MA 262 Section 596/597 Quiz 2

June Weiland

January 30, 2023

Problem 1. Write your name and section number on a full sheet of blank paper.
Problem 2. Find the general solution of the form $y(x)$ to the differential equation

$$
\frac{d y}{d x}=20 \sqrt{x y}
$$

Assume x and y are positive.
Solution: This differential equation is seperable since we may write it in the form

$$
\frac{d y}{\sqrt{y}}=20 \sqrt{x} d x
$$

Now if we integrate both sides of the above equation we obtain:

$$
\begin{aligned}
\int \frac{d y}{\sqrt{y}} & =\int 20 \sqrt{x} d x \\
2 \sqrt{y} & =\frac{40}{3} x^{3 / 2}+c \\
y(x) & =\left(\frac{20}{3} x^{3 / 2}+c\right)^{2}
\end{aligned}
$$

Problem 3. Find the general solution to the differential equation, then use the initial conditions to find the corresponding particular solution.

$$
x y^{\prime}-y=x, \quad y(1)=21 .
$$

Assume $x>0$.
Solution: If we multiply the differential equation by $1 / x$ we will have

$$
y^{\prime}-\frac{1}{x} y=1
$$

which we can be solved using an integrating factor. Let $I(x)=e^{\int-1 / x d x}=1 / x$, then

$$
\frac{d}{d x}[I(x) y]=\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=I(x)\left(y^{\prime}-\frac{1}{x} y\right)=I(x)
$$

Now if we integrate

$$
\begin{aligned}
& I(x) y=\int I(x) d x \\
& y(x)=x \ln x+c x
\end{aligned}
$$

Since $y(1)=21$, then

$$
21=y(1)=(1) \ln (1)+c(1)=c .
$$

Hence the particular solution to the differential equation with given initial condition is

$$
y(x)=x \ln x+21 x
$$

