Problem 1. Compute the derivative of

$$
f(x)=2 x \sin (x)+\frac{1}{\sqrt{x}} .
$$

Do not simplify your answer after finding the derivative.
Solution: Using the sum rule and then the product rule, we have that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[2 x \sin (x)+\frac{1}{\sqrt{x}}\right] \\
& =\frac{d}{d x}[2 x \sin (x)]+\frac{d}{d x}\left[x^{-1 / 2}\right] \\
& =\frac{d}{d x}[2 x] \sin (x)+2 x \frac{d}{d x}[\sin (x)]+\frac{d}{d x}\left[x^{-1 / 2}\right] \\
& =2 \sin (x)+2 x \cos (x)-\frac{1}{2} x^{-3 / 2} .
\end{aligned}
$$

Problem 2. Compute the derivative of

$$
f(x)=\frac{x^{2}+1}{e^{x}}
$$

Do not simplify your answer after finding the derivative.
Solution: Using the quotient rule, we have that

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(e^{x}\right) \frac{d}{d x}\left[x^{2}+1\right]-\left(x^{2}+1\right) \frac{d}{d x}\left[e^{x}\right]}{\left(e^{x}\right)^{2}} \\
& =\frac{\left(e^{x}\right)(2 x)-\left(x^{2}+1\right)\left(e^{x}\right)}{\left(e^{x}\right)^{2}}
\end{aligned}
$$

