MA 262 Section 596/597: Quiz 3

June Weiland

Feb. 3rd, 2023

Problem 1. Write your name and section number on a full sized blank piece of paper.
Problem 2. Find the general solution to the differential equation

$$
x^{2} y^{\prime}=x y+2 y^{2} .
$$

Express the general solution in the form $y(x)=$.
Solution: First divide the equation by x^{2} to obtain

$$
y^{\prime}=\frac{x y+2 y^{2}}{x^{2}}
$$

If we multiply the numerator and denominator of the above equation by $1 / x^{2}$, then

$$
y^{\prime}=\frac{y / x+2(y / x)^{2}}{1}
$$

Now let $v x=y$ (equivalently $v=y / x$), then $y^{\prime}=v+2 v^{2}$. If we differentiate our change of variables $v x=y$, then we obtain

$$
v+x \frac{d v}{d x}=\frac{d y}{d x}=v+2 v^{2}
$$

Hence

$$
x \frac{d v}{d x}=2 v^{2}
$$

which is seperable. By seperating our variables and integrating we obtain

$$
\begin{aligned}
\int \frac{d v}{v^{2}} & =\int \frac{2}{x} d x \\
\frac{-1}{v} & =2 \ln |x|+c \\
\frac{-x}{y} & =2 \ln |x|+c \\
y & =\frac{-x}{2 \ln |x|+c}
\end{aligned}
$$

Problem 3. Given the differential equation

$$
(6 x+9 y) d x+(9 x+6 y) d y=0
$$

(a) Verify that the equation is exact.
(b) Find the general solution in the form $F(x, y)=c$ for some constant c .

Solution:
(a) Since $d / d y[6 x+9 y]=9=d / d x[9 x+6 y]$, then the differential equation is exact.
(b) $F(x, y)=\int 6 x+9 y d x=3 x^{2}+9 x y+c(y)$ and

$$
9 x+6 y=\frac{d}{d y}[F(x, y)]=\frac{d}{d y}\left[3 x^{2}+9 x y+c(y)\right]=9 x+c^{\prime}(y)
$$

Thus $c^{\prime}(y)=6 y$ and consequently, $c(y)=\int 6 y d y=3 y^{2}+c_{1}$ for some constant c_{1}. By consolidating all constants we see that

$$
3 x^{2}+9 x y+3 y^{2}=c
$$

is the general solution to the differential equation.

