HW4\#6 $f(x)=\frac{x^{2}+2 x-3}{x^{2}+5 x-6}$

$$
\left.\begin{array}{rl}
f(x)=\frac{(x+3)(x-1)}{(x+6)(x-1)} & f(-6)
\end{array}=\frac{(-3) \cdot(-7)}{0}\right\}
$$

$x=-6:$ asymptote

$$
x=1: \lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{x+3}{x+6}=\frac{4}{7}
$$

Since lime exists (not $\pm \infty$), then we have hole at $x=1$

$$
\begin{aligned}
& g(x)= \begin{cases}x^{2} & x \leqslant 0 \\
1 & x>0\end{cases} \\
& \ln (x)= \begin{cases}2 x & x \neq 1 \\
-3 & x=1\end{cases}
\end{aligned}
$$

Lesson 5: The derivative
How step is the hill?

Tower Drive

Derivative of $f(a)$ at c measures how stoup the function is at $x=c$.
Call the steepness $\left.\left.f^{\prime}(c) \quad \frac{d}{d x}[f(x)]\right|_{x=c}\right)$
Tangent into tangent lines

$f^{\prime}(c)=$ slope of tangent line
$=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad$ definition of derivative
(1) $f(x)=1+5 x$ find slope of the tangent line at $x=0$

$$
\begin{aligned}
& f(x+h)=1+5(x+h) \\
& f(x)=1+5 x
\end{aligned}
$$

$$
\text { slope of tangent } \lim _{\text {line at } x=0} \frac{1+5(x+h)-(1+5 x)}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\lambda+5 x+5 h>1-5 x}{h} \\
& =\lim _{h \rightarrow 0} \frac{5 h}{h} \\
& =\lim _{h \rightarrow 0} 5=5
\end{aligned}
$$

(2) $f(x)=\frac{3}{6 x-5}$ find the derivative

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f(x+h) & =\frac{3}{6(x+h)-5} \\
f(x+h)-f(x) & =\frac{3}{6(x+h)-5}-\frac{3}{6 x-5} \\
& =\frac{3}{6 x+6 h-5}-\frac{3}{6 x-5}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3(6 x-5)-3(6 x+6 h-5)}{(6 x+6 h-5)(6 x-5)} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{3(6 x-5)-3(6 x+6 h-5)}{(6 x+6 h-5)(6 x-5)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3(6 x-5)-3(6 x+6 h-5)}{h(6 x+6 h-5)(6 x-5)} \\
& =\lim _{h \rightarrow 0} \frac{18 x-15-18 x-18 h+15}{h(6 x+6 h-5)(6 x-5)} \\
& =\lim _{h \rightarrow 0} \frac{-18 h}{h(6 x+6 h-5)(6 x-5)} \\
& =\lim _{h \rightarrow 0} \frac{-18}{(6 x+6 h-5)(6 x-5)} \\
& =\frac{18}{(6 x+6 \cdot 0-5)(6 x-5)} \\
& =\frac{-18}{(6 x-5)^{2}}
\end{aligned}
$$

(3) find the tangent line of $f(x)=-2 x^{2}-8$
at $x=-8$
slope of tan line $=f^{\prime}(-8)$ at $x=-8$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2(x+h)^{2}-8-\left(-2 x^{2}-8\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2\left(x^{2}+2 x h+h^{2}\right)-8+2 x^{2}+8}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 x^{2}-4 x h-2 h^{2}-8+2 / x^{2}+2}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4 x h-2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(-4 x-2 h) \\
& =-4 x \\
& f^{\prime}(x)=-4 x \\
& f^{\prime}(-8)=32 \\
& \text { Point - Slope form } \\
& \text { - } m \text { slope } \\
& \text { - }\left(x_{1}, y_{1}\right) \text { a pt } \\
& \text { then } y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
(-8, f(-8)) \quad f(x) & =-2 x^{2}-8 \\
f(-8) & =-2(-8)^{2}-8 \\
& =-128-8 \\
& =-136 \\
y-(-136) & =32(x-(-8)) \\
y & =32(x+8)-136
\end{aligned}
$$

tangont lime!

