Homework 4

Due February 26th by the beginning of class.

Problem: Prove that

$$\lim_{n \to \infty} \frac{n^2 x}{1 + n^2 x^2} = \text{p.v.} \frac{1}{x}$$

in $\mathscr{D}'(\mathbb{R})$, where p.v. $\frac{1}{x}$ denotes the principal value distribution as in [FrJo, page 19].

Hint: Use the fact that

$$\langle \mathbf{p.v.}\frac{1}{x}, \phi \rangle = \int_{-1}^{1} \frac{\phi(x) - \phi(0)}{x} dx + \int_{\mathbb{R} \setminus [-1,1]} \frac{\phi(x)}{x} dx.$$

You may use without proof the dominated convergence theorem, which says that if $f_n(x) \to f(x)$ for every $x \in \mathbb{R}$, and if $|f_n(x)| \leq g(x)$ for every $n \in \mathbb{N}$ and $x \in \mathbb{R}$ for some function g with $\int_{\mathbb{R}} g < \infty$, then $\lim_{n \to \infty} \int_{\mathbb{R}} f_n = \int_{\mathbb{R}} f$.

Not required: What about $\lim \frac{n^2 f(x)}{1+n^2 x^2}$, where $f \in C^{\infty}(\mathbb{R})$?

Solution:

References

[FrJo] G. Friedlander and M. Joshi. The Theory of Distributions, second edition, Cambridge University Press, 1998.