MA 262 Section 596/597 Quiz 7

June Weiland

March 10, 2023

Problem 1. Write your name, quiz number, and section number at the top of a blank full sized sheet of paper.
Problem 2. Which of the following form a basis for \mathbb{R}^{3}. Justify each answer.
(a)

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)\right\}
$$

(b)

$$
\left\{\left(\begin{array}{l}
7 \\
0 \\
2
\end{array}\right),\left(\begin{array}{c}
8 \\
-3 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

(c)

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)\right\}
$$

Solution:

(a) Since

$$
\operatorname{det}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) \neq 0
$$

then the set is a basis.
(b) Any basis for a vector space will have the same number of elements. Since in (a) we saw that three vectors formed a basis for \mathbb{R}^{3}, then 4 vectors can not form a basis.
(c) Again 2 vectors can not form a basis for \mathbb{R}^{3}

Problem 3. Find a basis for the plane

$$
x-6 y+3 z=0
$$

in \mathbb{R}^{3}.
Solution: Let $y=s$ and $z=t$, then $x=6 s-3 t$. Hence

$$
\begin{array}{rlccc}
x & = & 6 s & - & 3 t \\
y & = & s & & t \\
z & = & & & t
\end{array}
$$

Therefore,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=s\left(\begin{array}{l}
6 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)
$$

Consequently the basis for the plane is

$$
\left\{\left(\begin{array}{l}
6 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right\} .
$$

Problem 4. Bonus What is the definition of a basis?
Solution: A basis for a vector space is a subset of the vector space that spans the space and is linearly independent.

