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Definition 0.1. A set S is a collection of things called elements. We use the notation

S = {r, s, t, . . . }

to mean that S is a set and that its elements are r, s, t and so one.

Definition 0.2. Given two sets S and T we say that S is subset of T , denoted S ⊂ T , if every element of
S is also an element of T .

Definition 0.3. Given two sets S and T a function f : S → T (read f is a function from S to T ) assigns
to every element s of S a unique element t of T . We denote this assignment f(s) = t.

1 Linear Spaces

Linear algebra is the study of linear transformations between vector spaces. In all that follows we will only
be looking at the case when our vector spaces are defined over the real numbers, R. One may (and should)
replace R with any field, but for the sake of introducing the subject we will set full generality aside.

It is often standard to begin with the definition of a vector space, but for a student that is not familiar
with abstract algebra the following definition will be giberish. The definition is included for the inquisitive
reader, but it is recommended to simply skim over the words and immediately jump into examples.

Definition 1.1. A vector space (also called a linear space) is a set V , whose elements are called vectors,
equiped with the operations of addition and scalar multiplication such that for any u, v and w in V and any
real numbers a, b and c we have that

1. (closure) u+ v and c · v are a vectors in V ;

2. (associativity) (u+ v) + w = u+ (v + w);

3. (additive identity) there exists a zero vector 0⃗ such that 0⃗ + v = v = v + 0⃗;

4. (additive inverses) there exists a negative vector u− such that u+ u− = 0⃗ = u− + u;

5. (commutativity) u+ v = v + u;

6. (scalar distributivity) (a+ b) · u = a · u+ b · u;

7. (vector distributivity) a · (u+ v) = a · u+ a · v;

8. (scalar identity) 1 · u = u;

9. and (ab) · u = a · (b · u).

We call the real numbers in this case scalars.

Remark 1. The given definition is actually what is called an R-linear space. One may use any field for the
scalars. Another common field used in engineering is the complex numbers, C.
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Example 1.2. When a person asks what is a vector the common answer is an object with direction and
magnitude. In particular such a person is probably thinking about the following vector space. Let n be any
positive whole number, then n-dimensional (real) space is the vector space

Rn := {(a1, . . . , an) where a1, . . . , an are real numbers.}

where addition is defined by

(a1, . . . , an) + (b1, . . . , bn) = (a1 + bn, . . . , an + bn)

and scalar multiplication is defined by

c · (a1, . . . , an) = (ca1, . . . , can).

The zero vector will then be (0, . . . , 0), i.e., the origin.
If n = 2, then we get the real plane R2. Geometrically R2 corresponds to the following picture:

where the illustrated lines are the vertical and horizontal axis and the dot is the origin. A vector in R2 may
be interpruted geometrically as well:

(-2,1)

As you may guess if n = 3, then we get 3 dimensional space (like the one we live in) and if n > 3 we get
higher dimensions! Rn will allow us to do geometry in dimensions larger than the one we live in. Often times
in applications one will not be lucky enough to encounter a real life problem that only uses 3 dimensions.
The real world, unlike math, is messy and often problems one encounters in practice will have a large handful
of variables each of which induces a unique dimension.

Problem 1. Verify that R2 is indeed a vector space by checking each item in the definition.

Problem 2. Interprut the operations of addition and scalar multiplication geometrically for R2.

Problem 3. Draw a picture of R3.

Example 1.3. The next example shows that the slogan “a vector is an object with direction and magnitude”
is misleading. A polynomial is a function of the form f(x) = anx

n+an−1x
n−1+ . . . a1x+a0 where an, . . . , a0

are real numbers. We call ak the k-th coefficient of f and we say the degree of f is n. Then the set

P = {polynomials with real coefficients}

is a vector space when it is equiped with the usual notion of addition and scalar multiplication. In fact, the
multiplication is defined for any two polynomials not just for a scalar and a polynomial. Such a structure is
called a real algebra.

In this example the polynomial g(x) = x2 + 1 is a vector in the vector space A, but it does not have any
obvious direction or magnitude. If one pursues more linear algebra than will be offered in this course, then
they will see that most notions of vector fail to have direction or magnitude.
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Problem 4. Verify that P is a vector space (this should be nearly the same argument as for R2).

Example 1.4. In the previous example we saw that a certain collection of functions formed a vector space,
namely that of polynomials. We also have the following vector spaces made of of functions f(x) from R to
R:

RR = {all functions f : R → R}

C0 = {continuous functions f : R → R}

C1 = {continuous functions f : R → R with continuous derivative}

P(n) = {polynomials f : R → R with degree at most n}.

A simple refresher of the calculus definitions tells us that

P(n) ⊂ P ⊂ C1 ⊂ C0 ⊂ RR.

In general vector spaces that are subsets of vector spaces are common and essential to our study.

Definition 1.5. Given a vector space V a subspace of V is a subset W ⊂ V such that W is a vector space
with respect to the addition and scalar multiplication given from V .

