Problem 1. A stone dropped into a still pond sends out a circular ripple whose radius increases at a constant rate of 3 feet per second. How rapidly is the area enclosed by the ripple increasing at the end of 10 seconds?

Solution: The area A and radius r of the ripple are changing with time, and we are given that $d r / d t=3$. After 10 seconds, the radius r is 30 feet. We may relate A and r via the equation

$$
A=\pi r^{2}
$$

Applying $d / d t$ to both sides yields

$$
\frac{d A}{d t}=2 \pi r \frac{d r}{d t}
$$

Substituting in $r=30$ and $d r / d t=3$ yields

$$
\frac{d A}{d t}=180 \pi \frac{\mathrm{ft}^{2}}{\mathrm{~s}}
$$

Problem 2. If x and y are functions of t satisfying the relation

$$
x^{2}+y^{2}=2 x,
$$

find $d y / d t$ when $d x / d t=-2$ and $(x, y)=(1,1)$.
Solution: Applying $d / d t$ to both sides of the equations yields

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 \frac{d x}{d t} .
$$

Substituting $d x / d t=-2$ and $(x, y)=(1,1)$ and solving for $d y / d t$ yields $d y / d t=0$.

