# MA 262 Section 596/597 Quiz 8 

June Weiland

March 24, 2023

Problem 1. Write your name, quiz number, and section number at the top of a blank full sized sheet of paper.

Problem 2. Find the general solution to the differential equation

$$
y^{\prime \prime}+8 y^{\prime}-9 y=0
$$

Solution: The characteristic equation for the differential equation is $(r+9)(r-1)=r^{2}+8 r-9=0$. Thus the general solution is $y(x)=c_{1} e^{x}+c_{2} e^{-9 x}$.
Problem 3. Given $f(x)=5 x, g(x)=10 x^{2}$, and $h(x)=8 x-8 x^{2}$ then
(a) find real numbers $a$ and $b$ such that

$$
8 \cdot f(x)+a \cdot g(x)+b \cdot h(x)=0
$$

(b) and conclude that the functions $f, g$, and $h$ are linearly dependent.

Solution:
(a) We have that $40 x+10 a x^{2}+8 b x-8 b x^{2}=0$. If we combine the $x$ terms we obtain

$$
(40+8 b) x+(10 a-8 b) x^{2}=0
$$

Since $x$ and $x^{2}$ are linearly independent, then $40+8 b=0$ and $10 a-8 b=0$. Hence $b=-5$ and $a=-4$.
(b) Since we have expressed 0 as a nontrivial linear combination of $f, g$, and $h$ then they are linearly dependent.

Problem 4. Bonus. State the definition of linear dependence.
Solution: A set of vectors $A$ is linearly dependent if there exists vectors $v_{1}, \ldots, v_{n}$ in $A$ and scalars $c_{1}, \ldots, c_{n}$ not all zero such that $c_{1} v_{1}+\cdots+c_{n} v_{n}=0$.