Example 1.6. Claim: P(1) is a subspace of P(2). Proof: Let f(x) = a1x+a0 and g(x) = b1x+b0 be vectors
in P(1). Then we may view them as vectors in P(2) since f(x) = 0x2 + a1x+ a0 and g(x) = 0x2 + b1x+ b0.
Now if we add f and g as vectors in P(2) we obtain

f(x) + g(x) = (0x2 + a1x+ a0) + (0x2 + b1x+ b0) = (0 + 0)x2 + (a1 + b1)x+ (a0 + b0)

which is precisely their sum in P(1), (a1+b1)x+a0+b0. Now let c be any real number then c·f(x) = ca1x+ca0
in P(1). Since in P(2) we have

c · f(x) = c(0x2 + a1x+ a0) = 0x2 + ca1x+ ca0

and 0x2 + ca1x + ca0 = ca1x + ca0, then we have that P(1) is a vector space with respect to the addition
and scalar multiplication of P(2). Hence P(1) is a subspace of P(2).

Problem 5. Show that R2 may be thought of as a subspace of R3. Hint: we may consider a vector (a1, a2)
in R2 as a vector in R3 by assigning it to (a1, a2, 0).

Example 1.7. Let m < n be positive whole numbers, then the following subsets are subspaces

P(m) ⊂ P(n) ⊂ P ⊂ C1 ⊂ C0 ⊂ RR

and
Rm ⊂ Rn.

Theorem 1.8. Let V be a vector space and W a subset of V . Then W is a subspace of V if for all u and
w in W and real number c we have that u+ c · w is also in W .

Proof: Let u and w be elements of W and c = 1, then u + w = u + c · w is W . Now let u = 0⃗, then
c · w = u+ c · w is in W .

2 Linear independence

Trying to work with vector spaces without a basis is akin to using a lighter to bake a pie, please just use the
oven. For our purposes the “oven” will be what is called a basis. If one is given a vector space and a basis,
any problem that is posed about the space can be quickly solved using the basis. A basis for a vector space
is so important that the reader has certainly already encountered and used them in their math.

Let us fix a vector space V , then a basis B is a subset of V that should somehow “express” all the data
found in V in a “minimal” way.
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Definition 2.1. Let V be a vector space and {v1, . . . , vn} be a subset of V . If a1, . . . , an are real numbers,
then a linear combination of v1, . . . , vn is a vector of the form

a1 · v1 + · · ·+ an · vn.

Furthermore, if a1 = · · · = an = 0, then we say that this is a trivial combination.

Definition 2.2. Let V be a vector space and {v1, . . . , vn} be a subset of V . Then the span of v1, . . . , vn is
the set of all linear combinations of v1, . . . , vn, i.e.,

span{v1, . . . , vn} = {a1v1 + · · ·+ anvn where a1, . . . , an are real numbers.}

With this new language we have half of our definition of a basis, namely span. Worded another way, we
require a basis to have the property that any vector in V can be expressed as a linear combination of vectors
from the basis.

Example 2.3. Let us calculate the span of the following vectors in R3:

u =

1
0
1

 , v =

0
2
0

 , w =

3
2
1

 .

A linear combination of u, v and w is any vector of R3 of the form

a · u+ b · v + c · w =

a
0
a

+

 0
2b
0

+

3c
2c
c

 =

 a+ 3c
2b+ 2c
a+ c


where a, b and c are real numbers. Thus

span{u, v, w} = {

 a+ 3c
2b+ 2c
a+ c

 where a, b, c are real numbers }.

Problem 6. Show that the span of the vectors in the previous example is all of R3.

Problem 7. Show that the vectors 1, x and x2 span P(2).

Problem 8. Let V be a vector space, show that V spans V .

The second condition we required of a basis was for it to be “minimal”. The previous problem shows
that a spanning set always exists, namely the space itself, but we are after a spanning set that is as small as
possible.

Definition 2.4. Let V be a vector space and let v1, . . . , vn be vectors in V , then we say that v1, . . . , vn are
linearly dependent if the zero vector can be expressed as a nontrivial linear combination of v1, . . . , vn, i.e.,
there exists a1, . . . , an not all zero such that

0⃗ = a1v1 + · · ·+ anvn.

We say that v1, . . . , vn are linearly independent if they are not linearly dependent.

Linear indpendence is the correct way to interprut the minimality condition for a basis. The reason for
this is as follows:

The following vectors of R2 span the entirety of R2

u =

(
1
0

)
, v =

(
1
1

)
, w =

(
1
−1

)
,

but they have a linear dependency since 0⃗ = 2u − v − w. If we solve for w, then we obtain w = 2u − v.
Clearly we have that w is already in the span of u and v. Hence w is redundant. On the other hand it turns
out that u and v are linearly indpendent and span R2. So they will form a basis for R2.
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Definition 2.5. Let V be a vector space and B ⊂ V be a subset, then B is a basis for V if

1. B spans V and

2. B is linearly independent.

Example 2.6. The standard basis for Rn: Let ei be a vector in Rn whose i-th entry is 1 and all other
entries is 0. Then {e1, . . . , en} is a basis for Rn

For example if n = 2, then

{e1 =

(
1
0

)
, e2 =

(
0
1

)
}

is a basis for R2. If n = 3, then

{e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

}

is a basis for R3.

