HL 3 \# 10

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
-3 x-\pi / 2 \\
\cos x \\
4 \sin x+2
\end{array}\right. \\
& x \leqslant-\pi / 2 \\
& -\pi / 2<x<\pi / 2 \\
& \lim _{x \rightarrow-\pi / 2} f(x)=D N E \\
& \lim _{x \rightarrow-\frac{\pi^{-}}{-}} f(x)=\lim _{x \rightarrow-\frac{\pi^{-}}{-}}\left(-3 x-\frac{\pi}{2}\right) \\
& \operatorname{lose} 1=-3\left(-\frac{\pi}{2}\right)-\frac{\pi}{2}=\pi \\
& \lim _{x \rightarrow-\frac{\pi}{2}^{+}} f(x)=\lim _{x \rightarrow-\frac{\pi^{+}}{}} \cos x=\cos \left(-\frac{\pi}{2}\right)=0
\end{aligned}
$$

Lesson 4: Continuity
A function $f(x)$ is said to be continuous at $x=c$ if there are "no breaths" in the function dicontinuify

 $\frac{1}{0}$ or $\frac{0}{0}$

When is f continuous?
$f(x)$ is cont inuous at $x=c$ if

1) $f(c)$ is defined need
2) $\lim _{x \rightarrow c} f(x)$ exists $\lim _{x(x)} f(c) \quad\{$ all of these
3) $\lim _{x \rightarrow c} f(x)=f(c)$

Examples
(1)

What are the x-values such that $f(x)$ is discontinuous? at $-3,1,2$ $-3,2$ are jumps 1 is asymptote
(2)

find and classify discount.
-1: asymptote
-2 : hole
1: hole
2 : asymptote
(3) $f(x)=\frac{1}{x-1}$, find/ Classify all discout.
find when $f(x)=\frac{1}{0}$
lock at the denominator: $x-1=0 \quad x=1$

$$
f(1)=\frac{1}{1-1}=\frac{1}{0}
$$

f has discount at $x=1$: asymptote

| x | | |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | | |
| $-\infty$ | | |

(4) $f(x)=\frac{x^{2}+2 x-3}{x^{2}+5 x-6}$ find/classify disc.

$$
=\frac{(x+3)(x-1)}{(x+6)(x-1)}
$$

$$
\frac{x+3}{x+6}
$$

denom $=0$ when $x=-6$ or 1

$$
\begin{aligned}
& f(-6)=\frac{(-3)(-7)}{0}=\frac{21}{0} \Rightarrow \text { asymptote } \\
& \frac{(1)+3}{(1)+6}=\frac{4}{7}<1 \text { is a hole }
\end{aligned}
$$

5

$$
f(x)= \begin{cases}x^{2} & x \leqslant 0 \\ 1 & x>0\end{cases}
$$

Chock each function
Check the end pts. $x=0$

$$
\lim _{x \rightarrow 0^{-}} f(x)=0
$$

great!

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=1 \\
& \lim _{x \rightarrow 0} f(x)=D N E
\end{aligned}
$$

f is not cont. at $x=0$ (jump).
(6) $f(x)= \begin{cases}2 x^{2}-1 & x<3 \\ 6 x-1 & x \geqslant 3\end{cases}$

Check each "piece"
Check the end pts. $x=3$?

1) $f(3)=6(3)-1=18-1=17$
2)

$$
\begin{aligned}
\lim _{x \rightarrow 3} f(x)= & 17 \\
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(2 x^{2}-1\right)^{\text {ear. } 1}=2(3)^{2}-1=17
\end{aligned}
$$

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(6 x-1)^{\text {carcl }}=17
$$

3) $f(3) \stackrel{?}{=} \lim _{x \rightarrow 3} f(x)$

11	11
17	17

Do f is continuons of $x=3$
(7) $f(x)= \begin{cases}\cos x & x \neq 0 \\ 0 & x=0\end{cases}$

Is $x=0$ discont?

