} 4(i .2)^{2} \Delta x \\
& =4(0.2)^{2} .2+4(1.2)^{2} \cdot 2+4(2.2)^{2} \cdot 2 \\
& i=0 \quad i=1 \quad i=2
\end{aligned}
$$

General Case $f(x)$ on $[a, b]$ w/ n rectangles.
Right Riemann sums:

$$
\sum_{i=1}^{n} f(a+i \Delta x) \Delta x \quad \Delta x=\frac{b-a}{n}
$$

luff Riemann Sum

$$
\sum_{i=0}^{n-1} f(a+i \Delta x) \Delta x
$$

$\frac{\text { HW } 27 \# 7}{\rho p}$ growth rate of a pop. of bacteria, $\frac{d P}{d t}$, is proportional to $5 \sqrt{t}$.

P: population
t : time in days $\quad(0 \leqslant+r 10)$
Intial pop is 300
Approximal pop after 7 days.

$$
\begin{aligned}
\frac{d P}{d t} & =5 \sqrt{t}, P(0)=300, \text { Find } P(7)=? \\
P & =\int \frac{d P}{d t} d t=\int 5 \sqrt{t} d t=5 \int t^{1 / 2} d t \\
& =5 \frac{t^{3 / 2}}{3 / 2}+C \\
& =5 \cdot \frac{2}{3} t^{3 / 2}+C \\
& =\frac{10}{3} t^{3 / 2}+C \\
300 & =P(0)=\frac{10}{3}(0)^{3 / 2}+C \\
P & =300 \\
P(t) & =\frac{10}{3} t^{3 / 2}+300 \\
P(7) & =\frac{10}{3}(7)^{3 / 2}+300 \approx 362 \text { pop often } 7 \text { days }
\end{aligned}
$$

Lesson 28: Area and Riemann sums
Sigma notation
The sigma (sum) notation alows us to concisely write all of the terms in a sum

$$
1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}+8^{2}+9^{2}+10^{2}
$$

ending
value $\rightarrow 10 \quad \downarrow$ rule $\quad i=1 \quad i=2 \quad i=3 \quad i=9 \quad i=10$
$\begin{aligned} \text { ind ne } \rightarrow z & =1 \\ & \uparrow \text { starting } \\ & \text { value }\end{aligned}$
(1) Write $\sum_{i=3}^{6} i(\sqrt{i}+4)$ in addition.

$$
\sum_{i=3}^{6} i(\sqrt{i}+4)=3(\sqrt{3}+4)+4(\sqrt{4}+4)+5(\sqrt{5}+4)+6(\sqrt{6}+4)
$$

(2) Write $\underset{i=1}{(1-1)^{3}}+\underset{i=2}{(2-1)^{3}}+\underset{i=3}{(3-1)^{3}}+\cdots+\underset{i=n}{(n-1)^{3}}$ in sigma notation.

$$
\sum_{i=1}^{n}(i-1)^{3}
$$

Riemann sums

We have a curve $f(x)$ and we want to approx the signed area of $f(x)$ on the interval $[a, b]$
signal area:
area above x-axis is positive area below x-axis is negative. area of
Signed area $\approx \sum$ of $^{\wedge}$ rect above x-axis

- I of area of rect below x-axis
(3) Approximate the signed area under $y=4 x^{2}$ on $[0,6]$ use 3 rectangles.

Right Riemann sum

$$
\begin{aligned}
\Delta x: & \text { width of the } \\
& \text { rectangles } \\
= & \frac{6-0}{3}=2
\end{aligned}
$$

$$
4(2)^{2} \cdot 2+4(4)^{2} \cdot 2+4(6)^{2} \cdot 2=\sum_{i=1}^{3} y(\overbrace{0+i \Delta x}^{x_{i}}) \Delta x
$$

left Riemann sums

$$
\begin{aligned}
& \Delta x=2 \\
& 4(0)^{2} \cdot 2+4(2)^{2} \cdot 2+4(4)^{2} \cdot 2 \\
& =\sum_{i=0}^{2} y(0+i \Delta x) \Delta x
\end{aligned}
$$

General Case: approx area under $f(x)$ on the interval $[a, b]$ w/ n rectangles.

Right Riemann Sum:

$$
\sum_{i=1}^{n} f(a+i \Delta x) \Delta x \quad \Delta x=\frac{b-a}{n}
$$

Left Riemann Sum

$$
\sum_{i=0}^{n-1} f(a+i \Delta x) \Delta x
$$

