Second midterm review sheet

The second midterm covers all the material from chapters 3 - 5, and you may use results from chapters 1 - 5 without proof. Most of the midterm will consist of problems from this list. You will not be asked to reprove theorems from the book.

- 1. Let A > 0, and suppose $\sum_{n=1}^{\infty} a_n = A$, and $a_n > 0$ for all $n \in \mathbb{N}$. Find the possible values of $\sum_{n=1}^{\infty} a_n^2$.
- 2. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of complex numbers. Which implications are valid between the following three statements?
 - (a) $(a_n)_{n \in \mathbb{N}}$ converges.
 - (b) $\sum |a_{n+1} a_n|$ converges.
 - (c) $(2a_{n+1} a_n)_{n \in \mathbb{N}}$ converges.
- 3. Problem 18 from page 100.
- 4. Problem 23 from page 101.
- 5. Let K be a compact metric space and $A \subset K$. Prove that A is compact if and only if for every continuous function $f: K \to \mathbb{R}$, the restriction of f to A attains a maximum on A. Is it possible to replace the assumption on K with a weaker one?
- 6. Let $f \colon \mathbb{R} \to \mathbb{R}$ be continuous, and suppose that

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty.$$

Prove that f attains a minimum on \mathbb{R} .

- 7. Let $f \colon \mathbb{R} \to \mathbb{R}$ be continuous, and suppose f(x+1) = f(x) for all $x \in \mathbb{R}$.
 - (a) Prove that f is bounded and attains both a maximum and a minimum on \mathbb{R} .
 - (b) Prove that f is uniformly continuous on \mathbb{R} .
 - (c) Prove that for any $a \in \mathbb{R}$ there is $x_0 \in \mathbb{R}$ such that $f(x_0 + a) = f(x_0)$.
- 8. Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous. Prove that there exists M > 0 such that $|f(x)| \le M(1+|x|)$ for all $x \in \mathbb{R}$.

9. Let $f \colon \mathbb{R} \to \mathbb{R}$ be continuous. Prove that the set

$$\{\alpha \in \mathbb{R} : \exists (x_n)_{n \in \mathbb{N}} \text{ with } \lim_{n \to \infty} x_n = \infty, \lim_{n \to \infty} f(x_n) = \alpha \}$$

is connected.

- 10. Problem 2 from page 114.
- 11. Problem 11 from page 115.
- 12. Problem 14 from page 115.