Problem 1. Find the critical numbers of

$$
f(x)=\frac{x}{x^{2}+2}
$$

Solution: Using the quotient rule, we compute that

$$
f^{\prime}(x)=\frac{\left(x^{2}+2\right) 1-x(2 x)}{\left(x^{2}+2\right)^{2}}=\frac{-x^{2}+2}{\left(x^{2}+2\right)^{2}} .
$$

The critical numbers are where the derivative does not exist or is zero. Note that $f^{\prime}(x)$ exists everywhere because $\left(x^{2}+2\right)^{2}$ can never be zero. We have that $f^{\prime}(x)=0$ when the numerator is equal to zero, that is, when $-x^{2}+2=0$. Hence the critical numbers are

$$
x=-\sqrt{2} \quad \text { and } \quad x=\sqrt{2} .
$$

Problem 2. Find the local maximums and local minimums of

$$
f(x)=x^{2} e^{x}
$$

Solution: By the product rule,

$$
f^{\prime}(x)=2 x e^{x}+x^{2} e^{x}=x e^{x}(2+x)
$$

Since $f^{\prime}(x)$ exists everywhere, the critical numbers are where this derivative is zero: $x=0$ and $x=-2$. Applying a number line test to $f^{\prime}(x)$, we find that $f^{\prime}(x)>0$ on $(-\infty,-2) \cup(0, \infty)$ and $f^{\prime}(x)<0$ on $(-2,0)$. It follows from the First Derivative Test that f has

$$
\text { a local maximum at }(-2, f(-2))=\left(-2,4 e^{-2}\right),
$$

and
a local minimum at $(0, f(0))=(0,0)$.