1) $f(0)=0$
2) $\lim _{x \rightarrow 0} f(x)=1$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \cos x=1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \cos x=1
\end{aligned}
$$

3) $f(0) \neq \lim _{x \rightarrow 0} f(x)$

HL 3 \# 10

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
-3 x-\pi / 2 & x \leqslant-\pi / 2 \\
\cos x & -\frac{\pi}{2}<x<\frac{\pi}{2} \\
4 \sin x+2 & x \geqslant \pi / 2
\end{array}\right. \\
& \lim _{x \rightarrow-\frac{\pi}{2}} f(x)=\text { oNE } \\
& \pi=\operatorname{pi} \\
& \text { LON-CAPA } \\
& \lim _{x \rightarrow-\frac{\pi}{2}^{-}} f(x)=\lim _{x \rightarrow-\frac{\pi^{-}}{2}}\left(-3 x-\frac{\pi}{2}\right) \\
& \text { Cases }=-3\left(-\frac{\pi}{2}\right)-\frac{\pi}{2} \\
& =\pi<\text { not }= \\
& \lim _{x \rightarrow-\frac{\pi}{2}+} f(x)=\lim _{x \rightarrow-\frac{\pi^{+}}{}} \cos x=\cos \left(-\frac{\pi}{2}\right)=\prod
\end{aligned}
$$

Lesson 4: Continuity
A function $f(x)$ is sail to be continuous at $x=c$ if there are "no breaks" at c

$$
\text { discontinuity }=\text { brock }
$$

What are "breaks"?

 $\frac{1}{0}$ on $\frac{0}{0}$

When is $f(x)$ continuous?
$f(x)$ is continuous at $x=c$ if

1) $f(c)$ is defined
2) $\lim _{x \rightarrow c} f(x)$ exists
3) $f(x)=\lim _{x \rightarrow c} f(x)$
need all of
these to be true

Examples
(1)

find / classify all descontinnities of f.
-3: jump p
1: asymptote
2: jump

1) $f(0)=0$
2) $\lim _{x \rightarrow 0} f(x)=0$,
3) $f(0)=\lim _{x \rightarrow 0} f(x)$
(2)

find/classify discont.
-2: hole
-1: asymplote
1: hale
2: as yuptute
(3)

$$
\begin{aligned}
f(x) & =\frac{x^{2}+2 x-3}{x^{2}+5 x-6} \quad \text { fingl classify discont. } \\
& =\frac{(x+3)(x-1)}{(x+6)(x-1)} \quad \text { discont. }
\end{aligned}
$$

we will dividing by zoro at $x=-6,1$
$f(-6)=\frac{(-3)(-7)}{0}=\frac{21}{0} \quad x=-6$ is a asymptite

$$
\begin{aligned}
& f(1)=\frac{0}{0} ? \\
& \quad \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x+3}{x+6}=\frac{4}{7}
\end{aligned}
$$

Do we have a hole at $x=1$
(4) $f(x)=\left\{\begin{array}{llc}x^{2} & x \leqslant 0 & \text { find/classify } \\ 1 & x>0 & \text { discount. }\end{array}\right.$

Check each piece for discount Chock each end pt for discount. $x=0$ Is f cont at $x=0$?

1) $f(0)=0$
2) $\lim _{x \rightarrow 0} f(x)=$ DNE!

Case 1

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}=0 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 1=1
\end{aligned}
$$

Since left and right limits are numbers and are not equal, then $x=0$ is a jump
(5) $f(x)=\left\{\begin{array}{ll}\cos x & x \neq 0 \\ 0 & x=0\end{array} \quad\right.$ find/classify discont.

Chack piecos
Chack end pts $x=0$

1) $f(0)=0$
2)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=1 \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \cos x=\cos (0)=1 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \cos x=\cos (0)=1
\end{aligned}
$$

3) $f(0)$
f has a discont at $x=0$ and it is a hole

$$
f(x)=\left\{\begin{array}{cc}
\cos x & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

