Lesson 21: Graphical Interpretation of Derivatives

March 9, 2020

▲□▶▲御▶★臣▶★臣▶ 臣 の�?

Solutions for Example 1:

x = 1
$(-\infty,1)$
$(1,\infty)$
x = 1
NONE
NONE
$(-\infty,\infty)$
NONE

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Solutions for Example 2:

	-
Critical Numbers of f	x = 1 and $x = 3$
f Increasing	(1,3)
f Decreasing	$(-\infty,1)\cup(3,\infty)$
Relative Max at	x = 3
Relative Min at	x = 1
f Concave Up	$(-\infty,2)$
f Concave Down	$(2,\infty)$
Inflection Points of f at	<i>x</i> = 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々⊙

Solutions for Example 3:

Critical Numbers of f	x = -1 and $x = 1$ and $x = 5$
f Increasing	(1,5)
f Decreasing	$(\infty,1)\cup(5,\infty)$
Relative Max at	<i>x</i> = 5
Relative Min at	x = 1
f Concave Up	$(-\infty,-1)\cup(0,3)$
f Concave Down	$(-1,0)\cup(3,\infty)$
Inflection Points of f	x = -1 and $x = 0$ and $x = 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Solutions for Example 4:

Critical Numbers of f	x = 0 and $x = 2$
f Increasing	$(-\infty,0)\cup(2,\infty)$
f Decreasing	(0,2)
Relative Max at	x = 0
Relative Min at	x = 2
f Concave Up	(1,3)
f Concave Down	$(-\infty,1)\cup(3,\infty)$
Inflection Points of f	x = 1 and $x = 3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Solutions for Example 5:

Critical Numbers of f	x = 1
f Increasing	$(-\infty,1)$
f Decreasing	(1,3)
Relative Max at	x = 1
Relative Min at	NONE
f Concave Up	(2,3)
f Concave Down	$(-\infty,2)$
Inflection Points of f	<i>x</i> = 2

Solutions for Example 6:

Critical Numbers of f	x = -4 and $x = -1$ and $x = 1$ and $x = 3$
f Increasing	$(-\infty,-4)\cup(-1,1)\cup(3,\infty)$
f Decreasing	$(-4,-1)\cup(1,3)$
Relative Max at	x = -4 and $x = 1$
Relative Min at	x = -1 and $x = 3$
f Concave Up	$(-3,0)\cup(2,\infty)$
f Concave Down	$(\infty,-3)\cup(0,2)$
Inflection Points of f	x = -3 and $x = 0$ and $x = 2$

Solutions for Example 7:

Critical Numbers of f	x = -4 and $x = 1$ and $x = 3$
f Increasing	$(-4,1)\cup(3,\infty)$
f Decreasing	$(-\infty,-4)\cup(1,3)$
Relative Max at	x = 1
Relative Min at	x = -4 and $x = 3$
f Concave Up	$(-\infty,-2)\cup(2,\infty)$
f Concave Down	(-2,2)
Inflection Points of f	x = -2 and $x = 2$