Example 2.7. The standard basis for P(n): The set

{1, x, x2, . . . , xn}

form a basis for P(n). What about P? This case is a bit more complicated since P alows polynomials of
arbitrarily large degree. A basis still exists but it will no longer be finite. In fact

{1, x, x2, x3, x4, . . . }

forms a basis for P with an infinite number of elements.

The number of vectors in a basis is so important that we give it its own name, dimension.

Definition 2.8. Let V be a vector space B ⊂ V be a basis, then the dimension of V is the number of vectors
in B. If the number of vectors in B is finite we say that V is finite dimensional.

Example 2.9. The dimension of Rn is n since {e1, . . . , en} is a basis with n elements.

Example 2.10. The dimension of P(n) is n+1 since {1, x, x2, . . . , xn} is a basis with n+1 elements. Since
a basis for P has an infinite number of elements, then we say that P is infinite dimensional.

There is one major potentional issue with our definition of dimension. What if there exists two basis
for a vector space with a different number of vectors? It turns out that linear indpendence (our minimality
condition) forces all basis for a vector space to have the same number of elements.

Theorem 2.11. Let V be a vector space and B and D be basis for V , then B and D have the same size as
sets. In particular, if {v1, . . . , vn} is a basis for V , then any other basis of V also has n elements.

This theorem would not be true if we did not require our basis to be linearly independent.

3 Linear transformations

Linear transformations are the main focus of linear algebra everything we have learned thus far are just tools
for studying linear transformations. A linear transformation is a special type of function between vector
spaces T : V → W that respects the linear structure of V and W .

Definition 3.1. Let V and W be vector spaces and T : V → W a function. If for all u and v in V and real
number c we have that

1. T (u+ v) = T (u) + T (v)

2. and T (c · u) = c · T (u),
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then we say that T is a linear transformation.

Theorem 3.2. Let V and W be vector spaces and let {v1, . . . , vn} be a basis for V with n elements, then
any choice of n vectors {w1, . . . , wn} in W , possibly allowing duplicates, determines a unique linear trans-
formation T : V → W such that T (v1) = w1, . . . , T (vn) = wn. Furthermore, every linear transformation is
determined this way.

Example 3.3. Let us classify all linear transformations T from R2 to R2. We know that {e1, e2} is a basis
for R2, thus by the theorem any linear transformation is determined by where we send e1 and e2. Suppose
that

T (e1) =

(
a
c

)
and

T (e2) =

(
b
d

)
where a, b, c, d are real numbers. We can use matrices to express this relation succinctly in a matrix

A =

(
a b
c d

)
.

Using matrix multiplication we see that (
a b
c d

)(
1
0

)
=

(
a
b

)
and (

a b
c d

)(
0
1

)
=

(
b
d

)
.

Hence the linear transformation T may be expressed as multiplication by the matrix A, i.e., T (x⃗) = Ax⃗.
The set of all linear transformations from R2 to 2 is then the same as the set M(2× 2) consisting of all

2 by 2 matrices with real entries.

Problem 9. Describe the set of all linear transformations T : R3 → R3.

Example 3.4. The set of all linear transformations T : Rm → Rn is the set M(n ×m) consisting of all n
by m matrices with real entries.

Problem 10. Show that M(2× 2) is a vector space.

Problem 11. Let V and W be vector spaces, then show that the set of all linear transformations between
V and W is also a vector space.

Problem 12. Show that the derivative operator is a linear transformation from P(2) to P(1). In general
the derivative operator is a linear transfromation from P(n) to P(n− 1).

Problem 13. Show that the function T : P(3) → R defined by T (f(x)) =
∫ 1

0
f(x)dx is a linear transforma-

tion.

Problem 14. Show that the functions f : R2 → R2 and g : R2 → R2 defined by f(x) = x+1 and g(x) = x2

are not linear transfromations.

A special case of linear transformations is when V = W .

Definition 3.5. An endomorphism is a linear transfromation T : V → V .

Since T maps into the same space one may ask what happens to a basis of V under this transfromation?
In particular, if {v1, . . . , vn} is a basis for V , then is {T (v1), . . . , T (vn)} still a basis for V ? The answer in
general is no. When {T (v1), . . . , T (vn)} is a basis for V this is very special and gets its own name.

Definition 3.6. Let V be a vector space with basis {v1, . . . , vn} and let T : V → V be an endomorphism.
T is called invertible if {T (v1), . . . , T (vn)} is also a basis for V .
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