Quiz 5

June Weiland

October 7th, 2022

Problem 1. Use implicit differentiation to find $\frac{d y}{d x}$ for the following equations
(a) $2 x^{4}=4 y^{2}+6 x^{2}$
(b) and $e^{2 x y}=6 x$.

Solution:

(a) We begin by differentiating both sides of the equation with respect to x,

$$
\begin{aligned}
\frac{d}{d x}\left[2 x^{4}\right] & =\frac{d}{d x}\left[4 y^{2}+6 x^{2}\right] \\
8 x^{3} & =8 y \frac{d y}{d x}+12 x
\end{aligned}
$$

Finally we solve for $d y / d x$ and see that

$$
\frac{d y}{d x}=\frac{8 x^{3}-12 x}{8 y}=\frac{2 x^{3}-3 x}{2 y}
$$

(b) First we differentiate both sides of the equation with respect to x and obtain

$$
\begin{aligned}
\frac{d}{d x}\left[e^{2 x y}\right] & =\frac{d}{d x}[6 x] \\
e^{2 x y} \frac{d}{d x}[2 x y] & =6 \\
e^{2 x y}\left(2 y+2 x \frac{d y}{d x}\right) & =6 .
\end{aligned}
$$

Finally, we solve for $d y / d x$ and hence

$$
\frac{d y}{d x}=\frac{3-y e^{2 x y}}{x e^{2 x y}}
$$

