DNE vs undef.
limits ~DNE functions ~~undef

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=D N E \\
& \lim _{x \rightarrow 2^{-}} f(x)=+\infty \\
& \lim _{x \rightarrow 2^{+}} f(x)=-\infty
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=\text { DNE }, \quad f(0)=-1 \\
& \lim _{x \rightarrow 0^{-}} f(x)=-1, \quad \lim _{x \rightarrow 0^{+}} f(x)=1
\end{aligned}
$$

Lesson \#3: finding limits Analytically

$$
\lim _{x \rightarrow c} f(x)
$$

$\downarrow f$ is not piecewise
Case 1: $f(c)$ is a number (possibly $=0$)
(1)

$$
\begin{aligned}
& f(x)=3 x^{2}-1, \lim _{x \rightarrow 2} f(x) \\
& \lim _{x \rightarrow 2} f(x)=3(2)^{2}-1=11
\end{aligned}
$$

(2)

$$
\begin{array}{ll}
f(x)=\frac{1}{x^{2}+1}, \lim _{x \rightarrow-1} f(x) & f(-1)=\frac{1}{(-1)^{2}+1}-\frac{1}{2} \\
\lim _{x \rightarrow-1} f(x)=1 / 2
\end{array}
$$

(3)

$$
\begin{aligned}
& f(x)=\cos x, \quad \lim _{x \rightarrow \pi / 2} f(x) \\
& \cos (\pi / 2)=0, \quad \lim _{x \rightarrow \pi / 2} f(x)=0
\end{aligned}
$$

Case 2: $f(c)=\frac{\text { nonzero number }}{0}$
this means that f has a vortical asymptote at $x=c, \lim _{x \rightarrow c} f(x)$ is either $\pm \infty$ or DNE

(4)

$$
\begin{aligned}
& f(x)=\frac{1}{(x-5)^{2}}, \lim _{x \rightarrow 5} f(x) \\
& f(5)=\frac{1}{(5-5)^{2}}=\frac{1}{0}
\end{aligned}
$$

x	4.9	4.99	5	5.01	5.1
$f(x)$	100	10,000		10,000	100
+	$+\infty$				

$$
\begin{aligned}
& \lim _{x \rightarrow 5} f(x)=+\infty \\
& f(5)=\text { undo } f
\end{aligned}
$$

Case $3: f(c)=\frac{0}{0}$
Either f has a "hole at c " an an "asymptote at $c^{\prime \prime}$

$$
\begin{aligned}
& \text { (5) } f(x)=\frac{x^{2}-7 x}{x^{2}+3 x}, \lim _{x \rightarrow 0} f(x) \\
& f(0)=\frac{0^{2}-7 \cdot 0}{0^{2}+30}=\frac{0}{0} \quad \text { try and factor, then } \\
& f(x)=\frac{x(x-7)}{x(x+3)}=\frac{x-7}{x+3} \quad \frac{0-7}{0+3}=\frac{-7}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } f(x)=\frac{x^{2}+5 x+6}{x^{2}+3 x+2}, \lim _{x \rightarrow-2} f(x) \\
& f(-2)=\frac{(-2)^{2}+5(-2)+6}{(-2)^{2}+3(-2)+2}=\frac{4-10+6}{4-6+2}=\frac{0}{0} \\
& f(x)=\frac{x^{2}+5 x+6}{x^{2}+3 x+2}=\frac{(x+2)(x+3)}{(x+2)(x+1)} \frac{x+3}{x+1} \\
& \lim _{x \rightarrow-2} f(x)=\lim _{x \rightarrow-2} \frac{x+3}{x+1}=\frac{1}{-1}=-1
\end{aligned}
$$

Limits Properties
let $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=K$ * Both L,K must exist and be finite 4 $\lim _{x \rightarrow c}(a f(x))=a L \quad a$ is a number

$$
\begin{aligned}
& \lim _{x \rightarrow c}(f(x)+g(x))=L+K \\
& \lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot K
\end{aligned}
$$

if $K \neq O$, then $\lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{L}{K}$

$$
\lim _{x \rightarrow c}\left[(f(x))^{n}\right]=L^{n}
$$

$\left(7 f(x)= \begin{cases}x+1 & x \leqslant 6 \\ 7 & x>6\end{cases}\right.$

$$
\begin{gathered}
\lim _{x \rightarrow 6^{-}} f(x)=7, \quad \lim _{x \rightarrow 6^{-}} f(x)=6+1=7 \\
\lim _{x \rightarrow 6^{+}} f(x)=7
\end{gathered}
$$

