Problem 1. Use the basic rules of differentiation to compute the derivative of

$$
f(x)=\sqrt{x}\left(3 x^{2}-\frac{1}{x}\right) .
$$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\sqrt{x}\left(3 x^{2}-\frac{1}{x}\right)\right] \\
& =\frac{d}{d x}\left[x^{1 / 2}\left(3 x^{2}-x^{-1}\right)\right] \\
& =\frac{d}{d x}\left[3 x^{5 / 2}-x^{-1 / 2}\right] \\
& =3 \frac{d}{d x}\left[x^{5 / 2}\right]-\frac{d}{d x}\left[x^{-1 / 2}\right] \\
& =\frac{15}{2} x^{3 / 2}+\frac{1}{2} x^{-3 / 2} .
\end{aligned}
$$

Problem 2. The position of a particle on a straight line is given by

$$
s(t)=\frac{t^{3}}{3}-t^{2}+t
$$

What is the particle's position when its velocity is zero?
Solution: The velocity of the particle is

$$
v(t)=t^{2}-2 t+1
$$

Hence the velocity is zero when

$$
\begin{aligned}
t^{2}-2 t+1 & =0 \\
(t-1)^{2} & =0 \\
t & =1
\end{aligned}
$$

The position of the particle when the velocity is zero is

$$
s(1)=\frac{1}{3} .
$$

