Problem Set 6

Due October 25th at 4 pm in room 2-285.

Hand in parts 1 and 2 separately. Put your name on each part.

Part 1

- 1. Problem 6 from page 78.
- 2. Suppose $(a_n)_{n\in\mathbb{N}}$ satisfies $a_{n+m} \leq a_n + a_m$ for all $m, n \in \mathbb{N}$. Prove that

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf \left\{ \frac{a_n}{n} \colon n \in \mathbb{N} \right\},\,$$

as an element of $\mathbb{R} \cup \{-\infty\}$. You may use without proof the *Euclidean* division algorithm, which says that for any $n, \ell \in \mathbb{N}$, there exist unique $m, r \in \mathbb{N} \cup \{0\}$ with $r < \ell$ such that

$$n = m\ell + r.$$

3. Let $\sum b_n$ be a convergent series of real numbers, and let $(a_n)_{n \in \mathbb{N}}$ be bounded below. Prove that if

$$a_{n+1} \le a_n + b_n, \qquad \forall n \in \mathbb{N},$$

then $(a_n)_{n \in \mathbb{N}}$ converges.

Part 2

- 4. Let X and Y be metric spaces and $f: X \to Y$ a function. Prove that the following are equivalent.
 - (a) f is continuous.
 - (b) If $(p_n)_{n \in \mathbb{N}}$ converges in X, then $(f(p_n))_{n \in \mathbb{N}}$ converges in Y.
 - (c) If $(p_n)_{n\in\mathbb{N}}$ converges in X, then $(f(p_n))_{n\in\mathbb{N}}$ converges in Y and

$$\lim_{n \to \infty} f(p_n) = f\left(\lim_{n \to \infty} p_n\right)$$

(d) $f(\overline{E}) \subset \overline{f(E)}$ for any $E \subset X$.

5. Problem 4 from page 98.