

+00 +00

f(5) = undeg-

$$C_{usc} \ 3: \ f(c) = \frac{0}{0}$$

Eithen f has a "hade at c" on an
"asymptote at c"
(5) $f(x) = \frac{x^2 - 7x}{x^2 + 3x}$, $\lim_{x \to 0} f(x)$
 $f(o) = \frac{0^2 - 7 \cdot 0}{0^2 + 3 \cdot 0} = \frac{0}{0}$ they and factor, then
 $f(x) = \frac{x(x - 7)}{x(x + 3)} = \frac{x - 7}{x + 3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$ $\frac{0 - 7}{0 + 3} = \frac{-7}{3}$
(6) $f(x) = \frac{x^2 + 5x + 6}{x^2 + 3x + 2}$, $\lim_{x \to -2} f(x)$
 $f(-2) = \frac{(-2)^2 + 5(-2) + 6}{(-2)^2 + 3(-2) + 2} = \frac{4 - 10 + 6}{4 - 6 + 2} = \frac{0}{0}$
 $f(x) = \frac{x^2 + 5x + 6}{x^2 + 3x + 2} = \frac{(x + 2)(x + 3)}{(x + 2)(x + 1)}$ $\frac{x + 3}{x + 1}$

 $\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x+3}{x+1} = \frac{1}{-1} = -1$

Limits Properties let $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = K$ * Bath L, K must exist and be finite 7 $\lim_{x \to c} \left(a f(x) \right) = a L$ a is a number $\lim_{x \to c} (f(x) + g(x)) = L + K$ $\lim_{x \to c} \left(f(x) \cdot g(x) \right) = L \cdot K$ if $K \neq O$, then $\lim_{x \to c} \left(\frac{f'(x)}{g(x)} \right) = \frac{L}{K}$ $\lim_{x \to c} \left[\left(f_{1x} \right)^n \right] = L^n$ $(7) f(x) = \begin{cases} x + 1 & x \leq 6 \\ 7 & x > 6 \end{cases}$ 6 $\lim_{x \to L} f(x) = 7$

 $\lim_{x \to 6^{-}} f(x) = (0 + 1) = 7$ $\lim_{x \to 6^+} f(x) = 7$

HW2: #9 $f(x) = \begin{cases} bx^2 - 3 & x \in 3 \\ Hx + 3 & x > 3 \end{cases}$ $\lim_{x \to 3} f(x) = DNE$

$$\frac{x}{f(x)} \begin{vmatrix} 2.99 \\ 2.99 \\ 2.99 \\ 2.99 \\ 3.001 \\ 3.01 \\$$

Lesson 3: finding limits Analytically

$$\lim_{x \to c} f(x) = ?$$

Case 1:
$$f$$
 is not plecewise and $f(c)$ is a number
($f(c) may = 0$ as well)
 $\lim_{x \to c} f(a) = f(c)$

()
$$f(x) = 3x^2 - 1$$
, $\lim_{x \to 2} f(x) = ||$

$$f(2) = 3(2)^2 - 1 = 11$$

$$(2) f(x) = \frac{1}{x^2 + 1}, \quad \lim_{x \to -1} f(x) = \frac{1}{2} f(-1) = \frac{1}{(-1)^2 + 1} = \frac{1}{2}$$

$$\lim_{x\to s} f(x) = +\infty$$

Case 3:
$$f(z) = \frac{2}{0}$$

this means f either has "a hole at c"
on f has an asympthe at c
first failing, then reduce
 $(5) f(x) = \frac{x^2 - 7x}{x^2 + 3x}$ $\lim_{x \to 0} f(x)$
 $f(0) = \frac{0^2 - 7 \cdot 0}{0^2 + 3 \cdot 0} = \frac{0}{0}$
 $f(x) = \frac{x^2 - 7x}{x^2 + 3x} = \frac{x(x - 7)}{x(x + 3)}$ $\frac{x - 7}{x + 3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \lim_{x \to 0} \frac{x - 7}{x + 3} = \frac{-7}{3}$
 $\lim_{x \to 0} (x - 7) = \frac{1}{x}$ hen $\lim_{x \to 0} g(x) = h$
 $\lim_{x \to 0} (x - 7) = \frac{1}{x}$

if $K \neq 0$, then $\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{h}$ $\lim_{x\to c} \left[\left(f(x) \right)^n \right] = L^n$ (b) $f(x) = \begin{cases} x + 1 & i \\ 7 &$ $\lim_{x \to 6} f(x)$ $\lim_{x \to 6^{-}} f(x) = \lim_{x \to 6^{-}} (x+i) = 7$ = 7 $\lim_{x \to 6^+} f(x) = \lim_{x \to 6^+} (7) = 7$ 16 $(7) f(x) = \frac{x}{x^2}$ lim f(x) $f(o) = \frac{0}{0}$ forst factor, then reduce $f(x) = \frac{x}{x \cdot x} = \frac{1}{x}$ 1 Case 2 $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1}{x}$

$$\lim_{x\to 0} f(x) = DNE$$