71w 4 \# 11

$$
f(x)=\left\{\begin{array}{cc}
-8 x-\pi / 2 & x \leqslant-\pi / 2 \\
\cos x & -\frac{\pi}{2}<x<\pi / 2 \\
9 \sin x+3 & x \geqslant \pi / 2
\end{array}\right.
$$

find/ classify discontinuities
think "piecewise" on "dividing by 0 "
possible discount at $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$
Recall f cont at $x=c$ if

1) $f(c)$ is defined
2) $\lim _{x \rightarrow c} f(x)$ exists
3) $f(c)=\lim _{x \rightarrow c} f(x)$
$\left.x=-\frac{\pi}{2} \quad 1\right) f\left(-\frac{\pi}{2}\right)=\frac{7 \pi}{2}$
4)

$$
\begin{aligned}
& \lim _{x \rightarrow-\frac{\pi}{2}^{-}} f(x)=\frac{7 \pi}{2} \\
& \lim _{x \rightarrow-\frac{\pi}{2}^{+}} f(x)=\lim _{x \rightarrow-\frac{\pi^{2}}{}} \cos x=0
\end{aligned}
$$

Do $\lim _{x \rightarrow-\frac{\pi}{2}} f(x)$ DNE
Do $x=-\frac{\pi}{2}$ is a discount. (jump).

Lesson 5: The derivative
How steep is the hill?
Tower dr.
less step and down hill negative number
Very stop
loge number
flat steepness $=0$
Derivative of $f(x)$ at $x=c$ is the steepness of f at pt. $x=c$. $f^{\prime}(c)$ or $\left.\frac{d}{d x}[f(x)]\right|_{x=c}$

Tangent to Tangent lines
 line tangential to $(c, f(c))$ on "kisses" $f(x)$ at $x=0$
$f^{\prime}(c):=$ slope of the tangent line

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { definition of the }
$$

(1) $f(x)=1+5 x$ find the slope of the tangent line at $x=0$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1+5(x+h)-(1+5 x)}{h} \\
&=\lim _{h \rightarrow 0} \frac{x+5(x+5 h-x-5(x}{h} \\
&=\lim _{h \rightarrow 0} \frac{5 h}{h}=\lim _{h \rightarrow 0} 5 \\
& f^{\prime}(x)=5 \\
& \quad f^{\prime}(0)=5
\end{aligned}
$$

Slope of tan. line at $x=0$ is $f^{\prime}(0)=5$.
(2) $f(x)=\frac{3}{6 x-5}$, find $f^{\prime}(x)$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3}{6(x+h)-5}-\frac{3}{6 x-5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3(6 x-5)-3(6(x+h)-5)}{(6(x+h)-5)(6 x-5)}}{h} \frac{1}{\frac{1}{h}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{3(6 x-5)-3(6(x+h)-5)}{h(6(x+h)-5)(6 x-5)} \\
& =\lim _{h \rightarrow 0} \frac{18 x-15-78 x-18 h+55}{h(6 x+6 h-5)(6 x-5)} \\
& =\lim _{h \rightarrow 0} \frac{-18 h}{h(6 x+6 h-5)(6 x-5)} \\
& =\lim _{h \rightarrow 0} \frac{-18}{(6 x+6 h-5)(6 x-5)} \\
& =\frac{18}{(6 x+6.0-5)(6 x-5)}=\frac{18}{(6 x-5)^{2}}
\end{aligned}
$$

(3) find the tangent line to $f(x)=-2 x^{2}-8$ at $x=0$.

Point - $\Delta l_{\text {ape formula }}$

- m slope
- $\left(x_{1}, y_{1}\right)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\begin{aligned}
& (0, f(0))=(0,-8) \\
& m=f^{\prime}(0) \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2(x+h)^{2}-8-\left(-2 x^{2}-8\right)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{-2\left(x^{2}+2 x h+h^{2}\right)-8+2 x^{2}+8}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 x^{2}-4 x h-2 h^{2}-k+2 x^{2}+2}{h} \\
& =\lim _{h \rightarrow 0}-\frac{4 x h-2 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(-4 x-2 h)=-4 x-2(0) \\
& =-4 x \\
& f^{\prime}(x)=-4 x \text {, but } m=f^{\prime}(0)=-4 \cdot 0=0 \\
& m=0 \\
& \left(x_{1}, y_{1}\right)=(0,-8) \\
& y-(-8)=0(x-0) \\
& y=-8
\end{aligned}
$$

