HL $21 \# 6) x_{1}-3 x_{2}-9 x_{3}-5 x_{4}=0$
$2 x_{1}+x_{2}-4 x_{3}+11 x_{4}=0$

$$
x_{1}+x_{2}-x_{3}+7 x_{4}=0
$$

Find a basis for the solution space.

$$
\left.\begin{array}{l}
\left(\begin{array}{cccc}
1 & -3 & -9 & -5 \\
2 & 1 & -4 & 11 \\
1 & 1 & -1 & 7
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \rightarrow\left(\left.\begin{array}{lll|l}
1 & -3 & -9 & -5 \\
2 & 1 & -4 & 11 \\
1 & 1 & -1 & 7
\end{array} \right\rvert\, 0\right.
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
0 & -4 & -8 & -12 & 0 \\
0 & -1 & -2 & -3 & 0 \\
1 & 1 & -1 & 7 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& x_{1}=3 s-4 t \\
& x_{2}=-2 s-3 t \\
& x_{3}=s \\
& x_{4}=
\end{aligned} \quad \leadsto\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=s\left(\begin{array}{c}
3 \\
-2 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-4 \\
-3 \\
0 \\
1
\end{array}\right)
$$

The basis for the solution space is

$$
\left\{\left(\begin{array}{c}
3 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-4 \\
-3 \\
0 \\
1
\end{array}\right)\right\}
$$

Aside:
Basis $=1) \operatorname{lin}$ ind
2) span

HW21\#4 Subspace of $\mathbb{R}^{4}$ is the set of vectors $(a, b, c, 8)$ such that

$$
\begin{aligned}
& a=2 c \\
& b=3 d
\end{aligned}
$$

Find a basis for the space.

$$
\left.\left.\begin{array}{rl}
a & =2 c \\
b & =3 d \\
c & =s \\
d & =t
\end{array}\right\} \text { free } \quad \leadsto \begin{array}{l}
a=2 s+0 t \\
b
\end{array}\right)=0 s+3 t
$$

basis $\left\{\left(\begin{array}{l}2 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 0 \\ 1\end{array}\right)\right\}$

1) lin. ind.
2) Span

$$
\begin{aligned}
\mathbb{R}^{2}\left\{\binom{1}{0},\binom{0}{1},\binom{2}{3}\left\{\begin{array}{l}
\text { Spans } \mathbb{R}^{2} \\
\text { Gut } \\
\text { din. dep. }
\end{array}\right.\right. \\
\binom{x_{1}}{x_{2}}=x_{1}\binom{1}{0}+x_{2}\binom{0}{1}+0\binom{2}{3}
\end{aligned}
$$

$$
\binom{2}{3}=2\binom{1}{0}+3\binom{0}{1}
$$

HL 19 \# 3
$W$ is a subset of $\mathbb{R}^{4}$ of vectors $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$
such that $x_{1}+4 x_{2}+7 x_{3}+8 x_{4}=0$
Is $W$ a subspace of $\mathbb{R}^{4}$ ?
Def. Given a $\mathbb{R}$-vector space $V$ a subset $W$ of $V$ is a subspace if

Ohm. A subset $W$ of a $\mathbb{R}$-vector space $V$ is a sulespace if
closed $\rightarrow 1)$ if $u$ and $v$ in $\omega$, then $u+v$ in $\omega)$
$u$ adder
add
closed
undular
solar $\rightarrow$ if $C$ is a real number and $u$ in $W$ scalar then $c \cdot u$ is in $W$
"closed under linear combination"
Let $v=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \quad u=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ be in $w$. Thus $x_{1}+4 x_{2}+7 x_{3}+8 x_{4}=0$ and

$$
y_{1}+4 y_{2}+7 y_{3}+8 y_{4}=0 .
$$

$$
v+k=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, x_{4}+y_{4}\right)
$$

Is $v+u$ in $\omega$ ?

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right)+4\left(x_{2}+y_{2}\right)+7\left(x_{3}+y_{3}\right)+8\left(x_{4}+y_{4}\right) \\
= & \left(x_{1}+4 x_{2}+7 x_{3}+8 x_{4}\right)+\left(y_{1}+4 y_{2}+7 y_{3}+8 y_{4}\right) \\
= & 0+0 \\
= & 0
\end{aligned}
$$

So $u+v$ is in $W$
Let $c$ be a real number. Is $c \cdot v=\left(c x_{1}, c x_{2}, c x_{3}, c x_{4}\right.$ ), in $\omega$ ?

$$
\begin{aligned}
& \left(c x_{1}\right)+4\left(c x_{2}\right)+7\left(c x_{3}\right)+8\left(c x_{4}\right) \\
= & c\left(x_{1}+4 x_{2}+7 x_{3}+8 x_{4}\right) \\
= & c \cdot 0 \\
= & 0
\end{aligned}
$$

So $c \cdot v$ is in $\omega$.
Thus bey tho $W$ is a subspace of $V$.

