Directions: Please show all the work leading to your answers. Having some correct work with an incorrect answer will earn you partial credit.

1. Find the minimum value of \(f(x, y) = x^2 + 4xy \) subject to the constraint \(x^2y = 108 \).

Solution

We need to use the Lagrange multiplier method:

Find \(x \), \(y \), and \(\lambda \) such that the following equations are true:

\[
\begin{align*}
2x + 4y &= \lambda (2xy) \\
4x &= \lambda (x^2) \\
x^2y &= 108 \\
\end{align*}
\]

The simplest equation to work with is \(4x = \lambda x^2 \) since it only involves two variables. In order to divide by \(x \), we first need to check what happens when it is equal to zero. \(x = 0 \) implies that \(x^2y = 0 \neq 108 \). So we know that in order to satisfy all three equations, \(x \neq 0 \). So dividing by \(x \) gives us \(4 = \lambda x \). At this point there are two ways of proceeding and both will give the correct solution:

Method 1: Plug \(4 = \lambda x \) into the first equation

The right hand side of the first equation is \(2\lambda xy \) and since \(\lambda = 4 \) it becomes \(2(4)y = 8y \). So the first equation becomes

\[2x + 4y = 8y\]

so \(2x = 4y \) and \(x = 2y \). Now we plug that into the third equation to get \(x^2y = (2y)^2y = 4y^3 = 108 \) and hence \(y^3 = 27 \) which means that \(y = 3 \). Since \(x = 2y \), \(x = 6 \).

Method 2: Plug \(4 = \lambda x \) into the third equation

We have that \(x = \frac{4}{\lambda} \) so \(x^2y = (\frac{4}{\lambda})^2y = \frac{16}{\lambda^2}y = 108 \) so that \(y = \lambda^2 \frac{108}{16} = \frac{27}{4} \lambda^2 \). We can plug this and \(x = \frac{4}{\lambda} \) into the first equation to get that

\[
\begin{align*}
2 \frac{4}{\lambda} + 4 \cdot \frac{27}{4} \lambda^2 &= 2 \lambda^2 \frac{27}{4} \\
\frac{8}{\lambda} + 27 \lambda^2 &= 54 \lambda^2 \\
\frac{8}{\lambda} &= 27 \lambda^2 \\
\frac{8}{27} &= \lambda^3
\end{align*}
\]

so that \(\lambda = \frac{2}{3} \) and hence \(x = \frac{4}{\frac{2}{3}} = 4 \frac{3}{2} = 6 \) and \(y = \frac{27}{2} \frac{4}{9} = 3 \).

So the only point we get is \((6, 3)\) so we plug that into \(f \) to get \(f(6, 3) = 6^2 + 4 \cdot 6 \cdot 3 = 108 \).