HW2: \#9

$$
f(x)=\left\{\begin{array}{cc}
6 x^{2}-3 & x \leqslant 3 \\
11 x+3 & x>3
\end{array} \quad \lim _{x \rightarrow 3} f(x)=\right.\text { DNE }
$$

x	2.9	2.99	2.999	3	3.001	3.01	3.1
$f(x)$	47.46	50.641	50.964		36.011	36.11	37.1

$$
\lim _{x \rightarrow 3^{-}} f(x)=51 \neq \quad<\quad<\lim _{x \rightarrow 3^{+}} f(x)
$$

Lesson 3: finding limits Analytically

$$
\lim _{x \rightarrow c} f(x) \quad f(c)=?
$$

Case 1: f is not piecewise and $f(c)$ is a number

$$
(f(c) \operatorname{may}=0 \text { as well })
$$

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

$$
\begin{aligned}
& 1 f(x)=3 x^{2}-1, \lim _{x \rightarrow 2} f(x)=11 \\
& f(2)=3(2)^{2}-1=11
\end{aligned}
$$

(2)

$$
\begin{aligned}
& f(x)=\frac{1}{x^{2}+1}, \lim _{x \rightarrow-1} f(x)=\frac{1}{2} \\
& f(-1)=\frac{1}{(-1)^{2}+1}=\frac{1}{2}
\end{aligned}
$$

(3) $f(x)=\cos x \quad \lim _{x \rightarrow \pi / 2} f(x)=0$

$$
f(\pi / 2)=\cos (\pi / 2)=0
$$

Case 2: $f(c)=\frac{\text { nonzero number }}{0}$
this means f has a vertical asymptote at $x=c$ $\lim _{x \rightarrow c} f(x)$ either $\pm \infty$ on DNE

$+\infty$

$-\infty$

(4) $f(x)=\frac{1}{(x-5)^{2}}, \lim _{x \rightarrow 5} f(x)$

$$
f(5)=\frac{1}{(5-5)^{2}}=\frac{1}{0}
$$

$$
\lim _{x \rightarrow 5} f(x)=+\infty
$$

Case 3: $f(c)=\frac{0}{0}$
this means f either has "a hole at c " on f has an asymptote at c
first factor, then reduce

$$
\begin{aligned}
& 5 f(x)=\frac{x^{2}-7 x}{x^{2}+3 x} \quad \lim _{x \rightarrow 0} f(x) \\
& f(0)=\frac{0^{2}-7 \cdot 0}{0^{2}+3 \cdot 0}=\frac{0}{0} \\
& f(x)=\frac{x^{2}-7 x}{x^{2}+3 x}=\frac{x(x-7)}{x(x+3)} \frac{x-7}{x+3} \\
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x-7}{x+3}=\frac{-7}{3}
\end{aligned}
$$

Limit Properties
Let $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=K$

* Careful: L, K must exist and be finite A if a is a number, then $\lim _{x \rightarrow c}(a f(x))=a L$

$$
\begin{aligned}
& \lim _{x \rightarrow c}(f(x)+g(x))=L+k \\
& \lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot K
\end{aligned}
$$

if $k \neq 0$, then $\lim _{x \rightarrow c}\left(\frac{f(x)}{g(x)}\right)=\frac{L}{k}$

$$
\lim _{x \rightarrow c}\left[(f(x))^{n}\right]=L^{n}
$$

(6) $f(x)=\left\{\begin{array}{cll}x+1 & \text { if } & x \leqslant 6 \\ 7 & \text { if } x>6\end{array}\right.$

$$
\begin{array}{ll}
\lim _{x \rightarrow 6^{\prime}} f(x) & \lim _{x \rightarrow 6^{-}} f(x)=\lim _{x \rightarrow 6^{-}}(x+1)=7 \\
=7 & \lim _{x \rightarrow 6^{+}} f(x)=\lim _{x \rightarrow 6^{+}}(7)=7
\end{array}
$$

(7) $f(x)=\frac{x}{x^{2}} \quad \lim _{x \rightarrow 0} f(x)$
$f(0)=\frac{0}{0}$ forst facton, then reduce

$$
\begin{aligned}
& f(x)=\frac{x}{x \cdot x} \frac{1}{x} \\
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{x} \quad \frac{1}{0} \quad \operatorname{Case} 2!
\end{aligned}
$$

x	-0.1	-0.01	0	.01	1
$f(x)$	-10	-100		100	10
$-\infty$	$+\infty$				

$$
\lim _{x \rightarrow 0} f(x)=\text { DNE }
$$

