Problem 1. Compute the derivative of

$$
f(x)=e^{2 x}+\left(x^{2}+1\right)^{3} .
$$

Do not simplify your answer after finding the derivative.
Solution: By the sum rule, we have

$$
\frac{d}{d x}\left[e^{2 x}+\left(x^{2}+1\right)^{3}\right]=\frac{d}{d x}\left[e^{2 x}\right]+\frac{d}{d x}\left[\left(x^{2}+1\right)^{3}\right] .
$$

By the chain rule, we may continue:

$$
\begin{aligned}
& =e^{2 x} \frac{d}{d x}[2 x]+3\left(x^{2}+1\right)^{2} \frac{d}{d x}\left[x^{2}+1\right] \\
& =2 e^{2 x}+3\left(x^{2}+1\right)^{2} 2 x .
\end{aligned}
$$

Problem 2. Compute the derivative of

$$
f(x)=\sin (2 x) \ln (\cos (x))
$$

Do not simplify your answer after finding the derivative.
Solution: We first employ the product rule:

$$
\frac{d}{d x}[\sin (2 x) \ln (\cos (x))]=\frac{d}{d x}[\sin (2 x)] \ln (\cos (x))+\sin (2 x) \frac{d}{d x}[\ln (\cos (x))]
$$

Now by the chain rule, we may continue:

$$
\begin{aligned}
& =\cos (2 x) \frac{d}{d x}[2 x] \ln (\cos (x))+\sin (2 x) \frac{1}{\cos (x)} \frac{d}{d x}[\cos (x)] \\
& =2 \cos (2 x) \ln (\cos (x))+\sin (2 x) \frac{1}{\cos (x)}(-\sin (x))
\end{aligned}
$$

