Problem 1. Solve for x, given that

$$
\ln \left(x^{2}\right)=2 \ln (3)
$$

Solution: Notice first that

$$
2 \ln (3)=\ln \left(3^{2}\right)=\ln (9)
$$

Exponentiating both sides gives that

$$
x^{2}=9
$$

hence $x= \pm 3$.

Problem 2. If $0 \leq \theta \leq \pi / 2$ is an angle in the first quadrant, and

$$
\sin (\theta)=12 / 13
$$

find $\tan (\theta)$.
Solution: Using the Pythagorean Theorem, one has the triangle

Since tangent is opposite over adjacent, $\tan (\theta)=12 / 5$.

Problem 3. Compute

$$
\lim _{x \rightarrow 1} f(x)
$$

numerically, given that

$$
f(x)= \begin{cases}2 x+3 & \text { if } x<1 \\ 5 & \text { if } x=1 \\ 3 x-3 & \text { if } x>1\end{cases}
$$

Solution: We fill out a table of inputs and outputs:

x	.9	.99	.999	1	1.001	1.01	1.1
$f(x)$	4.8	4.98	4.998	-	0.003	0.03	0.3

From the table, we see that

$$
\lim _{x \rightarrow 1^{-}} f(x)=5
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=0
$$

Since the left and right limits disagree,

$$
\lim _{x \rightarrow 1} f(x) \text { DNE. }
$$

