Problem 1. If the position of an object is given by

$$
s(t)=\frac{1}{3} t^{3}-t^{2}-10 t
$$

find the acceleration when the velocity is 5 .
Solution: The velocity is the first derivative of $s(t)$:

$$
v(t)=t^{2}-2 t-10 .
$$

The velocity is 5 when

$$
\begin{aligned}
t^{2}-2 t-10 & =5 \\
t^{2}-2 t-15 & =0 \\
(t-5)(t+3) & =0
\end{aligned}
$$

Since t refers to time, we choose the positive t value. Thus, the velocity is 5 when $t=5$. The acceleration is the second derivative of $s(t)$, or the derivative of $v(t)$:

$$
a(t)=2 t-2 .
$$

Thus when $t=5, a(5)=8$.

Problem 2. Use implicit differentiation to find an explicit expression for $d y / d x$, given that

$$
e^{y}+y^{2}=x y
$$

Solution: Applying $\frac{d}{d x}$ to both sides yields

$$
e^{y} y^{\prime}+2 y y^{\prime}=y+x y^{\prime} .
$$

Solving for y^{\prime} gives

$$
y^{\prime}=\frac{y}{e^{y}+2 y-x} .
$$

