MA 262 Section 596/597 Quiz 5

June Weiland

Feb. 17, 2023

Problem 1. Write your name, quiz number, and section number on a blank sheet of paper.
Problem 2. The general solution to the differential equation

$$
y^{\prime \prime}+4 y=0
$$

is of the form $y(x)=A \cos 2 x+B \sin 2 x$. If $y(0)=5$ and $y^{\prime}(0)=14$, then find the particular solution corresponding to these initial conditions.

Solution: First the derivative of $y(x)$ is given by

$$
y^{\prime}(x)=-2 A \sin 2 x+2 B \cos 2 x
$$

Now if we use the initial conditions we see that

$$
5=y(0)=A \cos (0)+B \sin (0)=A
$$

and

$$
14=y^{\prime}(0)=-2 A \sin (0)+2 B \cos (0)=2 B
$$

This leaves us with the system of equations

$$
\begin{aligned}
A & =5 \\
2 B & =14 .
\end{aligned}
$$

This system has solution $A=5$ and $B=7$. Thus the particular soltuion is

$$
y(x)=5 \sin 2 x+7 \cos 2 x .
$$

Problem 3. Let

$$
\begin{array}{r}
6 x+3 y=0 \\
12 x+k y=0 .
\end{array}
$$

What values of k does the system have a unique solution?
Solution: If we take the first equation multiply it by -2 and add it to the second equation we will have the system

$$
\begin{array}{r}
6 x+3 y=0 \\
(k-6) y=0
\end{array}
$$

We have two cases depending on if k is 6 or not. First if $k=6$, then we will be left with one equation $6 x+3 y=0$. This equation has infinite solutions given by $x=t$ and $y=-2 t$ for any real number t. If $k \neq 6$, then we may divide by $k-6$ in our second equation $(k-6 \neq 0)$ and obtain the system

$$
\begin{aligned}
6 x+3 y & =0 \\
y & =0 .
\end{aligned}
$$

This system has a unique solution $x=0$ and $y=0$. Therefore, we will obtain a unique solution if and only if $k \neq 6$.

