Problem 1. Determine the location and type (hole, vertical asymptote, or jump) of any discontinuities:

$$
f(x)=\frac{(x+2)^{2}}{x^{2}-x-6}
$$

Solution: Discontinuities of rational functions occur at x-values which make the denominator zero. Since

$$
x^{2}-x-6=(x+2)(x-3)
$$

the only discontinuities are at $x=-2$ and $x=$ 3. Since

$$
\frac{(x+2)^{2}}{x^{2}-x-6}=\frac{x+2}{x-3}
$$

the "bad spot" in the denominator cancels for $x=-2$ but not for $x=3$. Hence there is a hole at $x=-2$ and a vertical asymptote at $x=3$.

Problem 2. Use the limit definition of the derivative to compute the derivative of

$$
f(x)=x^{2}+1
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}+1\right)-\left(x^{2}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 h x+h^{2}+1\right)-\left(x^{2}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x .
\end{aligned}
$$

