MA 262 Section 596/597 Quiz 9

June Weiland

March 31, 2023

Problem 1. Write your name, quiz number and section number at the top of a blank full sized sheet of paper.
Problem 2. Find the general solution to the differential equation

$$
y^{\prime \prime}-12 y^{\prime}+52 y=0 .
$$

Solution: The corresponding characteristic equation is $r^{2}-12 r+52=0$. This has roots

$$
r=\frac{12 \pm \sqrt{144-208}}{2}=6 \pm 4 i .
$$

Thus the general solution to the differential equation is

$$
y(x)=c_{1} e^{6 x} \cos (4 x)+c_{2} e^{6 x} \sin (4 x) .
$$

Problem 3. A mass of 8 kg is attached to the end of a spring that is stretched .2 meters by a force of 40 N. It is set in motion with initial position $x_{0}=0$ meters and initial velocity $v_{0}=5$ meters per second. Find the function, $x(t)$, that describes the mass's position.

Solution: First we will need to find the spring constant. We may use the fact that

$$
F_{\text {pull }}=k \Delta l
$$

where $F_{\text {pull }}$ is the force required to strech the spring Δl meters. Thus in our scenario, $F_{\text {pull }}=40$ and $\Delta l=0.2$ and hence $k=200$.

Let $x(t)$ denote the position of the mass at time t, then Newton tells us that

$$
F=m a=m x^{\prime \prime}
$$

where F is the forces acting on the mass and m is the mass of the object. The only force acting on our object is the one due to the spring which is given by Hooke's law $-k x$. Thus

$$
-k x=m x^{\prime \prime}
$$

and consequently

$$
m x^{\prime \prime}+k x=0 .
$$

If we plug in our values we get the differential equation

$$
8 x^{\prime \prime}+200 x=0
$$

The corresponding characteristic equation is $8 r^{2}+200=0$ which has roots $r= \pm 5 i$. Thus $x(t)=c_{1} \cos (5 t)+$ $c_{2} \sin (5 t)$. In order to find c_{1} and c_{2} we will use our initial conditions given in the problem. Since at $t=0$ we have that $x(0)=0$ and $x^{\prime}(0)=v(0)=5$, then

$$
0=c_{1} \cos (0)+c_{2} \sin (0)=c_{1}
$$

and

$$
5=-5 c_{1} \sin (0)+5 c_{2} \cos (0)=5 c_{2} .
$$

Then we see that $c_{1}=0$ and $c_{2}=1$. Thus

$$
x(t)=\sin (5 t) .
$$

