MA 262 Section 596/597 Quiz 1

June Weiland

January 20, 2023

Problem 1. Write your name and section number at the top of a full sized sheet of paper.
Problem 2. Find a function $y=f(x)$ satisfying the differential equation and initial condition

$$
\frac{d y}{d x}=\frac{1}{\sqrt{x+5}}, \quad y(4)=-1
$$

Solution: We proceed by integrating both sides of the equation to obtain

$$
\begin{aligned}
\int d y & =\int \frac{1}{\sqrt{x+5}} d x \\
y & =2 \sqrt{x+5}+c
\end{aligned}
$$

Since $y(4)=-1$, then we have

$$
-1=y(4)=2 \sqrt{4+5}+c=6+c
$$

Hence $c=-7$ and $y=2 \sqrt{x+5}-7$.
Problem 3. Find the position and velocity of an object moving along a straight line with the given acceleration, initial velocity, and initial position

$$
a(t)=-48, \quad v(0)=60, \quad s(0)=10
$$

Solution: Since velocity is the integral of acceleration with respect to time we have that

$$
v(t)=\int a(t) d t=\int-48 d t=-48 t+c
$$

Since we are given that $v(0)=60$, then $60=v(0)=-48(0)+c$ and hence $c=60$. Recall that the integral of velocity with respect to time is position and hence

$$
s(t)=\int v(t) d t=\int-48 t+60 d t=-24 t^{2}+60 t+c^{\prime}
$$

Since $s(0)=10$, then $10=s(0)=-24(0)^{2}+60(0)+c^{\prime}$ and hence $c^{\prime}=10$. Thus we have $s(t)=-24 t^{2}+60 t+10$.

