MA 262 Section 596/597 Quiz 11

June Weiland

April 21, 2023

Problem 1. Write your name, section and quiz number at the top of a blank full sized sheet of paper.
Problem 2. Apply the eigenvalue method to find a general solution of the given system:

$$
\begin{aligned}
x_{1}^{\prime} & =3 x_{1}-5 x_{2} \\
x_{2}^{\prime} & =x_{1}-3 x_{2} .
\end{aligned}
$$

Solution: Let A be the coefficient matrix for the system of equations. If $x=\left(x_{1}, x_{2}\right)$, then the system of differential equations becomes the linear system $x^{\prime}=A x$. Hence

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
3 & -5 \\
1 & -3
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

The first step in the eigenvalue methods is to compute the eigenvalues of the matrix A. Thus we must solve for lambda in the equation

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
3-\lambda & -5 \\
1 & -3-\lambda
\end{array}\right)=\lambda^{2}-4
$$

Thus the eigenvalues for A are ± 2. The next step is to find the associated eigenvectors v for each eigenvalue. Starting with $\lambda=2$, if v is an eigenvector for 2 then

$$
(A-2 I) v=0
$$

Hence we have to determine a basis for the nullspace of $A-2 I$. In order to proceed we will have to put the matrix $A-2 I$ into row-echelon form:

$$
A-2 I=\left(\begin{array}{ll}
1 & -5 \\
1 & -5
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & -5 \\
0 & 0
\end{array}\right)
$$

Hence the nullspace is spanned by the vector $(5,1)$. We may take the eigenvector for $\lambda=2$ to be $v_{1}=(5,1)$.
Now we repeat the process for $\lambda=-2$. In this case we want to find a basis for the nullspace of the matrix $A+2 I$. A similar computation as above yeilds the eigenvector $v_{2}=(1,1)$.

Finally, we have that

$$
x(t)=c_{1} v_{1} e^{2 t}+c_{2} v_{2} e^{-2 t}
$$

Problem 3. Which topics or ideas in this course did you find the most enjoyable? Which topics did you find to be harder than the rest?

