MA 262: Quiz 4 Section 596/597

June Weiland

Feb. 10, 2023

Problem 1. Given the differential equation

$$
\frac{d x}{d t}=x^{2}-1
$$

(a) find all the critical points,
(b) graph the phase diagram,
(c) and classify the critical points as either stable, semistable or unstable.

Solution:

(a) Critical points occur when $d x / d t=0$, i.e., when $x^{2}-1=0$. The values of x that satisfy this equation are $x= \pm 1$.
(b) In order to draw the phase diagram we will need to know the value of $d x / d t$ in between the critical points. This leaves us with three cases to check. If $x<-1$, then $d x / d t>0$; if $-1<x<1$, then $d x / d t<0$; and if $x>1$, then $d x / d t>0$.
(c) The critical point $x=-1$ is stable since at $x=-1$ the derivative switches from positive to negative. The critical point $x=1$ is unstable since the derivative switches from negative to positive.

Problem 2. Given the differential equation

$$
\frac{d x}{d t}=-x^{2}
$$

(a) find all the critical points,
(b) graph the phase diagram,
(c) and classify the critical points as either stable, semistable or unstable.

Solution:

(a) Critical points occur when $d x / d t=0$, i.e., when $-x^{2}=0$. The values of x that satisfy this equation are only at $x=0$.
(b) In order to draw the phase diagram we will need to know the value of $d x / d t$ in between the critical points. In this case there are only two intervals to check, namely $x<0$ and $x>0$. First if $x<0$, then $d x / d t<0$ and if $x>0$, then we again have that $d x / d t<0$.
(c) Since the derivative does not switch signs at the critical point $x=0$, then this point is unstable.

